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ABSTRACT

LOCALIZED ANOMALY DETECTION VIA HIERARCHICAL INTEGRATED

ACTIVITY DISCOVERY

With the increasing number and variety of camera installations, unsupervised methods

that learn typical activities have become popular for anomaly detection. In this thesis,

we consider recent methods based on temporal probabilistic models and improve them in

multiple ways. Our contributions are the following: (i) we integrate the low level processing

and the temporal activity modeling, showing how this feedback improves the overall quality of

the captured information, (ii) we show how the same approach can be taken to do hierarchical

multi-camera processing, (iii) we use spatial analysis of the anomalies both to perform local

anomaly detection and to frame automatically the detected anomalies. We illustrate the

approach on both traffic data and videos coming from a metro station. We also investigate the

application of topic models in Brain Computing Interfaces for Mental Task classification. We

observe a classification accuracy of up to 68% for four Mental Tasks on individual subjects.
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Chapter 1

Introduction

An increasing number of camera networks are being deployed to ensure safety and ab-

normal event detection through visual surveillance. Even if some applications can afford

systematic human monitoring, this is surely impossible when the number of cameras in the

network is huge. It has become of prime importance to design algorithms able to handle this

vast amount of data, filter out typical activities and show the most abnormal parts to human

operators. In this thesis, we improve over recent approaches to do anomaly detection and

video abnormality characterization. There are two main kinds of approaches for anomaly

detection. The main distinction between them lies in modeling abnormalities or modeling

usual activity.

The first kind explicitly model and learn to recognize abnormal events. From a well

specified event type, one can build dedicated detectors [3] that usually perform well. These

approaches have the drawbacks that abnormal events have to be defined in advance, and

a variety of training data have to be gathered for these events. These approaches are thus

not adequate in large camera networks where no supervision is expected. Even if these

approaches allow to specify in a direct way what is to be detected, this actually has some

drawbacks: abnormal events have to be defined in advance, and a variety of training data

have to be gathered for these events. These steps require human intervention and might need

to be re-executed for new cameras or view points. These constraints limit the application of

these approaches in large camera networks where no supervision of the algorithms is expected

at camera installation.
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1.1 Related Work

Given the above limitations, unsupervised methods have gained interest recently. As

these approaches cannot rely on pre-defined abnormality classes, they rather learn what is a

normal activity and they consider as an anomaly anything that deviates from these normal

activities. Different features have been used to characterize videos. In the context of public

spaces, person tracking with person re-identification across cameras provides an effective

solution to abnormal behavior detection [2, 30, 33]. However, robust tracking requires suf-

ficient resolution and frame-rate, and, often surveillance cameras have low resolution, low

quality (dirty, blurry, etc.) and low frame-rate (e.g., 5 frames per second). This profile of

cameras explain the growing interest in relying on lower level features such as background

subtraction information [22] or localized motion in the form of tracklets [15, 16] or optical

flow [10].

Probabilistic methods have been shown very effective in handling these low level features

in a principled way. Originally designed for text semantic analysis and after their success

in many domains, various Topic Models has been proposed and applied for activity model-

ing [16, 20]. In this thesis, we build upon the Probabilistic Latent Sequential Motifs (PLSM)

model that have been proposed in [26, 28]. The main advantage of PLSM is its capacity

of automatically (with no supervision) extracting motifs (temporal patterns) that capture

strong temporal information in temporal documents represented by word× time count ma-

trices. Applied to traffic or metro station videos, the motifs are shown to capture the typical

activities (related to trajectories) observed in a scene, as illustrated in Fig. 5.2. PLSM has

been used for anomaly detection in surveillance video [10].

In previous works, PLSM was applied to documents built from an intermediate repre-

sentation learned by dimensionality reduction of the low-level features. This intermediate

representation had been learned in advance which had two drawbacks: it made it possible to

create artifacts for PLSM, and the learning ignored temporal information, and thus was not

benefiting by the temporal structure that PLSM can provide. Also, when used for anomaly
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detection, PLSM was not considering the semantic of the intermediate representation and

thus it was for example ignoring the spatial layout of anomaly in the scene. In this thesis

we explore solutions to these two restrictions in PLSM usage.

1.2 Contributions

The overall aim of this thesis is to improve the anomaly detection approach using

PLSM [26] by (i) jointly learning the dimensionality reduction representation along with

the PLSM temporal model, and (ii) reasoning about the spatial distribution of anomalies in

the image. We also investigate the application of PLSM to Brain Computing Interfaces.

We achieve the integration of the dimensionality reduction step (PLSA) with the PLSM

model through Dirichlet prior feedback. The feedback encodes the relevance of the infor-

mation (topics) captured by PLSA with respect to a sequential pattern. Topics which are

not useful for temporal modeling are discouraged by this feedback, hence allowing PLSA

to capture better topics. We provide some qualitative evidence on surveillance cameras in

Chapter 5 which illustrates the improvement of temporal patterns with feedback.

We achieve localized abnormality detection through blocking. Blocking divides the frame

of a video into sub-frames. The reconstruction errors for individual blocks are calculated

and then the group of blocks that are most abnormal are identified.

We investigate the applicability of PLSA and PLSM for the first time for mental task

Classification. Here we consider the frequency domain representation of brain waves from

multiple electrodes as our vocabulary. This vocabulary representation is useful for finding

the frequencies and channels that define each mental task.

1.3 Thesis organization

We now provide a brief outline of each of the chapters in this thesis. Chapter 2 reviews the

necessary statistical concepts that are utilized throughout this thesis. The chapter begins

3



by introducing the principles of parameter estimation methods like MLE and MAP. We

then describe the Expectation Maximization (EM) algorithm which is a technique used for

parameter estimation of incomplete data. The chapter then proceeds to discuss conjugate

priors and finally topic modeling approaches.

The datasets used for testing our models is described in Chapter 3. We explain the traffic

and metro surveillance videos and also motivate the choice of these videos. The description

of the Brain Computing Interface (BCI) dataset is deferred until Chapter 8.

Chapter 4 motivates the need for jointly learning the dimensionality reduction representa-

tion along with the PLSM temporal model by describing the previous approach to modeling.

Chapter 5 and Chapter 6 present the two main thesis contributions: The introduction of the

Integrated PLSM model and its extension to hierarchical multi-camera processing. Results

are shown in Chapter 7 for traffic data and for public space data (metro station).

The application of PLSA and PLSM to BCI is discussed in Chapter 8. Here we describe

the dataset used, feature extraction for vocabulary construction and results on nine subjects.

We also illustrate and interpret the distributions obtained from PLSA applied to frequency

domain transformed EEG signals recorded when subjects were performing mental tasks.

Finally, Chapter 9 concludes the work.

4



Chapter 2

Background

In this chapter, the concepts required to better understand this thesis are briefly de-

scribed. Sections 2.1 and 2.2 describe the parameter estimation problem and explains es-

timation of parameters on incomplete data using the Expectation Maximization algorithm.

Section 2.3 explains the conjugate priors for binomial distribution and generalizes it to a

Multinomial distribution. The final section 2.4 describes the topic models, Probabilistic

Latent Semantic Analysis (PLSA) and Probabilistic Latent Sequential Motifs (PLSM).

2.1 Parameter Estimation

Parameter estimation [12] is the problem of finding the parameters θ for a set of distri-

butions that best explains the observations X. The dataset X = {xi}|X|i=1 can be considered

as a set of observations generated independently and identically distributed realizations of a

random variable. The parameters θ, depends on the distributions considered, for example,

Multinomial distribution, θ = {pi}i=Di=1 , where D is the cardinality of the possible outcomes.

The joint distribution P (X, θ) describes the probability of the observations and the vector

θ. Bayes’ theorem gives the relationship between the probabilities X and θ as below:

P (θ|X) =
P (X|θ)P (θ)

P (X)
, P (X) = ΣθP (X, θ). (2.1)

The interpretation of the distributions in Eq. 2.1 is given below:

posterior ∝ likelihood× prior (2.2)

The proportionality is due to the fact that P (X) is a marginal over θ and hence a constant

for any prior P (θ). Below, we explain some of the methods for parameter estimation. We

5



will start with simple Maximum Likelihood Estimation (MLE) and then describe how prior

belief can be included in the estimation.

2.1.1 Maximum Likelihood Estimation

MLE is the method of finding the parameters of the model that maximizes the probability

of the observations (likelihood) under the resulting distribution. This approach only esti-

mates the parameters with respect to the observations and doesn’t incorporate prior belief,

hence P (θ) is not considered. The likelihood is,

`(θ|X) = P (X|θ) =

|X|∏
i=1

P (xi|θ). (2.3)

Because of the product, it is often mathematically convenient to express the likelihood, `, as

the log-likelihood,

L(θ|X) =

|X|∑
i=1

log(P (xi|θ)). (2.4)

The MLE can then be formulated as,

θML = argmax
θ

(L(θ|X)). (2.5)

The parameter θ then can be estimated by solving the Eq. 2.5 as follows:

∂

∂θd
L(θ|X) = 0; ∀θd ∈ θ (2.6)

As an example, consider a set X of N Bernoulli experiments of an unfair coin toss with

unknown parameter θ. The probability of the event x, for a single experiment, for the

random variable Xi is,

P (Xi = x|θ) = θx · θ1−x. (2.7)

where x = 1 is heads and x = 0 is tails. The MLE for θ can be found by solving Eq. 2.5,

L =
N∑
i=1

(log(P (Xi = x|θ))) (2.8)

= (n1log(P (Xi = 1|θ))) + n0log(P (Xi = 0|θ))), (2.9)

6



where n1 denotes the number of heads and n0, the number of tails.

∂

∂θ
(L) =

n1

θ
− n0

1− θ
= 0, (2.10)

θML =
n1

n1 + n0
=
n1

N
. (2.11)

which is the ratio of heads to the total number of samples. It can be seen from Eq. 2.11,

the MLE estimates parameters which best explains the observations. If the observations or

the sample dataset (subset of sample space) is not a good representative of the population

(sample space) then the MLE estimate approach over-fits the parameters to the sample

dataset.

2.1.2 Maximum a Posteriori Estimation

Maximum a posteriori (MAP) estimation is similar to MLE but also incorporates a

mechanism to add prior belief in the form of a prior distribution. In MAP, the parameters

of the model are obtained by maximizing the posterior distribution in Eq. 2.1 with respect

to the model parameters θ

θMAP = argmax
θ

(P (X|θ)P (θ)) | P (X) 6= f(θ) (2.12)

= argmax
θ

(
N∑
i=1

log(P (xi|θ)) + log(P (θ))) (2.13)

= argmax
θ

(L+ log(P (θ))), (2.14)

Continuing with the coin example as in MLE, the prior distribution P (θ) can be represented

by the Beta distribution (explained in Section 2.3) with hyperparameters α and β as below:

P (θ) =
θα−1(1− θ)β−1

B(α, β)
| B(α, β) = beta, function, (2.15)

∂

∂θ
log(P (θ)) =

α− 1

θ
+
β − 1

1− θ
, (2.16)

∂
∂θ
L is same as Eq. 2.11. Substituting Eq. 2.11 and 2.16 in 2.14 and simplifying, we obtain,

θMAP =
n1 + α− 1

N + α− 1 + β − 1
. (2.17)

7



From the MAP estimate in Eq. 2.17, we can see that, the addition of prior distribution

is just including past experimental results or belief. The addition of prior belief acts like

regularization to the MLE estimate

2.2 Expectation Maximization

The Expectation Maximization (EM) algorithm [8] is an iterative approach for param-

eter estimation for an incomplete dataset. The missing values in the data corresponds to

unobserved variables which are also known as hidden or latent variables. Each iteration

of the EM algorithm consists of two steps: the E-step and the M-step. In the E-step, the

missing data is estimated with the current estimate of the parameters. In the M-step, the

parameters are estimated using the MLE. Consider a set X of observed data, a set Z of

unobserved data and let θ be a vector of unknown model parameters. The log-liklihood of

the observed data is given below:

L(θ|X) =
∑

i log(
∑

zi P (xi, zi|θ))

=
∑

i log(
∑

zi
P (xi,zi|θ)Qi(z

i)
Qi(zi)

)

≥
∑

i

∑
zi Qi(z

i)log P (xi,zi|θ)
Qi(zi)

.

(2.18)

The last step in the above equations is obtain by applying Jensen’s Inequality to the con-

cave log function. Qi could be any set of distributions. Since we know that the distribution

should sum to, ∑
z

Qi(z) = 1. (2.19)

We can choose the Qi to be P (zi|xi, θ), the posterior distribution given the data and the

parameters. To calculate this posterior distribution we should have some initial estimate

for the parameters θ (could be random). Using this estimated posterior distribution the

parameters can be estimated by maximizing Equ. 2.18 w.r.t θ. Hence we have the following

steps of the EM algorithm:
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E-Step:

P (zi|xi, θn) =
P (xi, zi|θn)

P (xi, θn)
(2.20)

M-Step:

θn+1 = arg max
θ

(
∑
i

∑
zi

P (zi|xi, θn))log
P (xi, zi|θ)
P (zi|xi, θn)

) (2.21)

The above two steps are iterated until convergence. The EM algorithm is guaranteed to

increase the liklihood in each iteration [8]

2.3 Conjugate Priors

In Section 2.1.1 it was shown that the MLE estimate leads to overfitting the parameters

if the sample dataset is not a good representation of the population. The MAP estimate

overcomes this problem by introducing a prior distribution P (θ) over the parameter θ. The

prior distribution is chosen such that it has a simple interpretation and useful analytical

properties. The posterior distribution is proportional to the product of liklihood and prior.

If the posterior and prior have the same functional form then they are known as conjugate

pairs.

2.3.1 Beta Distribution

The beta distribution is a continuous distribution in the interval [0, 1] parameterized by

two positive shape parameters α, β.

Beta(θ|α, β) =
Γ(α + β)

Γ(α)Γ(β)
· θα−1(1− θ)β−1 (2.22)

The parameters α and β are also called hyperparameters because they control the distribution

of the θ parameter. Γ is gamma function (Γ(n) = (n − 1)!). The variance of the beta

distribution is governed by the value of the hyperparameters as illustrated in Fig. 2.1. The

beta distribution has similar form as the binomial distribution. The likelihood function

in case of a dataset sampled from a binary random variable takes the form θl(1 − θ)m (l

9



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

θ

P
D

F

 

 

l=200 m=200

l=20 m=20

l=1 m=1

l=80 m=40

l=20 m=180

Figure 2.1: Beta Distribution: Depicts the variance (confidence of θ) of beta distribution for
various hyperparameters

successes, m failures). By using the beta distribution as prior, the posterior can then be

calculated using the Baye’s rule in 2.1.

posterior(θ|l,m, α, β) =
Γ(α + β + l +m)

Γ(α + l)Γ(β +m)
θα+l−1(1−θ)β+m−1 = Beta(θ|α+l, β+m) (2.23)

As seen from Eq. 2.23, the posterior distribution takes the form of the beta distribution.

This same form is the interesting property of Beta Distribution or in general conjugate

distributions which provides convenient mathematical form of including prior knowledge for

parameter estimation.

2.3.2 Dirichlet Distribution

In case of a Multinomial likelihood function, the beta distribution can be generalized

from 2 to K dimensions.

Dir(~θ|~α) =
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

θk (2.24)

Similar to the Beta distribution, the posterior distribution in case of Multinomial likelihood

function can be shown to take the form of a Dirichlet distribution.
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2.4 Topic Modelling

Topic models [4, 24] are a suite of algorithms that aim at expressing documents as a

mixture of topics. A topic is a distribution over words. Topic models are generative models:

a document is generated by first choosing a distribution over topics, then randomly choosing

a topic from this distribution and drawing a word from that topic. Using standard inference

techniques the parameters for the distributions can be inferred. Here we will be discussing

Probabilistic Latent Semantic Analysis (PLSA) and Probabilistic Latent Sequential Motifs

(PLSM). PLSA has better statistical significance than LSA. The interpretation of topics is

also straight forward. They are also good at capturing polysemy. PLSA does not make any

assumptions about the order of the words in the document. This is known as the bag of

words approach to modeling text. On the other hand, PLSM tries to capture the order of

occurrence of the words.

2.4.1 PLSA

Figure 2.2: PLSA generative model:
d is the document variable, z is the
topic variable dependent on d and w
is the word variable independent of d
given z. d and w are observed vari-
ables. Nd is the document length and
M is the number of documents

Latent semantic analysis (LSA) [7] represents

documents in a lower dimensional space called the

latent semantic space by linear projection of term-

document matrix through singular value decomposi-

tion. The term-document matrix represents the fre-

quency of words from a well defined vocabulary in a

document. LSA has deficits, like capturing polysems,

and interpretation is difficult due to its unsatisfactory

statistical foundation. Probabilistic Latent Semantic

Analysis (PLSA) [13] introduces a statistical founda-

tion to LSA, since it is based on a likelihood principle and defines a generative model of

documents pertaining to a dataset [13].

PLSA adopts the aspect model to model the joint probability of each co-occurrence of a

word w ε W = {w1, w2, · · · , wV }(V is the size of the vocabulary) in a document d ε D =

11



{d1, d2, · · · , dM} by associating a latent class variable z. The generative process of the model

in Fig. 2.2 can be explained as below :

· pick a document d with probability P (d).

· pick a topic with probability P (z|d)

· pick a word from topic z with probability P (w|z)

The joint probability model of PLSA is given by the expression:

P (w, d) = P (d)P (w|d), (2.25)

P (w|d) =
∑
z

P (w|z)P (z|d). (2.26)

PLSA is a mixture model. This is based upon the conditional independence assumption that

given a topic, the choice of word is independent of the document. The parameters P (z|d),

P (w|z) and P (d) can be estimated by maximizing the log-likelihood function using the EM

algorithm.

L =
∑
d

∑
w

n(w, d)log(P (w, d)). (2.27)

The E-step can be obtained by using Baye’s rule:

P (z|d, w) =
P (z|d)P (w|z)∑
z P (z|d)P (w|z)

. (2.28)

By standard calculations, the equations for M-step can be obtained:

P (z|d) =

∑
w n(w, d)P (z|w, d)∑

w

∑
z′ n(w, d)P (z′|w, d)

, (2.29)

P (w|z) =

∑
d n(w, d)P (z|w, d)∑

w

∑
d n(w′ , d)P (z|w′, d)

, (2.30)

P (d) =

∑
z

∑
w n(w, d)P (z|w, d)∑

d′
∑

w

∑
z n(w, d′)P (z|w, d′)

. (2.31)

2.4.2 PLSM

Topic models like PLSA have been shown to be successful in capturing scene level ac-

tivity patterns by co-occurrence analysis of low level features (words). These models fail to
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Figure 2.3: Bayesian network representing PLSM generative model: d is the document
variable, z is the topic variable dependent on d and w is the word variable independent of d
given z. d and w are observed variables. Td is the document length and M is the number
of documents

capture the temporal order of co-occurrence of words. These topic models have been adapted

(like HMM on top of LDA) [14] to discover temporal patterns but have drawbacks [26, 28]

like manual segmentation of videos to synchronize with the start of the cycle for effective

topic discovery, discovering multiple patterns occuring at the same time. Probabilistic latent

sequential motifs (PLSM) [26, 28] addresses some of these drawbacks by capturing spatio-

temporal co-occurrences of words in a temporal window called motifs and the starting time

of occurrence of these motifs. Fig. 2.3 shows a graphical model [19] representation of the

generative process of PLSM. Let D = {d1, d2, d3, · · · , dM} represent the set of documents

(like videos from a surveillance camera), W = {w1, w2, · · · , wV } represents the vocabulary,

Ta = {t1, t2, · · · , tTd} represents the time of occurrence of words in the document d. Then ac-

cording to our model, the documents can be described by a set of motifs Z = {z1, z2, · · · , zK}

which have a duration of Tz i.e tr = {t1, t2, · · · , tTz}. Each motif can occur at any time

ts = {t1, t2, · · · , tTds} in a document d. The generative process of the PLSM model can be

described as follows:

13



· Pick a document d from P (d)

· Pick topic z and its starting time ts from P (z, ts|d)

· Pick a word w and relative time tr from P (w, tr|z)

· Set ta = ts+ tr or equivalently P (ta|ts, tr) is a Dirac function at ta

The joint probability distribution P (w, ta, d, z, ts, tr) can be obtained from the model as

below:

P (w, ta, d, z, ts, tr) = P (d)P (z, ts|d)P (w, tr|z)P (ta|tr, ts), (2.32)

=

{
P (w, z, ts, tr, d), if ta = ts+ tr

0, otherwise
(2.33)

Given a corpus of documents C in the form of a term frequency matrix n(w, ta, d), the

likelihood of the data is given by the expression:

P (C) =
∏
w,ta,d

P (w, ta, d)n(w,ta,d) (2.34)

The motifs P (w, tr|z) and their start times P (z, ts|d) which form the parameters of the model

can be inferred from the observations. The inference is performed by maximizing the log-

likelihood of the data. The inference is also guided towards estimating a sparse distribution

of P (z, ts|d) which is motivated in [26, 28]. The sparsity constraint is incorporated on

P (z, ts|d) using KullbackLeibler (KL) divergence with a uniform distribution (U).

L(D|θ) =
∑

w,ts,tr,d

n(w, ts+ tr, d)log(
∑
z,ts

P (w, tr, d, z, ts)) +KL(U ||P (z, ts|d)) (2.35)

Since the data is partially observed, parameters are estimated using the expectation maxi-

mization algorithm.

E[L] =
∑

w,ts,tr,z,d

n(w, ts+ tr, d)P (z, ts|w, ts+ tr, d)log(P (w, ts+ tr, d, z, ts))

−
∑
z,ts,d

λd
K · Tds

log(P (z, ts|d)) (2.36)
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The E-Step can be obtained using Baye’s rule

P (z, ts|w, ta, d) =
P (z, ts|d)P (w, tr|z)∑
z,ts P (z, ts|d)P (w, tr|z)

(2.37)

The M-step expressions can be obtained by standard calculations

P (z, ts|d) ∝ max(ε,
∑
w,tr

n(w, ts+ tr, d)P (z, ts|w, ts+ tr, d)− λd
K · Tds

) (2.38)

P (w, tr|z) ∝
∑
ts,d

n(w, ts+ tr, d)P (z, ts|w, ts+ tr, d) (2.39)

The term λd as in [26, 28] is defined as λnd where nd is the number of words in the document

d and λ indicates the sparsity level and can take any positive real number as its value. ε is a

very small probability used to add additional sparsity constraint. The probability of terms

which are lower than λd
K·Tds are set to this probability.
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Chapter 3

Dataset

The dataset used in this thesis consists of videos from traffic cameras and metro stations.

The traffic cameras usually exhibit structured patterns and a set of valid and invalid traffic

flow patterns. The set of valid and invalid patterns for each traffic camera is described here.

The metro station on the other hand contains loosely constrained movements and hence is

more noisy, hence only the scene for each camera in the metro network is discussed.

3.1 Traffic Cameras

The traffic dataset consists of three cameras capturing unrelated scenes, meaning that

the cameras are unrelated. Below we will discuss the scene captured by these cameras, their

sources and the motivation for choosing them.

The Roundabout contains 60 minutes of video at a resolution of 360 × 288 at 25fps. The

traffic movements in the roundabout signal are restricted to only certain driving directions

as illustrated in Fig. 3.1. This video can be downloaded from http://www.eecs.qmul.ac.

uk/~jianli/Roundabout.html. This dataset is interesting and used in this work because

it exhibits well-defined and constrained traffic flow patterns, thus forming a good validation

set for integrated PLSM and anomaly detection.

QMUL Junction contains a 60 minute video at a resolution of 360 × 288 at 25fps. In

this signal, a traffic cycle consists of 4 different traffic flows as depicted in Fig. 3.2. This

video can be downloaded from http://www.eecs.qmul.ac.uk/~ccloy/downloads_qmul_

junction.html. This dataset is interesting due to its busy traffic cycles.
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Figure 3.1: QMUL Roundabout: The arrows depict driving flow directions which are allowed.

A traffic cycle

Figure 3.2: QMUL Junction: The arrows depict driving flow directions which are allowed.

The Traffic Junction dataset introduced in [29] consists of a video which is controlled

by traffic lights. The length of the video is 44.12 minutes at 25fps at resolution of 360 × 288.

The activities present in the video are: cars stopping at the red light, pedestrians waiting for

crossing. This dataset in particular contains a lot of pedestrian activity that is more loosely

constrained than the cars. A scene from the camera is depicted in Fig. 3.3

3.2 Metro Cameras

The metro camera dataset consists of cameras monitoring a metro network. There are

in total 18 cameras in this dataset, only 4 of which have been used in this thesis. These

cameras were chosen based on their spatial connectivity and motion constraints. (A scene

depicting an escalator will have well-defined pattern and very low probability for anomaly

over other scenes). A brief description of the scene shown in Fig. 3.4 captured by these 4

cameras will be discussed here. This dataset is a property of IDIAP Research Institute and

not yet available for public downloads at the time of this work.
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Figure 3.3: Traffic Junction: A scene from the traffic camera.

Sc1 Sc2

Sc3 Sc4

Figure 3.4: Metro Camera Dataset .

In Scene 1 (Sc 1), the camera captures the entrance/exit to the subway network. The

scene contains an elevator, stairs and two escalators.

In Scene 2 (Sc 2), the camera overlaps with Sc 1. It contains a hallway and turnstiles

connecting the metro network.

In Scene 3 (Sc 3), the camera is in the neighbourhood of camera 2. It contains an

escalator moving up towards Sc 2 and a walk way leading to Sc 4.

In Scene 4 (Sc 4), the camera shows a platform where passengers get on and off the

train.
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Chapter 4

PLSM on top of PLSA

In this chapter, the feature extraction process is described in brief and then we describe

how PLSA is used as a dimensionality reduction step to pre-process the input to PLSM. As

our model consists of multiple layers, we will systematically use the superscript ll to denote

the lowest layer

4.1 Feature Extraction

For each video we extract optical flow features (motion features) using Lucas-Kanade

algorithm [25] from a dense image grid. We keep only pixels where some motion is detected

and we quantize the motion into 8 directions and the 9th direction indicates slow moving

pixels. We obtain low level words wll defined by a position in the image and a direction

of motion. We apply a sliding window of 1 second, without overlap to obtain a histogram

nll(wll, dllta). Here dllta represents the low level document obtained by the sliding window at

time ta.

4.2 PLSA model

PLSA (Fig. 2.2) as explained in Chapter 2 is a minimal topic model. Given a set of

documents made of word counts and summarized in a count matrix nll(wll, dll), it extracts

“topics” capturing sets of words that often co-occur in the documents. Each topic is actually

a distribution over words φll
zll

= p(wll|zll). Topics in our context represent spatially co-

occurring set of pixels in an image/frame or a group of frames in a video. Fig. 4.1 illustrates

some of the topics obtained from Sc2 of the metro camera. Each document dll is also
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Figure 4.1: PLSA Topics: Six topics of Sc2 from metro station camera is shown. Each topic
represents a person spatially located at different regions of the scene.

decomposed as a mixture θll
dll

= p(zll|dll) of these automatically learned topics. PLSA usually

has a non-informative prior αll on the θll weight vectors. This means that the model is not

encouraged to give any special shape to θll distributions and thus it can arbitrarily choose

the best ones that explains the data. We will exploit this prior as a mechanism for feeding

higher level information to PLSA.

4.3 PLSM Model

PLSM (Fig. 2.3) as explained in Chapter 2 adds time to PLSA: it is a topic model which

automatically finds temporal and spatial co-occurrences of words. More precisely, it takes as

input a count matrix n(w, ta, d) indicating for each document d (video clips), the number of

times the word w occurs at time ta. By describing the documents as mixtures of temporal

motifs, PLSM learns two sets of distributions, similarly to PLSA but adding time: a set of

motifs z, each represented by a distribution φz = p(w, tr|z) denoting the probability that

a word w occurs at a relative time tr since the start of the motif. In our application, a
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Figure 4.2: PLSM Motifs: Four Motifs of Sc2 from metro station camera is shown. Each
Motif represents a temporal pattern with time progression indicated by color: blue(start),
green(middle) and red(end).

motif captures spatially and temporally co-occurring words in the document as illustrated

in Fig. 4.2 and the distributions p(z, ts|d) which indicate when the motifs occur, i.e., the

probability that a motif z starts at time ts.

4.4 PLSM on Top of PLSA

One modeling issue with PLSM is how to define the count matrix n(w, ta, d). A first

possibility would consist in ordering the low level documents dllta of the video clip d according

to time ta to obtain the temporal document nll(wll, ta, d). However, as the number of low-

level features is quite high, the learning of PLSM can be time-consuming. To overcome this

issue, the PLSA topic model can be applied as a dimensionality reduction pre-processing

step using as input the un-ordered low-level documents. Fig. 4.3 illustrates this approach

with blue arrows. PLSA results in a set of topics zll which captures the frequently co-

occurring words in the video which often correspond to local spatial clusters of words, and

the distribution of topics p(zll|dllta) within each document. By assimilating these low-level

topics zll as the words w of PLSM, we can build the temporal document for PLSM as:

n(w = zll, ta = dll, d) = p(zll|dllta)
∑
wll

nll(wll, dllta) (4.1)
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Figure 4.3: PLSM over PLSA, from [26] and illustration of PLSM applied on PLSA topics
without feedback).

where the topic distributions p(zll|dllta) are weighted by the mass of the document (number

of low-level words at time ta) to account for the overall amount of activity at each time step.

This temporal document is then fed as input to PLSM to learn the temporal motifs and their

starting times. This method is illustrated in Fig. 4.4. The PLSA topics 1− 6 are arranged

in time to form the PLSM motif. The PLSA topics thus captures spatial co-occurrences and

PLSM captures the temporal ordering of these spatial co-occurrences, hence the quality of

motifs recovered by PLSM are only as good as the topics discovered by PLSA.
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PLSA topics

PLSM motif: the temporal order indicated by color; blue (start), green (middle) and red (end)

Figure 4.4: PLSM on top of PLSA: PLSA topics and PLSM motif obtained by temporal
ordering of topics.
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Chapter 5

Integrated PLSM and Hierarchial
PLSM

In this chapter, we will formulate the integration of PLSA dimensionality reduction step

with PLSM. We call this approach Integrated PLSM (IPLSM), which overcomes the disad-

vantages of using PLSM on top of PLSA. In the following sections, we introduce this model

and give an idea of the inference process. We then show how the principle can be general-

ized to a hierarchical model consisting of three levels of topic modeling, capturing temporal

patterns across cameras. As the models involve multiple layers, we will systematically use

the superscript ll to denote lowest level elements, cl to denote combined elements and i to

denote the camera index. The camera index denotes a specific layer in a stack of IPLSM.

The hierarchical model consists of three levels of topic modeling.

5.0.1 Integrated PLSM

As explained in Chapter 4, from the distributions φ and θ, PLSM is fully able to re-

construct an updated version of its input that takes into account temporal co-occurrence

captured in the motifs. The reconstruction of the input is done following the PLSM equa-

tions (with tr = ta − ts):

ñrec(w, ta, d) =
∑
z

∑
ts

p(w, tr|z)p(z, ts|d) (5.1)

By applying PLSM on top of PLSA as presented above, PLSM captures temporal patterns

of occurrences of PLSA topics. Given that PLSM tries to explain the documents with

temporal motifs, the reconstructed input ñrec (normalized word count) corresponds to the

original input but updated to exhibit better temporal coherence. This motif-constrained
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Figure 5.1: IPLSM, from [26] and illustration of the prior feedback (in red). The otherwise
uninformative prior on the topic weights in each document θll

dll
is replaced by a prior coming

from the time-aware higher-level PLSM model.

reconstruction motivated [10] to use the difference between the input and nrec (unnormalized)

as a measure of temporal anomaly. We discuss more on anomalies in the upcoming chapters.

In case of no anomaly, all the topics captured by PLSA have temporal significance, otherwise

the topics which are not well reconstructed are temporally less significant. To increase

the quality of the PLSA topics, we propose an integrated model [6] shown in Fig. 5.1.

The goal of IPLSM [6] is to have the temporal structure of the data (captured by PLSM)

impact on the image-level topics (PLSA level). We do it by jointly learning the PLSA and

PLSM models. When a scene is crowded, it is often difficult for PLSA to capture clean

topics. When getting temporal information from PLSM, PLSA is able to capture cleaner

topics. In practice, we exploit two facts: PLSM can reconstruct its input with some added

temporal constraints, and a modified PLSA can accept a prior probability of what topics

occur in which document. Using IPLSM, the temporal information allows to disambiguate

the instantaneous information and the captured low level topics contain fewer artifacts. In
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practice, the inference of the IPLSM model is done in an iterative manner, iterating multiple

Expectation Maximizations.

5.1 Inference by Prior-Feedback

The overall goal of IPLSM is to use higher-level temporal structure (motifs) to improve

lower level structures (topics). As exact inference is intractable (even just for PLSA), we

use an iterative approximate inference method and formulate the feedback of higher levels

as a prior for lower levels. The document reconstructed by PLSM, nrec will be used after

re-weighting as a prior αll for PLSA. This process goes on iteratively.

More precisely, the prior αll for the document at time ta (αll is used as an alias for αll
dllta

)is

computed as follows:

αll(zll) = nrec(zll, ta, d)× S + Uniform (5.2)

For a given low level document, αll represents the hyper parameters of a Dirichlet prior

over θll. Adding the uniform distributions encodes the inherent uncertainty of the PLSM

feedback. This helps in Expectation Maximization algorithm to obtain a better local maxi-

mum during the learning phase for PLSA and PLSM. S is a constant and is a parameter to

the model: the bigger the S, the more the information coming from PLSM will be trusted.

An S value greater than 1 indicates a very strong prior and would not allow the motifs to

change much as it requires more observations than the training documents to change the

belief. So a prior less than one is more meaningful in this context.

As previously mentioned, this is an iterative approach, the necessary number of iterations

is also a parameter to the model. The number of iterations is camera specific, a metro

camera may require more iterations than a traffic camera because of loosely constrained

motion. An example of the evolution of topics on a single traffic camera is shown in Fig. 5.2.

In this example, the motif 3 in iteration 0 captures two patterns which depicts traffic flow.

According to this motif the occurrence of one pattern leads to the occurence of the other
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pattern. In actuality, these two patterns are independent of each other. In iteration 4, the

motif has evolved to capture this fact and captures one of the two patterns with higher

probability. The lower probability pattern in motif 3 is captured in motif 5. Motif 2 in

iterations 4 has evolved to capture a completely new traffic flow compared to iteration 0

which was very similar to motif 3. Some motifs like motif 1 in iteration 4 and motif 4 in

unchanged motifs are quite similar. This may be due to the fact that the motif 4 more

frequently than not exhibits such a traffic flow in the video.

5.1.1 Multi-Camera with Hierarchical IPLSM

Following the idea of integrating PLSA with PLSM, layers of PLSM can be stacked and

integrated. The prior feedback can be used on the α parameter of PLSM. This approach

becomes especially interesting when considering multiple cameras as illustrated in Fig. 5.3.

The idea is to have an IPLSM for each camera and a higher-level PLSM working on their

combined outputs and capturing motifs of per-camera motifs. The motivation for feedback

from hierarchical layer to single camera IPLSM layer is to capture motifs that are relevant

(in time) across cameras as depicted in Fig 5.3. The process is explained in more detail

below.

For modeling recurrent activities across multiple related cameras, IPLSM can be used for

each camera to learn a distribution P i(z, ts|d), i denoting the camera index. We generate

temporal documents by multiplying this distribution by the document mass. This document

ni
′
(w, ta, d) represents a dimensionality reduced version of the input document to PLSM in

the IPLSM (1st level PLSM). The equation is shown below

ni
′
(w, ta, d) =

∑
w

∑
ta

ni(w, ta, d)P i(z, ts|d) (5.3)

The limits on the summation depends on the number of topics chosen and the document

length for camera i. The temporal documents obtained from the above step are combined

to form ncl(wcl, tacl, dcl). The length of the combined document and the number of words
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motif 1 motif 2 motif 3
iteration 0 - no feedback

motif 1 motif 2 motif 3
iteration 4 - iterative feedback

motif 4 motif 5 motif 6
unchanged motifs

Figure 5.2: QMUL Roundabout dataset. Example of evolution of motifs during iterative
IPLSM learning. Parameters: S=0.75, iteration=5, PLSA topics=80, PLSM motifs=10
with motif length=12. The color gradient represents time from blue (start) to red (12s).
Motifs 1-3 evolve during the iterative process from having similar temporal patterns with
respect to other motifs in iteration 0 to more distinct patterns in iteration 4. Motifs 4-6
don’t evolve as they all represent distinct patterns. Motifs 7-10 are not shown.
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Figure 5.3: Hierarchical Integrated PLSM Model. Cam#i refers to a camera view i. The
process captures information at three levels: topics (image level), motifs (per-camera tem-
poral patterns) and multi-camera motifs. Each level iteratively feeds back information as a
prior to the previous level.

are given below

W cl =
∑
i

Ki (5.4)

Tacl = max
i
Tai (5.5)

Ki and Tai denotes the number of motifs and document length for camera i. Applying

PLSM on the combined temporal document we obtain the distribution P cl(wcl, tr|zcl) which

represents the frequently co-occurring sequential patterns across cameras. We also obtain

a distribution P cl(zcl, ts|dcl). The prior for individual IPLSM from the third level PLSM is

similar to the prior construction explained previously. Fig. 5.4 illustrates motif evolution

for a combination of three cameras from the metro dataset. Sc1 and Sc2 are overlapping

cameras and hence contain temporally related information. Sc4 is spatially well separated

from the other two cameras and hence contain information that may not be relevant to

the regions covered by the previous two cameras. Iteration-0 illustrates two motifs which

captures patterns across the three cameras. Any pattern occurring in the third camera with

respect to the other two cameras is a coincidence and doesn’t correspond to any temporal

continuity between cameras. Iteration-4 captures this fact and captures motifs only in the
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motif 1 motif 2
iteration 0 - no feedback

motif 1 motif 2
iteration 4 - with feedback

Figure 5.4: QMUL Roundabout dataset. Example of evolution of motifs during iterative
Hierarchical-IPLSM learning. Parameters: S=0.75, iteration=5, IPLSM = 80 topics: mo-
tifs=20 with motif length=10, combined PLSM= motifs=20 with motif length=15 The color
gradient represents time from blue (start) to red (10s).
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third camera. The activities corresponding to the overlapping regions are captured in the

other motifs.
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Chapter 6

Abnormality Detection

As described in the previous chapter, PLSM fits its input with some motifs and it can

be used to reconstruct a corrected version of the input. Intuitively, the reconstructed input

nrec is the same as the original input when the motifs explains perfectly the input.

Following the above intuition [10], the difference between the input and nrec can be used

as an anomaly index. One limitation of this approach is that it ignores the semantics of the

words used as input of PLSM. In practice, these words correspond to PLSA topics and thus

to patches of localized motion in the image. This chapter explains the lower-level document

reconstruction followed by description of the abnormality measure and finally, explains the

intuition behind abnormality detection at different levels of the model. Fig 6.1 depicts the

hierarchical model described in the previous chapter along with abnormality detectors at

different levels.

We will use the notations in Table 6.1 throughout this chapter

Table 6.1: explains notations

P ll
wz P (wll|zll)

level-1
P ll
zd P (zll|dll)

Pwtz P (w, ta|z)
level-2

Pztd P (z, ta|d)
P cl
wtz P (wcl, ta|zcl)

level-3
P cl
ztd P (zcl, ta|dcl)

mat(A,B) Matrix multiplication of A and B
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Figure 6.1: Hierarchical Integrated PLSM Model with abnormality detectors. Video#i refers
to a camera view i. The process captures information at three levels: topics (image level),
motifs (per-camera temporal patterns) and multi-camera motifs. Each level iteratively feeds
back information as a prior to the previous level. Using the captured information at the
three levels different forms abnormality detection can be performed.

6.1 Low-Level Document Reconstruction

We explain the lower-level document reconstruction from the pattern learned at each level

in the following sections. The document reconstruction is the first step towards detecting

abnormalities at each level. The reconstruction process (Inference) tries to explain the

documents based on the captured information during learning (topics for PLSA and motifs

for PLSM).

6.1.1 Level-1

From the distributions obtained at level-1 the lower-level document for each camera can

be reconstructed by unrolling the lower level topics (zll) with the word distribution Pwz.

ñrec ll(wll, dll) = mat(P ll
wz, P

ll
zd). (6.1)
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6.1.2 Level-2

From the distributions Pwtz and Pztd we can obtain nrec(w, ta, d) as shown in Chapter 5.

Once we obtained nrec(w, ta, d), as w corresponds to zll (PLSA topic) it is possible to use

the PLSA topics to reconstruct the low level documents ordered in time. By unrolling the

equations, we obtain:

nrec ll(wll, dllta) =
∑
zll

nrec(zll, ta, d)P ll
wz. (6.2)

6.1.3 Level-3

From the information learned at the combined level, we can obtain nrec cl(wcl, ta, d
cl) as

seen earlier. As wcl corresponds to motifs of a specific camera at the first-level, it is possible

to use these motifs to obtain documents nrec(w, ta, d) pertaining to the first level. We can

finally obtain the low-level document as seen in level-1.

6.2 Localized Abnormality Measure

We can obtain abnormalities [5] from the reconstructed document by using the distance

measure proposed in [10]. However, this measure does not take into account the spatial

locality of the anomaly. We thus compute anomaly by first extracting anomaly in blocks

and then finding the most abnormal group of blocks.

We achieve localized abnormality by dividing a frame of video into h × w sub-frames

where h and w are parameters to the model. Another advantage of blocking is we can

detect anomalies in presence of high normal activity. This fact is illustrated in Fig. 6.2.

We also normalize the blocks with respect to the total activity in the block. The reason

for normalizing can be better understood by a scenario as in Fig. 6.3. Both scenes have

no abnormality but the scene which is crowded might be considered abnormal due to the

additive effect of the reconstruction error per low-level word. We compute the reconstruction
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Figure 6.2: localized anomaly: Traffic scene depicts the presence of a single vehicle making
a U-turn (anomaly) in otherwise normal scene.

Low Density High Density

Figure 6.3: Density Correction: Scene from the metro camera.

error measure to each sub-frame as:

abn(ta, x, y, d) =
∑

wll∈Rxy

∣∣nrec ll(wll, dllta)− nll(wll, dllta)
∣∣ (6.3)

where Rxy represents all the words mapping to the sub-frame x, y. We also normalize the

reconstruction error in a sub-frame by diving it by the mass of the document corresponding

to the sub-frame.

normabn(ta, x, y, d) =
abn(ta, x, y, d)∑

wll∈Rxy

nll(wll, dllta)
(6.4)

We then use Kadane’s algorithm for the maximum 2D sub-array problem on normabn(ta, ., ., d)

to obtain the abnormality measure for the whole frame and its spatial locality. The crux of

Kadane’s 2D algorithm is Kadane’s 1D algorithm which involves a scan through the array

values, computing the maximum sum up to that position.
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Figure 6.4: Abnormality Detection at the combined-level. The figure illustrates patterns
captured at the 2-level and combined-level on their respective training documents and the
testing phase shows an abnormal region arising due to bad reconstruction from the learned
patterns at the combined level.

6.3 Abnormality Detection by Different Levels

The model can be used to detect specific kinds of abnormalities based on the level of the

topic modeling. At the PLSA level, the spatial abnormalities can be detected.At the second-

level abnormalities that are related to time can be detected. At the combined-level, where

the cameras are related, the patterns which are valid in individual cameras but abnormal

in time relative to the cameras can be detected. We illustrate this fact by the following

example.

Fig. 6.4 shows the patterns learned on the training documents from two cameras which are

spatially related and hence have temporal correlation. The pattern P 2(w = zll, tr|z1) occurs
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in the second camera at the completion of P 1(w = zll, tr|z1) in the first camera. The pattern

learned at the combined-level PLSM captures this fact. If this temporal restriction is violated

as seen in the testing document, the reconstruction will be poor at the combined-level and

hence anomaly can be detected.
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Chapter 7

Results

In this chapter we test whether our model can detect activity patterns not learned by

the model. Below, we will describe in brief the datasets, the anomalies they contained, and

provide some quantitative and qualitative evaluation on traffic and metro camera datasets.

Finally, we summarize the contributions made and provide future directions for research.

7.1 Experiments on traffic camera dataset

To test whether our model can detect activity patterns not learned by the model, we

used two different traffic scenes: QMUL Roundabout and QMUL Junction. As parameters

for IPLSM, we used 80 PLSA topics (based on hierarchical Dirichlet process), S=0.75, and

4 feedback iterations for learning. The frame segmentation parameter h×w for the anomaly

detector is 24 × 24. The number of motifs and motif length is specified individually for

datasets.

7.1.1 QMUL Roundabout

This dataset contains 60 minutes of video at a resolution of 360 × 288 at 25fps. The

traffic movements in the roundabout signal are restricted to only certain driving directions

as illustrated in Fig. 7.1. The single type of anomaly present in this dataset is indicated by a

red arrow in 7.1 and corresponds to driving straight ahead on a right only lane. Annotation

of these events was conducted on 10 minutes of the dataset.

The IPLSM model was trained using either 10 or 20 motifs on 15 minutes of video

ensured to contain low instances of the abnormality we wanted to detect. As the longest

duration for a vehicle to cross the roundabout was around 12 seconds, we choose a motif
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QMUL-Junction QMUL-Roundabout

Figure 7.1: The arrows depict driving flow directions which are allowed (in green) or not (in
red).

Table 7.1: Roundabout abnormality results

Abnormalities GT
IPLSM

10 motifs 20 motifs

Incorrect direction 15 10 12

False alarms 0 10 4

length of 12 seconds. Examples of extracted motifs are shown in Fig. 5.2. We applied our

method to the test data and compared the results to the ground-truth (Gt) (a detected event

was considered to match the Gt if it overlapped with it). The results are summarized in

Table 7.1.

The false alarm rate was lower when we used higher number of motifs as it could better

capture the different traffic patterns variations due to speed, density and type of vehicles in

the traffic. We also observed that small vehicles were more difficult to detect in general and

would require to set a lower threshold for their detection. Fig. 7.2 provides some examples

of the regions detected by the system.
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Figure 7.2: Localized anomaly regions detected by our approach. Note that the regions are
large as they encompass all the regions with unusual temporal activity (including the regions
were activity should have occurred in the normal situation).

7.1.2 QMUL Junction

This dataset is explained in [16]. In this case, the valid driving trajectories are illus-

trated in Fig. 7.1. The abnormalities in this dataset were defined as U-turn and disruptions,

where U-turn denotes driving back around the road center, and disruptions indicate inter-

ruption of normal flow of traffic by a fire-engine, police or an ambulance. We have not

considered Jay-walking as an abnormality because our system is not currently designed to

detect abnormalities which reason about the validity of motif occurrences in the context of a

cycle. Modeling cycles could be done by adding an HMM on top of motifs occurrences [27].

To evaluate the approach, we trained our approach on 45 minutes of videos (that

included the abnormal events) using different parameterization. In one case, we considered

motifs of 10s maximum duration, which is more or less the maximum that a vehicle takes to

cross the junction, and of 80s duration, which is the duration of a full traffic cycle. Examples

of extracted motifs are shown in Fig. 7.3

The result are summarized in Table 7.2. In practice, we observed that traffic disruptions

(which often occur out of sync from the traffic cycle) required higher motif lengths able to

capture full cycles and provide the necessary context. Also, we noticed that U-turns could
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Figure 7.3: Motifs learned on Junction dataset for a M=14 and ML=10. Four Motifs with
the highest probabilities among the 14 are shown here.
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Table 7.2: QMUL Junction abnormality results. M denotes the number of motifs, ML their
maximum length.

Abnormalities GT
IPLSM

M=4, ML=80 M=14, ML=10

U-turn 10 7 8

Disruptions 6 4 1

not be detected well in very dense traffic, as the generated abnormalities were considered

negligible as compared to the global activity. Examples of detections are shown in Figure

7.4.

7.1.3 Traffic Junction

This dataset was introduced in [29] consists of a video which is controlled by traffic

lights. The dataset is explained in detail in Chapter 3. The unusual events present in the

video are: vehicle stopping after the stop line (VSAS), people crossing the road away from

the zebra crossing (ZC), jay walking and car stopping in the pedestrian area (PA). We have

not considered Jay-walking for reasons already explained.

The IPLSM model was trained using 16 motifs on 20 minutes of video ensured to

contain low instances of the abnormality we wanted to detect. As the longest duration for

a vehicle to cross the junction was around 8 seconds, we choose a motif length of 8 seconds.

Examples of extracted motifs are shown in Fig. 7.5. We applied our method to the test

data (the entire video) and compared the results to the ground-truth (a detected event was

considered to match the Gt if it overlapped with it). The results are summarized in Table 7.3.

In practice, we observed that pedestrian movements were difficult to model. This is one

of the reasons for choosing a higher number of motifs. The false alarm rate could vary greatly

depending on the pedestrian activity. Examples of detections are shown in Fig. 7.6.
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U-turn disruption

Figure 7.4: Sample of correct detections (a u-turn and a disruption). Notice that in the
disruption case, the vehicles on the left should have closely followed the vehicles on the right
so that there are ’missing’ cars in the middle.

Table 7.3: Traffic Junction abnormality results. M denotes the number of motifs, ML their
maximum length.

Abnormalities GT
IPLSM

M=16, ML=8

VSAS 5 5

ZC 14 9

PA 1 0
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Figure 7.5: Motifs learned on Traffic Junction dataset for a M=16 and ML=8. Four Motifs
with the highest probabilities among the 16 are shown here.
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Car stopping after stop line People crossing away from zebra crossing

Figure 7.6: Sample of correct detections (VSAS and ZC).
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7.2 Experiments on Metro Camera Dataset

This dataset consists of two overlapping cameras, recording neighbouring areas: a stairs,

escalator (Sc1) and a hall way (Sc2). Sc1 acts as the entrance into the metro station. Sc2

has a ticket counter and turnstiles to the metro network. Below we discuss the effect of

feed-back on data reconstruction and briefly state the abnormalities detected.

We trained the hierarchical model with 10 motifs with motif length of 4 seconds for

2nd level PLSM and 12 motifs with motif length of 8 seconds for third level PLSM on 720

seconds of video. The rest of the parameters are the same as used for the traffic dataset. The

motifs learned are not shown here. We performed inference on the trained video by splitting

the video into 8 parts using the model obtained at iteration 0 (no feedback) and iteration 4

(with 4 iterations of feedback). We reconstructed the data from both the models from the

3rd level PLSM and obtained a plot of the reconstruction error as shown in Fig. 7.7. The

reconstructed data from the 8 partial videos were merged together to form the plot for better

clarity of information. The reconstruction of the data may be poor at the boundaries where

the video was split. This may be because of an activity in this region and also due to the

lack of information at the boundaries about how the video might proceed. As seen from the

plot, this fact is better captured by iteration 4, as it is better able to identify this temporally

disruption due to less over-fitting, hence higher reconstruction error than iteration zero. We

showed in Chapter 5 how the prior feedback improved the sequential patterns obtained.

Better motifs should constitute better reconstruction of temporally significant data, hence

lower reconstruction error. We performed inference on a new video from the same cameras.

The abnormalities detected by the system include, unusual density of crowd, people blocking

each other and disrupted trajectories. Fig. 7.7 shows two of these abnormalities. The

abnormality detector for the 3rd level PLSM would detect regions in the most abnormal

camera while the detectors in the 2nd and 1st level would detect abnormalities pertaining to

a single camera.
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Unusual crowd density disruption in trajectory

Reconstruction error

Figure 7.7: Abnormalities for Metro dataset at 3rd and 2nd level PLSM and effect of feedback
on reconstruction error
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Chapter 8

Applications to BCI

This chapter discusses the application of topic models, in specific PLSA and PLSM

introduced in Chapter 2 to find spatial correlation (inter channels) and temporal structure

in EEG data. First, we will briefly describe EEG signals with respect to Brain Computing

Interfaces (BCI) and discuss its spectral characteristics and motivate the purpose of using

PLSA and PLSM. We then describe the dataset followed by feature extraction process and

then finally we discuss preliminary results on 9 subjects.

8.1 Introduction

Our brain acts as a central processing unit which processes information and acts as the

control center for all our body functions like walking, talking, vision. Our brains are filled

with neurons which are like electrical conductors which communicate these control signals

to various parts of the body. They also carry external input to the brain. These electrical

signals produced by the brain are called EEG or brain waves.

BCI are devices which read the EEG signals and communicate it to an external device

usually to establish new methods of communication previously not possible. The EEG signals

can be recorded by invasive and non-invasive techniques. Invasive techniques [17] implant

the BCI device directly onto the grey matter surgically. This technique provides the highest

quality of signals and has the highest signal to noise ratio. Non-invasive techniques usually

consist of placing electrodes spatially along the scalp. These recordings are highly corrupted

by noise and EEG artefacts. EEG artefacts are signals produced by non cerebral activity

like eye blinks, pacemakers, and muscle movements. Their power spectral density (PSD) is
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usually higher than the PSD of the EEG signal representing the activity [18, 23].

In this work we try to solve the problem of pattern detection from EEG signals recorded

while subjects were performing four mental tasks described later. The EEG signals were

recorded using a non-invasive technique. The problem of pattern detection can be addressed

using the actual time domain representation of the EEG signals [11] or using the frequency

domain representation [21]. We will be using the frequency domain representation (Fourier

transforms). This can be motivated by the fact that different brain activities are attributed

to certain spectral bands and electrodes in EEG. Typical spectral bands in EEG [32] are the

following.

• Delta waves are in the range 1-4hz. They can be located in frontal lobe in adults.

These are the slowest waves and have the highest amplitude. They have been found

during continuous attention tasks and during sleep.

• Theta waves are in the range 4-7hz. They can be located in hippocampus region. They

are usually found during idling, arousal and drowsiness

• Alpha waves are in the range 7-14hz. They can be located in frontal and central

regions. They are normally found when relaxed or reflective.

• Beta waves are in the range 15-30hz. They can be located symmetrically on both sides

but most evident on the frontal region. These are low amplitude waves and are found

during alertness, anxiety and active concentration.

• Gamma waves are in the range 30-100hz. They can be located in somatosensory cortex.

They are normally noted during task like sound perception and visual processing.

PLSA learns topics that can best define the mental tasks. As explained above each mental

task is characterized by activities in specific regions of the brain, the topics learned by PLSA

may capture this information. These topics define the mental task irrespective of their time

of occurrence. PLSM can be used to reason about the order in which these activities occur
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(if any) in accomplishing a mental task. The spectral components for any activity is subject

dependent [21, 23]. Hence the topics models provide a data driven dimensionality reduction

or basis vector generation.

8.2 Dataset

We use the g.Tec g.GAMMAsys dataset from http://www.cs.colostate.edu/eeg/

main/data/2011-12_BCI_at_CSU which consists of EEG signals from subjects recorded

at the CSU BCI lab and impaired subjects home. The EEG was recorded using g.Tec

g.GAMMAsys system with eight active electrodes (channels) and a sampling frequency of

256hz. The 8 channels are F3, F4, C3, C4, P3, P4, O1, O2 and their positions on the scalp

is depicted in Fig. 8.1. The dataset contains recordings from 12 subjects out of which four

were impaired. Subject 11, 13, 15 and 16 had severe motor impairments and recording was

done at home. Subjects 20-28 recordings took place in a laboratory. Each subject performed

four mental tasks: silently sing a song (S), visualize a rotating cube (R), imagine right

hand clenching (F ) and counting backwards from 100 in steps of three (C). Each task was

performed for 10 seconds. Up to six trials were performed, each trial consisting of all four

tasks. We will only be using data from Subjects 11, 13 and 20-27. The rest of the subject’s

data was not used either due to insufficient number of trials or due to corrupted data.

8.3 Feature Construction for PLSA and PLSM

We use the frequency domain representation of the EEG signal by transforming the

time-domain signal from each channel to its frequency domain using Short Time Fourier

transform. The transform uses a window length (WL) of 256 which represents a signal of

one second with an overlap of 230 points. The motivation for choosing the particular WL is

the fact that a subject is unlikely to switch activity within this period.
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Figure 8.1: 10-20 BCI system: Depicts the electrode positions in 10-20 BCI system [31]

8.3.1 Vocabulary Construction for PLSA

We are interested in capturing co-occurrence of frequencies and channels which represent

a mental task. PLSA can be used to capture this spatial correlation provided this information

is encoded in its vocabulary. To encode this information, we combine all the windows of the

channels in a particular time to form a combined WL of 1032. Each combined window

represents a document d and its spectral components represents the words w. Each mental

task is thus represented by a total of 89 documents. We form the term-document frequency

matrix n(d, w) by concatenating all the mental tasks from all the trials for a subject. The

ordering of the documents maintains the order of time within each mental activity (the

number of rows (documents) is a multiple of 89). This is essential for PLSM.

After applying PLSA, we obtain the distributions P (w|z) and P (z|d) described in Chap-

ter 2. P (w|z) represents the co-occurrence frequency and channel distribution among differ-

ent topics. P (z|d) gives the mixture components or weights of the topics that represents a

document. Essentially P (z|d) represents mental activities in reduced space (dimensionality

reduction)

51



8.3.2 Applying PLSM

P (z|d) describes windowed mental tasks in terms of activities. The activities capture

the frequencies and channels that are most likely to co-occur for a given mental task. We

hypothesize that mental task are described by sequential structure that occurs at some

repeated intervals. We use PLSM to capture this sequential structure. The sequential

structure (motifs) will represent a pattern consisting of activities captured by PLSA ordered

in time. P (z|d) is processed as described in Chapter 4 to obtain n(w, ta, d). P (z|d) is

reordered at intervals of 89 windows which correspond to different tasks, this represents the

documents d for PLSM. The 89 windows are ordered in time ta.

8.4 Experiments and Results

In this section we will discuss the experimental setup which involves the parameter se-

lection for PLSA and PLSM, the partition of data into train and test and the evidence

accumulation algorithm used to improve the classification accuracy. We also discuss the

impact of classification accuracy on the size of the training data.

8.4.1 PLSA

The parameters of PLSA are estimated using MLE technique. As previously explained,

MLE has the drawback of over fitting the parameters to the input data. Since the number of

trials for each subject is small in number, the impact of over fitting would be more evident

in our case. To estimate the impact of over fitting on classification accuracy, we estimate

the parameters of PLSA for each subject under two different experimental set-ups.

• SET − 1 consists of all the 9 subjects and we use only the first 5 trials in the dataset.

One trial was designated as test data and other 4 trials were training data. The

experiment was repeated for all 5 combinations of test and train set.

• SET − 2 consists of only 7 unimpaired subjects (impaired subjects didn’t perform the

sixth trial) and we use all the 6 trials in the dataset. One trial was designated as
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test data and other 5 trials were training data. The experiment was repeated for all 6

combinations of test and train set.

The topic distribution P (z|d) obtained from PLSA is provided as input to a support vector

machine for classification. As previously described each 10 seconds mental task is represented

by 89 documents. Hence an SVM can make approximately 9 decisions/sec. Since it is

unlikely that a person will switch between tasks so fast, the classification accuracy can be

improved by using the M-ary Sequential Probability Ratio Test (MSPRT) algorithm [1, 9]

that incrementally calculates the joint probability of each class given an increasing window of

EEG samples. The MSPRT makes a decision when the accumulated log probability crosses

a threshold and a specific time interval has elapsed between decisions. A threshold of 0.8 and

a time interval of 9 decisions (one second) was used as parameters for the MSPRT algorithm.

A maximum of 9 decisions can be made for mental task spanning 10 seconds.

The average classification accuracy (CA) for different number of topics for SET − 1 and

SET − 2 is compared in Fig. 8.2, 8.3, 8.4, 8.5. It can be seen that SET − 2 has better CA.

This can be attributed to PLSA finding better topics that can represent the training data.

Set one

subject-11 subject-13

Figure 8.2: Average classification accuracy for subjects 11 and 13 : The figure provides a
comparison of the average classification accuracy on test set for topics in the range 5-40 for
PLSA with an SVM classifier.
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The BCI system is intended to be used by the physically challenged. Hence the topic

and word distribution of Subject-11 which has the highest CA is discussed in greater detail.

The CA for subject-11 is highest for 25 topics and Figure 8.6 shows the classification rate for

four mental tasks for all combinations of the test set. Trial four has the highest classification

accuracy and the tasks C and F have perfect classification rate. Thus the distribution P (w|z)

should have discriminative aspects and certain topics should correspond to the mental tasks

and others should capture the noise and artefacts. Figure 8.7 shows the topic distribution.

The topics 12, 20 and 21 in task C have high probability and are persistent throughout

the task. But the topics 11, 21 and 20 are also present with high probability in the other

three tasks hence doesn’t provide any discriminative power for representing a specific mental

task. The word distribution of this topic in-fact indicates that this may be noise. Topic-11,

though, could possibly represent the Task C because this word distribution was seen to occur

in other subjects and this distribution represents delta wave activity and is seen during high

concentration tasks. Topics 8 and 16 represent activity in the left, topics 9 and 14 in the right

portion of the brain. These four topics were only captured when the classification rate was

above 0.4 for tasks R and S across all subjects. Though this cannot be directly concluded

based on the topic distribution in Fig. 8.7 as it is fairly dense. Topic 3 may represent eye

blinks because the power spectrum decreases in power from the frontal to the parietal region.

The above mentioned topics were also identified in other subjects.

8.4.2 PLSM on top of PLSA

We train PLSA, PLSM and SVM classifier on individual subjects. The number of topics

for PLSA was chosen based on the classification accuracy of the test set. We use some of the

subjects from SET − 1 and Fig. 8.9 shows the CA for these subjects for a range of motifs

and motif lengths. A motif Length of 5 provides the highest CA. A motif length of 5 means

5 documents of PLSA are considered in time. The 5 PLSA documents would correspond to

100 discrete samples adding up to a total time of less than 0.5 second. This is indicative of

non existence of long temporal patterns which captures the changes in frequency for a motif
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that repeats in time. The CA is better than a random classifier (25% accuracy) but the

accuracy is poor compared to using PLSA and SVM without PLSM.
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Set one Set two

subject-20 subject-20

subject-21 subject-21

subject-22 subject-22

Figure 8.3: Average classification accuracy for subjects 20, 21 and 22 : The figure provides
a comparison of the average classification accuracy on test set for topics in the range 5-40
for PLSA with an SVM classifier.
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Set one Set two

subject-23 subject-23

subject-24 subject-24

subject-25 subject-25

Figure 8.4: Average classification accuracy for subjects 23, 24 and 25 : The figure provides
a comparison of the average classification accuracy on test set for topics in the range 5-40
for PLSA with an SVM classifier.
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Set one Set two

subject-26 subject-26

subject-27 subject-27

Figure 8.5: Average classification accuracy for subjects 26 and 27 : The figure provides a
comparison of the average classification accuracy on test set for topics in the range 5-40 for
PLSA with an SVM classifier.
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Figure 8.6: Classification rate for all 5 combinations of test set for Subject-11 with 25 topics
as parameter to PLSA

Figure 8.7: Topic distribution: Shows the P (z|d) distribution for subject-11 for test-set trial
4 and 25 topics
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Figure 8.8: Word distribution: Shows the P (w|z) distribution for subject-11 for test-set trial
4 and 25 topics. The frequency band 60-128hz is not shown due to lack of activity.
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subject-11 subject-13

subject-20 subject-21

subject-23 subject-24

Figure 8.9: Average Classification accuracy: The figure provides a comparison of the average
classification accuracy on test set for motifs in the range 5-14 and motif length 5-14 for PLSM
on top of PLSA with an SVM classifier
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Chapter 9

Conclusion and Future work

In this work, we have addressed the problem of abnormality detection in large camera

networks by learning normal activities through hierarchical unsupervised modeling technique.

The activities were learned through a temporal modeling approach called PLSM. Previous

works applied PLSM on documents built from an intermediate representation learned by

dimensionality reduction of low-level features. These low level features were learned in

advance and hence they did not benefit from the temporal structure PLSM could provide.

PLSM was also ignoring the spatial locality of the anomaly as it was ignoring the semantics

of the intermediate representation. These two limitations of PLSM were addressed in this

work.

The main contributions we made are the following. We formulated the IPLSM model

which integrates PLSA into PLSM and detect spatially localized abnormalities. We achieved

the integration by formulating the inter-level feedback in terms of a Dirichlet prior. This

feedback was constructed and used in an iterative process by IPLSM. IPLSM was shown

to improve the detected sequential patterns compared to the previous approach. We then

showed how the model can be extended to mine activities from multiple cameras. The

hierarchical model was shown to capture temporally significant patterns in a multi-camera

setting. For cameras that share spatial information, the pattern detected is independent of

any activity in the other unrelated cameras. Spatial anomalies were identified by splitting

a frame in the video into rectangular blocks and then identifying the most abnormal blocks

using Kadane’s algorithm. We also tested the model on real datasets like traffic surveillance

cameras and showed that it can detect abnormalities and localize it on the frame as well.
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We also investigated the application of PLSA and PLSM for mining activities from EEG

signals. The vocabulary construction was performed using Fourier transforms. Over-fitting

issue with PLSA on a small corpus of data was explored by comparing the classification

accuracy by creating two different sets of data with one set containing higher number of

trials than the other. Analysis of the topic and word distribution was also performed. PLSM

was applied on dimensionality reduced documents using PLSA. Mental task classification

was performed using an SVM classifier on information received from PLSM and PLSA. We

noticed that the parameters of the model and classification rate was subject dependent. The

classification accuracy of PLSA with SVM was found be higher compared to PLSM on top

of PLSA with SVM

9.1 Limitations and Future Work

As previously discussed, our model cannot reason about the co-occurrence of motifs or

its time of occurrence. This can be addressed using an HMM over our model to detect cycles

in which these motifs should occur (Jay walking is a typical example). When the number of

cameras increases, there may be multiple spatial anomalies in the same or different cameras.

Our model can easily be extended to detect multiple anomalies in a frame. In the future

IPLSM can be applied on EEG data and the results can be compared to existing work.

HMM can also be used for decision filtering to improve the classification accuracy of mental

tasks. We also noticed that the topic distribution was fairly dense, this made the distinction

of contributions of topics to specific mental tasks difficult. This limitation can be solved by

taking a discriminative approach to parameter estimation using Fisher kernels instead of the

MLE approach.
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