
DISSERTATIONA SYNTHESIS OF REINFORCEMENT LEARNING AND ROBUST CONTROLTHEORY
Submitted byR. Matthew KrethmarDepartment of Computer Siene

In partial ful�llment of the requirementsfor the Degree of Dotor of PhilosophyColorado State UniversityFort Collins, ColoradoSummer 2000



COLORADO STATE UNIVERSITY July, 2000WE HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UN-DER OUR SUPERVISION BY R. MATTHEW KRETCHMAR ENTITLED A SYN-THESIS OF REINFORCEMENT LEARNING AND ROBUST CONTROL THEO-RY BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS FOR THEDEGREE OF DOCTOR OF PHILOSOPHY.
Committee on Graduate Work

AdviserDepartment Head

ii



ABSTRACT OF DISSERTATIONA SYNTHESIS OF REINFORCEMENT LEARNING AND ROBUST CONTROLTHEORYThe pursuit of ontrol algorithms with improved performane drives the entireontrol researh ommunity as well as large parts of the mathematis, engineering, andarti�ial intelligene researh ommunities. A fundamental limitation on ahievingontrol performane is the oniting requirement of maintaining system stability. Ingeneral, the more aggressive is the ontroller, the better the ontrol performane butalso the loser to system instability.Robust ontrol is a olletion of theories, tehniques, and tools that form oneof the leading edge approahes to ontrol. Most ontrollers are designed not on thephysial plant to be ontrolled, but on a mathematial model of the plant; hene, theseontrollers often do not perform well on the physial plant and are sometimes unstable.Robust ontrol overomes this problem by adding unertainty to the mathematialmodel. The result is a more general, less aggressive ontroller whih performs wellon both the model and the physial plant. However, the robust ontrol method alsosari�es some ontrol performane in order to ahieve its guarantees of stability.Reinforement learning based neural networks o�er some distint advantages forimproving ontrol performane. Their nonlinearity enables the neural network to im-plement a wider range of ontrol funtions, and their adaptability permits them toimprove ontrol performane via on-line, trial-and-error learning. However, neuro-iii



ontrol is typially plagued by a lak of stability guarantees. Even momentary insta-bility annot be tolerated in most physial plants, and thus, the threat of instabilityprohibits the appliation of neuro-ontrol in many situations.In this dissertation, we develop a stable neuro-ontrol sheme by synthesizing thetwo �elds of reinforement learning and robust ontrol theory. We provide a learningsystem with many of the advantages of neuro-ontrol. Using funtional unertainty torepresent the nonlinear and time-varying omponents of the neural networks, we applythe robust ontrol tehniques to guarantee the stability of our neuro-ontroller. Oursheme provides stable ontrol not only for a spei� �xed-weight, neural network,but also for a neuro-ontroller in whih the weights are hanging during learning. Fur-thermore, we apply our stable neuro-ontroller to several ontrol tasks to demonstratethat the theoretial stability guarantee is readily appliable to real-life ontrol situa-tions. We also disuss several problems we enounter and identify potential avenuesof future researh. R. Matthew KrethmarDepartment of Computer SieneColorado State UniversityFort Collins, Colorado 80523Summer 2000

iv



ACKNOWLEDGEMENTSAn enormous redit is due to Dr. Charles Anderson of the Computer SieneDepartment. Chuk served as my advisor for four and a half years, introdued meto reinforement learning and nurtured me through my graduate areer. Without hispatient assistane, lose ollaboration, and areful guidane this dissertation wouldnot have ome to fruition.Speial thanks is due to Dr. Peter Young and Dr. Douglas Hittle of the EletrialEngineering and Mehanial Engineering departments, respetively. This dissertationwould not have been possible without Peter's expertise in ontrol theory and robustontrol theory, and without Doug's thorough knowledge of HVAC ontrol systems. Iwould like to thank Dr. Adele Howe and Dr. Darrell Whitley of the Computer SieneDepartment. While serving as ommittee members, they o�ered exellent tehnialadvie to make the dissertation a more oherent doument. Thanks is due to all �vemembers of the ommittee for ountless hours of doument reading and editting.From a �nanial standpoint, thanks is due to the National Siene Foundation.The work in this dissertation is funded by grants CMS-9401249 and CMS-980474.Thanks is due to Charles Anderson, Douglas Hittle, and Peter Young who served asthe priniple investigators of these NSF grants and provided my researh assistantship.Finanial assistane was also provided by the Department of Computer Siene inthe form of omputing equipment and a teahing assistantship. The Colorado StateUniversity is also thanked for additional sholarship funds.I wish to thank my parents, R. Sott and Janet Krethmar, and my sister, JenniferKrethmar, who provided support and motivation with a \dissertation rae".
v



TABLE OF CONTENTS
1 Introdution 11.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Problem Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.3 Objetive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.4 Approah . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.5 Contribution and Signi�ane . . . . . . . . . . . . . . . . . . . . . . 111.6 Overview of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 122 Literature Review 152.1 Robust Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.2 Traditional Adaptive Control . . . . . . . . . . . . . . . . . . . . . . 162.3 Neuro-ontrol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182.4 Stable, Robust Neuro-ontrol . . . . . . . . . . . . . . . . . . . . . . 232.5 Reinforement Learning for Control . . . . . . . . . . . . . . . . . . . 263 Stability Theory Overview 303.1 Dynami Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313.2 Basi Stability De�nitions and Theorems . . . . . . . . . . . . . . . . 343.3 Liapunov's Diret Method . . . . . . . . . . . . . . . . . . . . . . . . 38vi



3.4 Input-Output Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 423.5 Feedbak Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443.6 Nominal Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463.7 Robust Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503.8 �-analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533.9 IQC Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604 Stati and Dynami Stability Analysis 634.1 An Overview of the Neural Stability Analysis . . . . . . . . . . . . . 654.2 Unertainty for Neural Networks: �-analysis . . . . . . . . . . . . . . 674.3 Stati Stability Theorem: �-analysis . . . . . . . . . . . . . . . . . . 724.4 Dynami Stability Theorem: �-analysis version . . . . . . . . . . . . 774.5 Unertainty for Neural Networks: IQC-analysis . . . . . . . . . . . . 834.6 Stati Stability Theorem: IQC-Analysis . . . . . . . . . . . . . . . . . 874.7 Dynami Stability Theorem: IQC-Analysis . . . . . . . . . . . . . . . 884.8 Stable Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 905 Learning Agent Arhiteture 935.1 Reinforement Learning as the Algorithm . . . . . . . . . . . . . . . . 945.2 High-Level Arhiteture: The Dual Role of the Learning Agent . . . . 975.3 Low-Level Arhiteture: Neural Networks . . . . . . . . . . . . . . . . 1015.4 Neuro-Dynami Problems . . . . . . . . . . . . . . . . . . . . . . . . 1035.5 Neural Network Arhiteture and Learning Algorithm Details . . . . 1086 Case Studies 1196.1 Case Study: Task 1, A First-Order Positioning System . . . . . . . . 1206.1.1 Learning Agent Parameters . . . . . . . . . . . . . . . . . . . 1216.1.2 Stati Stability Analysis . . . . . . . . . . . . . . . . . . . . . 1236.1.3 Dynami Stability Analysis . . . . . . . . . . . . . . . . . . . 128vii



6.1.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1316.2 Detailed Analysis of Task 1 . . . . . . . . . . . . . . . . . . . . . . . 1326.2.1 Ator/Criti Net Analysis . . . . . . . . . . . . . . . . . . . . 1336.2.2 Neural Network Weight Trajetories . . . . . . . . . . . . . . . 1356.2.3 Bounding Boxes . . . . . . . . . . . . . . . . . . . . . . . . . . 1386.2.4 Computing Bounding Boxes . . . . . . . . . . . . . . . . . . . 1416.2.5 E�ets on Reinforement Learning . . . . . . . . . . . . . . . 1446.3 Case Study: Task 2, A Seond-Order System . . . . . . . . . . . . . . 1496.3.1 Learning Agent Parameters . . . . . . . . . . . . . . . . . . . 1516.3.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1516.3.3 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 1526.4 Case Study: Distillation Column Control Task . . . . . . . . . . . . . 1566.4.1 Plant Dynamis . . . . . . . . . . . . . . . . . . . . . . . . . . 1596.4.2 Deoupling Controller . . . . . . . . . . . . . . . . . . . . . . 1636.4.3 Robust Controller . . . . . . . . . . . . . . . . . . . . . . . . . 1656.4.4 Stable Reinforement Learning Controller . . . . . . . . . . . 1676.5 Case Study: HVAC Control Task . . . . . . . . . . . . . . . . . . . . 1736.5.1 HVAC Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 1746.5.2 PI Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1776.5.3 Neuro-ontrol . . . . . . . . . . . . . . . . . . . . . . . . . . . 1777 Conluding Remarks 1827.1 Summary of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 1827.2 Future Work with � and IQC . . . . . . . . . . . . . . . . . . . . . . 1847.3 Future Work with Neural Network Arhiteture . . . . . . . . . . . . 1897.4 Future Work with HVAC . . . . . . . . . . . . . . . . . . . . . . . . . 191
viii



A Stability Analysis Tools 192A.1 �-analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192A.2 IQC-analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193B Software Listing 194REFERENCES 227

ix



LIST OF FIGURES
1.1 Controller Design Philosophies . . . . . . . . . . . . . . . . . . . . . . 21.2 Nominal System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.3 Nominal System with Learning Agent Controller . . . . . . . . . . . . 72.1 Neuro-ontrol: System Identi�ation . . . . . . . . . . . . . . . . . . 182.2 Neuro-ontrol: Imitate Existing Controller . . . . . . . . . . . . . . . 202.3 Neuro-ontrol: Learn an Inverse Plant . . . . . . . . . . . . . . . . . 212.4 Neuro-ontrol: Inverse Plant as Controller . . . . . . . . . . . . . . . 212.5 Neuro-ontrol: Di�erential Plant . . . . . . . . . . . . . . . . . . . . . 223.1 LTI Continuous-time System . . . . . . . . . . . . . . . . . . . . . . . 333.2 Feedbak System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443.3 Typial System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463.4 Example System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473.5 Control System with Unertainty . . . . . . . . . . . . . . . . . . . . 523.6 M-� System Arrangement (as LFT) . . . . . . . . . . . . . . . . . . 533.7 M-� System Arrangement . . . . . . . . . . . . . . . . . . . . . . . . 533.8 �-analysis System Arrangement . . . . . . . . . . . . . . . . . . . . . 583.9 Feedbak System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61x



4.1 Funtions: tanh and tanh gain . . . . . . . . . . . . . . . . . . . . . . 704.2 Setor Bounds on tanh . . . . . . . . . . . . . . . . . . . . . . . . . . 704.3 Multipliative Unertainty Funtion for Network Weights . . . . . . . 795.1 Reinforement Learning and Control Agents . . . . . . . . . . . . . . 985.2 Ator-Criti Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005.3 Cirular Causality in the Ator-Criti Arhiteture . . . . . . . . . . 1045.4 Network Arhitetures . . . . . . . . . . . . . . . . . . . . . . . . . . 1085.5 Stable Reinforement Learning Algorithm . . . . . . . . . . . . . . . 1105.6 Stability Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1115.7 Learning Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1146.1 Task 1: First Order System . . . . . . . . . . . . . . . . . . . . . . . 1206.2 Task 1: Nominal Control System . . . . . . . . . . . . . . . . . . . . 1216.3 Task 1: Control System with Learning Agent . . . . . . . . . . . . . . 1226.4 Task 1: Nominal System . . . . . . . . . . . . . . . . . . . . . . . . . 1246.5 Task 1: With Neuro-Controller . . . . . . . . . . . . . . . . . . . . . 1256.6 Task 1: With Neuro-Controller as LTI . . . . . . . . . . . . . . . . . 1266.7 Task 1: �-analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1276.8 Task 1: With Neuro-Controller as LTI (IQC) . . . . . . . . . . . . . . 1286.9 Task 1: Simulink Diagram for Dynami �-analysis . . . . . . . . . . . 1306.10 Task 1: Simulink Diagram for Dynami IQC-analysis . . . . . . . . . 1306.11 Task 1: Simulation Run . . . . . . . . . . . . . . . . . . . . . . . . . 1326.12 Task 1: Criti Net's Value Funtion . . . . . . . . . . . . . . . . . . . 1346.13 Task 1: Ator Net's Control Funtion . . . . . . . . . . . . . . . . . . 1356.14 Task 1: Weight Update Trajetory . . . . . . . . . . . . . . . . . . . 1376.15 Task 1: Trajetory with Bounding Boxes . . . . . . . . . . . . . . . . 138
xi



6.16 Ator Network Weight Spae: Stability and Performane ImprovingRegions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1466.17 Task 2: Mass, Spring, Dampening System . . . . . . . . . . . . . . . 1506.18 Task 2: Nominal Control System . . . . . . . . . . . . . . . . . . . . 1506.19 Task 2: Simulation Run . . . . . . . . . . . . . . . . . . . . . . . . . 1526.20 Task 2: Dynami Stability with �-analysis . . . . . . . . . . . . . . . 1536.21 Task 2: Dynami Stability with IQC-analysis . . . . . . . . . . . . . . 1546.22 Task 2: Unstable Simulation Run . . . . . . . . . . . . . . . . . . . . 1556.23 Mathematial Model vs Physial Plant . . . . . . . . . . . . . . . . . 1586.24 Distillation Column Proess . . . . . . . . . . . . . . . . . . . . . . . 1606.25 Distillation Column Proess: Blok Diagram . . . . . . . . . . . . . . 1606.26 Distillation Column Model with Input Gain Unertainty . . . . . . . 1626.27 Step Response: LTI Model with Deoupling Controller . . . . . . . . 1646.28 Step Response: Physial Plant with Deoupling Controller . . . . . . 1666.29 Step Response: LTI Model with Robust Controller . . . . . . . . . . 1676.30 Step Response: Physial Plant with Robust Controller . . . . . . . . 1686.31 Perturbed Distillation Column with Unstable Neuro-ontroller . . . . 1706.32 Simulink Diagram for Distillation Column . . . . . . . . . . . . . . . 1716.33 Perturbed Distillation Column with Neuro-ontroller . . . . . . . . . 1726.34 HVAC Hardware Laboratory . . . . . . . . . . . . . . . . . . . . . . . 1746.35 HVAC Step Response . . . . . . . . . . . . . . . . . . . . . . . . . . . 1787.1 Balaning Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

xii



Chapter 1Introdution
1.1 Problem StatementAutomated ontrollers provide ontrol signals to a plant in an attempt to ause theplant to exhibit a desired behavior. Here we use \plant" as a generi term for adevie that is apable of being ontrolled. Together, the plant, the ontroller, andtheir interonnetion omprise the system. The design of ontrollers is ompliatedby system instability whih results in at least improper plant operation, and possibly,signi�ant damage to equipment and/or injury to people. Fortunately, a properlydesigned ontroller prevents the system from operating in a dangerous, unstable mode.Therefore, it is imperative that the ontroller be engineered with stable operation asa primary goal; performane is a seondary design onsideration to be pursued afterstability is assured.The design of suh ontrollers an be approahed from a number of design philoso-phies. In this dissertation, we fous on two diametri design philosophies. The �rstdesign philosophy, robust ontrol, exploits signi�ant a priori system knowledge inorder to onstrut a high-performing ontroller that still guarantees stability. Theother design philosophy, reinforement learning, builds a ontroller assuming littleinitial knowledge of the system but is apable of learning and adapting to �nd bet-ter ontrol funtions. The robust ontroller uses extensive system knowledge but is�xed and rigid for all time; the reinforement learning ontroller uses limited system1



knowledge but is apable of ontinuous adaptation to �nd better ontrol shemes.The opposition of these two design approahes is illustrated in Figure 1.1.

a priori system knowledge

o

o

adaptability

flexibility
&

reinforcement learning

robust control

Figure 1.1: Controller Design PhilosophiesIn robust ontrol, we analyze the dynamis of the plant in an attempt to builda ontroller that is mathematially guaranteed to provide stable ontrol behavior.Often we disover an entire set of stable ontrollers; we then selet the best perform-ing ontroller from this stable set. However, most plants of pratial interest possessenough omplexity to prohibit the preise spei�ation of the plant dynamis; usuallywe are fored to ompute a mathematial model of the plant to serve as an approxima-tion to the real plant. Consequently, the robust ontrol design proess is ompliatedbeause we must not only onstrut a ontroller that is stable for our mathematialmodel, but is also stable for the real plant. Neessarily, this limits the aggressivenessof the ontroller design and thus, results in suboptimal ontrol performane.On the other hand, reinforement learning assumes little about the dynamis ofthe system. Instead, it develops a good ontrol funtion through on-line, trial anderror learning. The hallenge of this approah is to establish a framework with enoughexibility to allow the ontroller to adapt to a good ontrol strategy. However, thisexibility may result in numerous undesirable ontrol strategies; the engineer must2



be willing to allow the ontroller to temporarily assume many of these poorer ontrolstrategies as it searhes for the better ones. It is important to note that many ofthe undesirable strategies may provide unstable ontrol behavior. We an envisionthe implausibility of the reinforement learning approah in designing a ontrollerfor a heliopter rotor; the adaptive ontroller may rash thousands, even tens ofthousands of heliopters before it �nds a stable ontrol funtion. However, one thereinforement learner settles in on reasonably good ontrol strategies, it an re�neits searh and often disover an exemplary ontroller that is not only stable, but alsooutperforms ontrollers designed using robust ontrol tehniques.Thus, the problem this dissertation examines an be summarized as follows. Wedesire a robust ontrol approah beause this approah guarantees stable ontrol be-havior and exploits known system knowledge to ahieve relatively good initial ontrolperformane. But, a robust ontrol approah sari�es some ontrol performane inorder to ahieve the stability guarantee. A reinforement learning approah is attra-tive beause it is able to disover exellently performing ontrollers via trial-and-errorsearh, but might temporarily implement a variety of unstable ontrol funtions. Theproblem is to ombine these two tehniques to guarantee stability and also performsafe trial-and-error searh in order to adaptively improve ontrol performane. Wenow present this problem in more detail by de�ning plants, stability, performane andnumerous other terms.1.2 Problem DetailsFigure 1.2 shows the basi omponents of a typial system. The plant, G, is the devieto be ontrolled. A ontroller, K, produes the ontrol signal, u, used to modify thebehavior of the plant. In this dissertation, we fous on a broad ategory of tasksknown as traking tasks: the ontroller must provide ontrol signals so that the plantoutput, y, mimis an external, time-varying, input signal alled the referene input,3



r. Performane is measured by the error signal, e, whih is the di�erene between thereferene signal and the plant output: e = r � y. We also require that the ontrollermaintain system stability: for a �nite and stati referene signal, r, we require thesystem signals, u and y, remain �nite and furthermore move asymptotially towardstable �xed points, �u and �y. We are more preise about the notion of stability insubsequent hapters.
-

r
Controller

K
Plant

G
+

e u y

Figure 1.2: Nominal SystemThe vast majority of researh in ontrol theory applies to systems whih are linear,time-invariant (LTI). The simple mathematis of LTI systems enables the appliationof the mature and extensive body of linear systems theory. Consequently, the designof stable ontrollers is straightforward. However, the LTI onditions plae restritivelimits on the lass of ontrollers available for use.A non-LTI ontroller is often able to ahieve greater performane beause it isnot saddled with the limitations of LTI. Two lasses of non-LTI ontrollers are par-tiularly useful for ontrol; nonlinear ontrollers implement a wider range of ontrolfuntions, and adaptive ontrollers self-modify to better math the system harater-istis. However, nonlinear and adaptive ontrollers are diÆult, and often impossible,to study analytially. Thus, the guarantee of stable ontrol inherent in LTI designsis sari�ed for non-LTI ontrollers.Neural networks, or neuro-ontrollers, onstitute muh of the reent non-LTI on-trol researh. Beause neural networks are both nonlinear and adaptive, they oftenrealize far superior ontrol ompared to LTI. However, dynami analysis of neuro-ontrollers is mostly intratable thereby prohibiting ontrol engineers from aser-taining their stability status. As a result, the use of neuro-ontrollers is primarily4



restrited to aademi experiments; most industrial appliations require guaranteesof stable ontrol whih have not been possible with neural networks.The stability issue for systems with neuro-ontrollers enompasses two aspets.Stati stability is ahieved when the system is proven stable provided that the neuralnetwork weights are onstant. Dynami stability implies that the system is stable evenwhile the network weights are hanging. Dynami stability is required for networkswhih learn on-line in that it requires the system to be stable regardless of the sequeneof weight values learned by the algorithm.1.3 ObjetiveThe primary objetive of this work is to develop a framework in whih we an ensurethe stability of neuro-ontrollers. We then use this framework to prove the stability ofboth stati and dynami neuro-ontrollers. This objetive is mainly a theoretial goal.While a few reent published results have shown some suess with the stati stabilityproblem, we will provide a di�erent proof that strengthens existing solutions. We alsoo�er the �rst neuro-ontrol sheme proven to solve the dynami stability problem;the neuro-ontroller we propose is guaranteed to provide stable ontrol even while thenetwork is training.As a seondary objetive, we demonstrate that the theoretial stability proofs arepratial to implement on real neuro-ontrol systems takling diÆult ontrol prob-lems. Many theoretial results in arti�ial intelligene are not amenable to pratialimplementation; often tehnial assumptions of the theorems are violated in orderto onstrut \reasonable and working" systems in pratie. We show the assump-tions of our stability theorems do not plae unreasonable limitations on the pratialimplementation of a neuro-ontrol system.To demonstrate that we have ahieved these objetives we will provide the follow-ing. 5



� A formal proof of the stability of a neuro-ontroller with �xed weights (statineural network).� A formal proof of the stability of a neuro-ontroller undergoing weight hangesduring learning (dynami neural network).� A neural network arhiteture and a learning algorithm suitable for use in ageneral lass of ontrol tasks.� A series of ase studies showing that the neuro-ontrol arhiteture and stabilityproofs are amenable to pratial implementation on several ontrol tasks.1.4 ApproahIn an e�ort to ahieve our primary goal of verifying the stability of stati and dynamineuro-ontrollers, we employ an approah that ombines reinforement learning androbust ontrol. We draw upon the reinforement learning researh literature to on-strut a learning algorithm and a neural network arhiteture that are suitable forappliation in a broad ategory of ontrol tasks. Robust ontrol provides the toolswe require to guarantee the stability of the system.Figure 1.3 depits the high-level arhiteture of the proposed system. Again, ris the referene input to be traked by the plant output, y. The traking error isthe di�erene between the referene signal and the plant output: e = r � y. Anominal ontroller, K, operates on the traking error to produe a ontrol signal u.A learning agent is inluded that also ats on the traking error to produe a ontrolsignal û. The two omponent ontrol signals are added to arrive at the overall ontrolsignal: u = u + û. Again, the goal of the ontroller(s) is twofold. The �rst goalis to guarantee system stability. The seond goal is to produe the ontrol signalsto ause the plant to losely trak the referene input over time. Spei�ally, thislatter performane goal is to learn a ontrol funtion to minimize the mean squared6



traking error over time.Importantly, the learning agent does not replae the nominal ontroller; rather,it adds to the ontrol signal in an attempt to improve performane over the nominalLTI ontroller. This approah, retaining the LTI ontroller as opposed to replaingit, o�ers two advantages. First, if the neuro-ontroller fails, the LTI ontroller willstill provide good ontrol performane; the neuro-ontroller an be turned o� withoutgreatly a�eting the system. Seond, the ontrol performane of the system is im-proved during the learning proess. If the neuro-ontroller were operating alone, itsinitial ontrol performane would most likely be extremely poor; the neural networkwould require substantial training time to return to the level of performane of thenominal LTI ontroller. Instead, the neuro-ontroller starts with the performane ofthe nominal ontroller and adds small adjustments to the ontrol signal in an attemptto further improve ontrol performane. The neuro-ontroller starts with an existinghigh-performane ontroller instead of starting tabula rasa.
-

r u

u

Controller
K

Plant
G

Agent

Learning

c
++

e u y

Figure 1.3: Nominal System with Learning Agent ControllerBeause the learning agent is implemented with a neural network that ontainsnon-LTI features, we must solve the stati stability problem: we must ensure that anetwork with a �xed set of weights implements a stable ontrol sheme. Sine exatstability analysis of the nonlinear neural network is intratable, we need to modifythe network to �t into the LTI framework. To aomplish this, we treat the nonlinearhidden units of the neural network as setor-bounded, nonlinear unertainties. Thetehniques of robust ontrol are developed around the onept of treating system7



nonlinearities as unertainties. Thus, we an apply the tehniques of robust ontrolto determine the stability status of the neuro-ontroller. Spei�ally, we use either�-analysis or IQC-analysis whih are two robust ontrol tools that determine thestability of systems with unertainty. In this way, we solve the stati stability problem.Along with the nonlinearity, the other powerful feature of using a neural networkfor the learning agent is its adaptability; the agent an learn to provide better on-trol. In order to aommodate an adaptive learning agent, we must solve the dynamistability problem: the ontrol system must be proven stable while the neural networkis learning. To solve the dynami stability problem we require two omponents ofunertainty. As we did in the stati stability analysis, we use a setor-bounded un-ertainty to over the neural network's nonlinear hidden layer. Additionally, we addunertainty in the form of a slowly time-varying salar to over weight hanges dur-ing learning. Again, we apply �-analysis and IQC-analysis to determine whether thenetwork (with the weight unertainty) forms a stable ontroller.To understand the details of how we employ �-analysis and IQC-analysis, envisionthe urrent neural network weight values as a point in the high-dimensional weightspae of the network. By adding a small perturbation to eah individual networkweight, we form region around the urrent weight spae point. We employ �-analysisor IQC-analysis to determine the largest set of neural network weight perturbationsthat the system an tolerate while still being stable. In e�et, the region formedby the weight perturbations ats as a \safety region" in the network's weight spaein whih the learning algorithm an operate; any network weight values within thisregion produe stable ontrol. We then apply standard reinforement learning toadapt the network weights until they move outside the stable safety region. In thisway, we solve the dynami unertainty problem for stability during network training.In summary, our approah in meeting the primary objetive, a theoretial resultdemonstrating the stability of a neural network ontroller, is to onvert the neural8



network, with nonlinearity and the adaptive weight hanges, to a linear, time-invariantform by using unertainty regions. One the network has been reast in the LTI form,then we apply the stability analysis tools of � and IQC in order to determine thestability status of the neuro-ontrol system.Our seondary objetive is to demonstrate the pratial appliation of the stabili-ty theorems to hallenging ontrol problems. To aomplish this goal, we pursue twopaths. In the �rst path, we design a suitable learning agent to address the followingprimary onsiderations: the seletion of an appropriate learning algorithm, the on-strution of a suitable high-level arhiteture to ful�ll the dual roles of ontroller andlearning agent, and the design of a low-level arhiteture that satisfatorily aom-plishes the �rst two onsiderations. The seond path that we pursue is to presentase studies demonstrating the appliation of our theory to four ontrol tasks. Theintent of these ase studies is to illustrate the appliation of the stati and dynamistability theorems to pratial ontrol situations; these ase studies are not intendedto be an empirial analysis omparing this approah with other ontrol algorithms.In the �rst path outlined above, the design of a suitable learning agent, we addressthree primary onsiderations. The �rst onsideration is seleting a learning algorith-m for the agent. The hoie of a learning algorithm is mostly orthogonal to theonstraints of robust stability; we have onsiderable freedom in seleting a learningalgorithm that is geared primarily to ontrol performane. We hose reinforementlearning for our learning agent, beause it is well suited to the limited informationof the system (a performane metri) and the algorithm also is ideal at optimiz-ing funtions over extended time horizons. Reinforement learning implements thetrial-and-error searh required to �nd good ontrol funtions.The seond onsideration is designing a high-level arhiteture to aommodatethe dual role of the learning agent. The agent must at as a ontroller by providingreal-time ontrol signals in response to traking error input signals and must at as9



a reinforement learner by aumulating value funtions and using them to adjustthe ontrol poliy. To ful�ll the possibly oniting requirements of eah role, weturn to a dual network arhiteture known as the ator-riti design. We �nd thisarrangement is suitable for not only balaning the demands of our learning algorithmand ontrol funtion, but also for the analysis required by robust stability.The third onsideration in designing a learning agent is designing a low-level neu-ral arhiteture to over ome neurodynami problems that our with weight hangesduring learning. Reinforement learning agents an be implemented in a variety ofrepresentations. The seletion of a representation a�ets the performane of the agentin simulations and real-world appliations. We disuss spei� neurodynami prob-lems we enounter and disuss how spei� neural network representations overomethese diÆulties.The seond path is to demonstrate the appliability of our robust, stable, rein-forement learning agent by using the agent in a series of example ase studies. Weselet four example ontrol problems for our ase studies. The �rst two ontrol tasksare trivial from a ontrol design standpoint, but they allow the reader to fully under-stand the dynamis of the system and to ompute the desired optimal ontrol law.These two tasks serve primarily to illustrate the appliation of the theory to ontrolproblems. The third example ase study involves a simulated distillation olumn.This ontrol problem o�ers suÆient omplexity to warrant state of the art ontrolsolutions. We apply our stable neuro-ontroller to this task to illustrate the easeof appliation to hallenging ontrol problems and to demonstrate that the stableneuro-ontroller is able to realize performane improvements over robust ontrollers.The �nal example ontrol task involves a model of an HVAC heating oil. We usethis ase study to demonstrate that the HVAC domain is a solid andidate for theappliation of our stable neuro-ontroller, but that an improper appliation ouldlimit the e�etiveness of a stable neuro-ontroller.10



1.5 Contribution and Signi�aneThe work in this dissertation has signi�ant impliations for the ontrol ommunity.We provide a new approah to proving the stability of a �xed-weight neural network.Most importantly, our methodology is the �rst that guarantees stability during thenetwork training proess. With stability guarantees for neuro-ontrol, the ontrolommunity an utilize the adaptive nonlinear power of neural network ontrollerswhile still ensuring stability in ritial ontrol appliations. We also ontribute aneural arhiteture and learning agent design to overome numerous, non-trivial,tehnial problems. Muh of the previous theoretial work in neuro-ontrol does notaddress implementation details, whih an render the theory inappliable. In thisdissertation, we develop a learning agent that is suitable for appliation, and weprovide detailed analysis of the stable reinforement learning agent as it takles fourdiÆult ontrol problems. In this setion, we disuss eah of these ontributions inmore detail.The �rst ontribution is our solution to the stati stability problem: given aneural network ontroller with �xed weights, we have developed a method whihonlusively proves the stability of the ontroller. A few other researh groups havearrived at similar results using other approahes. The most signi�ant of these otherstati stability solutions is the NLq researh group of Suykens and DeMoor [Suykensand Moor, 1997℄. Our approah is similar to the NLq group in the treatment of thenonlinearity of the neural network, but we di�er in how we arrive at the stabilityguarantees. Our approah is also graphial and thus amenable to inspetion andhange-and-test senarios.By far, our most signi�ant ontribution is a solution to the dynami stabilityproblem. Our approah is the �rst to guarantee the stability of the neuro-ontrollerwhile the network is experiening weight hanges during learning. We extend thetehniques of robust ontrol to transform the network weight learning problem in-11



to one of network weight unertainty. With this key realization, a straightforwardomputation guarantees the stability of the network during training.An additional ontribution is the spei� arhiteture amenable to the reinfore-ment learning / ontrol situation. As already mentioned, we build upon the earlywork of ator-riti designs as well as more reent designs involving Q-learning. Ourdual network design features a omputable poliy (this is not available in Q-learning)whih is neessary for robust analysis. The arhiteture also utilizes a disrete valuefuntion to mitigate diÆulties spei� to training in ontrol situations; we demon-strate its e�etiveness in our four ase studies.The work in this dissertation paves the way for further researh in adaptive neuro-ontrol. This initial solution to the stati and dynami stability problems is a largestep forward in allowing industry to utilize neuro-ontrollers in their produts.1.6 Overview of DissertationThis dissertation synthesizes two diverse bodies of researh. From the arti�ial in-telligene ommunity we use reinforement learning and neural networks. From theontrol ommunity, we employ the reently developed robust ontrol theory. Here weoutline the major omponents of eah hapter in this dissertation.In Chapter 2, we present an overview of the researh literature ontributing toreinforement learning and robust ontrol.Chapter 3 introdues the various onepts of stability. This hapter progressesfrom the simple mathematial de�nitions of stability toward the more omplex notionsof system stability. Although the details are lengthy, we present the entire progressionas it is fundamental to the stability proofs in later hapters. We start with severalkey de�nitions of stability and di�erent interpretations for eah de�nition. Beausethe stability de�nitions are typially not appliable for omplex systems, we alsointrodue Liapunov's diret method of asertaining system stability. These onepts12



are then applied to system stability. We disuss robust stability before onludingthe hapter with a brief disussion of �-analysis and IQC-analysis theories.In Chapter 4, we present our solution to the stati and dynami stability problem-s. The hapter begins by introduing the stability problems and motivates the needfor a solution. The hapter then splits into two parallel lines of development; the �rstline assumes that �-analysis is used as the robust stability tool while the seond lineassumes that IQC-analysis is the robust stability tool. In eah line, we provide thedetails of how to onvert a nonlinear neural network into an LTI system. By overingthe nonlinearity of the neural network with unertainty, we an apply the tools ofrobust ontrol to arrive at stati stability guarantees. Chapter 4 then extends oursolution of the stati stability problem to overome the dynami stability problem.We disuss how to add additional unertainty to the neural network weights. Thisallows us to de�ne a safety region in the network weight spae; the safety region per-mits the reinforement learning algorithm to adjust the neural network weights whilemaintaining a guarantee of stable ontrol. The hapter onludes with a sketh ofthe stable reinforement learning algorithm general enough to reombine the parallellines of �-analysis and IQC-analysis.Chapter 5 details the design of the learning agent. We start by examining why thereinforement learning algorithm is better suited to the ontrol domain than otherlearning algorithms. Our sheme has an important requirement in that the agentmust play a dual role as both a reinforement learner and as a ontroller. We devisea high-level arhiteture to resolve diÆulties in this dual role. We then disussthe design of the low-level arhiteture by onsidering various hoies of partiularneural networks to be used in the learning agent. The network-as-ontroller introduesdiÆult neuro-dynami problems not typially enountered in neural network trainingor in reinforement learning.We then put the algorithm and stability proofs to the test in Chapter 6. Here13



we present four example ontrol problems as ase studies in the appliation of thestability proofs to real ontrol problems. Importantly, the intent of this hapter is notto empirially ompare our stable reinforement learning method with other ontrolstrategies; instead, the purpose of Chapter 6 is to demonstrate that our theoretialontributions are appliable to real-life ontrol situations without violating the pre-suppositions of the stability proofs. While trivial from a ontrol perspetive, the �rsttwo ontrol tasks are simple enough for the reader to easily visualize the appliationof stati and dynami stability to the ontrol design. We also apply our learningagent to a omplex distillation olumn proess. This example serves to illustrate theneessity of robust ontrol over optimal ontrol tehniques and also to demonstratehow the neuro-ontrol agent is able to regain ontrol performane lost to the robustontrol design. The HVAC (Heating, Ventilation and Air Conditioning) researh om-munity is urrently examining ways to employ neuro-ontrollers in their �eld. Theomplex dynamis of heating oils, ooling towers, building systems and other HVACsystems o�er diÆult ontrol tasks that represent the utting edge in neuro-ontrolresearh. We takle the ontrol of a heating oil to understand how the the theoryand tehniques developed in this work are applied to this domain.Chapter 7 summarizes the dissertation, iterates our ontributions to the �eldsof reinforement learning and ontrol, disusses the the suesses and diÆulties ofour approah, and �nally introdues some avenues of future researh in the arena ofstable neuro-ontrol. Appendix A provides a brief tutorial on the use of the � andIQC tools. Appendix B lists the ode used in the ase studies.

14



Chapter 2Literature Review
In this hapter, we review the signi�ant ontributions in the researh literature toneuro-ontrol, reinforement learning, and robust ontrol. These key papers serve asthe basis for the theoretial and experimental advanes outlined in this dissertation.We identify several historially important papers and also disuss reent papers withdiret relevane to our goal of a stable neuro-ontrol algorithm.2.1 Robust ControlDespite the fat that the tehniques of robust ontrol are relatively new, there are alarge number of reent publiations in this �eld. We identify a few key researhersand their seminal papers whih set the stage for the urrent suess of robust ontroltheory. Among the earliest works in robust ontrol is the stability theory of the1970s. This early work built upon the mature body of researh in linear systems toextend stability theorems for systems with a very spei� and limited set of nonlinearomponents. In partiular, the development of the irle riterion and the smallgain theorem in works by Zames [Zames, 1966℄, Desoer and Vidyasagar [Desoer andVidyasagar, 1975℄, and Vidyasagar [Vidyasagar, 1978℄ provide suÆient onditions toprove the stability of systems with nonlinear elements in the feedbak path.Another major step introdues unertainty to handle systems with general non-linear omponents. The novel idea in this work is to struture the type of unertainty15



and then provide stability theorems for any nonlinearities in the system meeting theriteria of the strutured unertainty. The advent of a strutured singular value met-ri, �, is of paramount importane to robust ontrol. Doyle [Pakard and Doyle, 1993℄pioneered muh of the early work in robust ontrol and provided the onnetion be-tween � and strutured unertainty. Also important is the formal development of thegeneral LFT (Linear Frational Transform) framework along with advanes in om-puting LMIs (Linear Matrix Inequalities) with polynomial time algorithms [Pakardand Doyle, 1993℄. Young [Young and Dahleh, 1995; Young, 1996℄ extends �-analysisto other types of unertainty inluding parametri unertainty. Notable progress inrobust ontrol also inludes the availability of ommerial software for performing theomplex omputations required [Balas et al., 1996℄. Matlab's �-Tools toolbox makesrobust ontrol theory aessible to the ontrol engineer without investing years totranslate diÆult theory into pratial ode.2.2 Traditional Adaptive ControlWhile atual physial plants ontain dynamis whih are not LTI (linear, time-invariant), the analysis of non-LTI systems is mostly intratable. Muh of modernontrol theory is based upon linear, time-invariant (LTI) models. Beause LTI dy-namis are not as rih in their funtional expression, ontrol performane is oftensari�ed by the limitations imposed by LTI dynamis. One of the early attempts bythe ontrol ommunity to seek alternatives to LTI ontrol design is adaptive ontrol.Franklin [Franklin and Selfridge, 1992℄ gives the following de�nition of adaptive on-trol: \Adaptive ontrol is a branh of ontrol theory in whih a ontrolled system ismodeled, typially by means of a set of linear di�erene or di�erential equations, someof whose parameters are unknown and have to be estimated". The primary purposeof adaptive ontrol is to form a model of a physial plant by adapting parametersin the model. Adaptive ontrol typially proposes a model struture for the plant a16



priori; the parameters of this model are altered. By presupposing a model struture,the adaptive ontrol sheme is limited in its representational exibility [Franklin andSelfridge, 1992℄. Here we introdue the general approah by desribing two popularand representative adaptive ontrol shemes.One of the simpler attempts at traditional adaptive ontrol is the Self-TuningRegulator (STR) [Astrom and Wittenmark, 1973℄. The STR uses an equation withunspei�ed parameters to model the system. The parameters are updated from on-line sampling to better �t empirial data on the system. As the parameters areupdated, the ontroller is re-tuned to provide better ontrol for the updated systemmodel [Franklin and Selfridge, 1992℄. The major advantage of this approah is theSTR's prediation on the rih and well developed theory of least-squares parameterestimation. Namely, tight bounds on the system model error an be omputed read-ily. Major drawbaks inlude unguaranteed system stability, espeially during initiallearning of the system model parameters, and a requirement for a priori knowledgeof the orret struture for the system equations.A more sophistiated approah to adaptive ontrol is the Model Referene Adap-tive Controller (MRAC) [Parks, 1966℄. The MRAC uses an externally supplied idealmodel of the losed loop system whih exhibits the desired harateristis. The param-eters of the ontroller are updated dynamially in an attempt to make the losed-loopsystem at like the referene model. The adaptive algorithm is posed as a Liapunovfuntion; this has the advantage that the output error is bounded and is asymptot-ially stable. That is, the output of the losed-loop system will eventually move totrak the referene model with non-inreasing error. Again, a major disadvantageis that the struture of the referene model must math the system dynamis. Ad-ditionally, the referene model is limited to being linear in order for the Liapunovstability analysis to hold.
17



2.3 Neuro-ontrolNeuro-ontrol originated as a speial branh of adaptive ontrol. Originally, neu-ral networks were employed as adaptive ontrol agents to model the dynamis of aplant [Kalkkuhl et al., 1997℄. However, neural networks are muh broader than thespei� models of traditional adaptive ontrol and their use quikly spread to otheraspets of ontrol theory.The appliation of onnetionist omputation (neural networks) to the area ofontrol is not new. Muh of the past researh an be ategorized into a few dis-tint approahes; we review the most ommon appliations of neural networks toontrol. It is partiularly noteworthy that most of these approahes are based uponsupervised learning. Reinforement learning, having been developed a deade laterthan supervised learning, remains mostly the fous of the AI ommunity. We reviewreinforement learning approahes to neuro-ontrol in Setion 2.5.System Identi�ationAs stated above, among the earliest appliations of neural networks to ontrol issystem identi�ation whih is also known as parameter estimation by the optimalontrol ommunity [Werbos, 1992; Barto, 1992℄. Essentially, the neural network istrained to imitate the plant as shown in Figure 2.1.
Training Sigal

Neural Net

Plant

Figure 2.1: Neuro-ontrol: System Identi�ation
18



System identi�ation, in the manor of adaptive ontrol, is useful for plant lassi-�ation. Suppose that we possess a ontrol solution that is e�etive for a partiularlass of plants { plants whih possess a ertain dynami form. We onstrut a neuralnetwork model that is apable of learning this form. We then train the network onthe unknown physial plant using supervised learning. If we an redue the approxi-mation error below a prespei�ed tolerane, then we onlude that the neural networkis apable of approximating this plant. Thus, the plant must possess dynamis whihbelong to this partiular lass of plants. We then apply our known ontrol solutionbeause the ontrol solution is e�etive for all plants of this lass. Conversely, if theneural network is not able to redue the approximation error below the toleranelevel, then the plant in question does not belong to the known lass of plants. Weannot apply our ontrol solution.While system identi�ation provided the early bridge from pure adaptive ontrol toneuro-ontrol, this method's primary utility beame one of providing a training signalfor a double neural network arrangement. This arrangement is disussed shortly.Imitate an Existing ControllerAlso among the early appliations of neural networks to ontrol is modeling anexisting ontroller. This arose from early neural network researh involving the newly\redisovered" bak propagation algorithm [Werbos, 1974; Rumelhart et al., 1986a℄and the neural network's keen ability to model a nonlinear funtion. The networkan be trained to imitate any nonlinear mapping given suÆient resoures (hiddenunits) [Hassoun, 1995℄. The arhiteture for suh an arrangement is skethed in Fig-ure 2.2. The neural network reeives the same inputs as the ontroller and attemptsto produe the same outputs. The error is bak propagated through the net to adjustthe weights.An obvious question arises as to the utility of training suh a network if we alreadyhave an existing ontroller. There are several reasons why we would require the neuro-19



Plant

Controller

Neural NetFigure 2.2: Neuro-ontrol: Imitate Existing Controllerontroller. The existing ontroller might be impratial or expensive. An exampleis a ontroller that is human; the network is trained to mimi a person's ontroldeisions. A seond reason is that the neural ontroller may be easier to analyze; itmight be possible to gain insights to a \ontrol rule" [Barto, 1992℄. Training a neuralnetwork using an existing ontroller is also useful as a method to \seed" the networko�-line. One the network mimis the ontroller, it an be plaed on-line and makeintelligent ontrol deisions immediately. The learning proess ontinues so that thenetwork potentially surpasses the existing ontroller's performane. However, thisrequires more than the supervised training algorithm; it requires the tehniques ofreinforement learning.System Inverse Identi�ationThe neural network is trained to model the inverse dynamis of the plant. Thenetwork reeives the plant's output and attempts to reprodue the plant inputs a-urately. This arrangement is depited in Figure 2.3. Naturally, this approah is20



limited if the plant is not invertible as is the ase when the forward plant funtion isnot injetive [Barto, 1992℄.
Plant

Neural NetFigure 2.3: Neuro-ontrol: Learn an Inverse PlantMany ontrol problems are referene traking problems in whih the plant outputattempts to trak a referene input signal. Having the plant inverse as a ontrollerobviously implements this funtion niely. This arrangement is shown in Figure 2.4.However, in pratie there is often diÆulty in learning a well-formed plant inverse.Subtle errors and new input vetors an ause the inverse ontroller to produe widelydi�erent responses [Barto, 1992℄. Also, the addition of a feedbak loop ompliates thepratiality of suh a ontroller. Kawato [Kawato, 1992℄ makes extensive use if thisarhiteture in his feedbak error training method. Instead of using the atual plantoutput as an input to the network, Kawato substitutes the desired plant response.
PlantInverse Plant

Neural Net
r r P r P  P   =  r

-1 -1

Figure 2.4: Neuro-ontrol: Inverse Plant as ControllerDi�erential PlantThis method begins with the same basi arrangement of a neural network usedfor system identi�ation as in Figure 2.1. We train one neural network to mimi21



the forward plant. As shown in Figure 2.5, we inlude a seond neural network as aontroller. The immediate bene�t of suh an arrangement is that we an now trainthe ontroller o�-line (i.e. we an use the plant-network instead of the plant). Butthe bene�t is more profound than this.
Plant

Neural Net

Controller
Neural Net

PlantFigure 2.5: Neuro-ontrol: Di�erential PlantThe problem of using a neural network diretly as a ontroller is that the neuralnetwork is trained using supervised learning. That is, the neural network ats upona plant state (usually the traking error) to produe a ontrol signal for the plant.In order to train the network, we must know the orret, or optimal, ontrol signalthat the network should have produed. It is often extremely diÆult to examinethe plant's output response and ompute what the optimal ontrol signal should havebeen. We require a method whih relates the traking error at the plant output withthe ontrol signal at the ontroller output (plant input).With the dual neural network di�erential plant arrangement, we now have a math-ematial model of the plant whih is di�erentiable. When an referene input signal isapplied to the neural ontroller, it produes a ontrol signal for the plant. The plantats upon the ontrol signal to produe a plant-output. We an now use the errorbetween the atual plant output and the desired plant output to bak propagate theerror through the network-plant to ontrol signal. Jordan shows that this arrange-ment is equivalent to the transpose of the plant's Jaobian evaluated at the ontrol22



signal (plant input) [Jordan, 1988℄. The ontrol signal error an now be used to trainthe ontroller network. By using this \double bak propagation" method we an trainthe neural ontroller with supervised learning. The advent of reinforement learninglargely obviates a need for this arrangement. However, double bak propagation stillhas uses for speial neural arhitetures; we borrow the onept for use in trainingour neuro-ontroller.2.4 Stable, Robust Neuro-ontrolDespite the relative frequeny with whih \robust", \stable", and \neural network"appear in paper titles populating onferene proeedings and journal publiations,there exist relatively few attempts at devising a truly stable neural network on-troller. Muh of the onfusion arises from the many interpretations given to theterms \robust" and \stable". In the AI ommunity, stability implies many di�erentonepts inluding: sensitivity to fault tolerane, relative ease of learning, and the dy-namis of weight hanges. Even in the ontrol ommunity, robustness assumes manyinterpretations; robustness generally means insensitivity to something. The problemis that there are many \somethings" to be insensitive toward. In this dissertation,robustness desribes a ontroller that is insensitive to di�erenes in the plant modeland physial plant. We use the term stability to denote the formal mathematialde�nition of stable ontrol presented in Chapter 3.Along these lines, there have been very few true attempts to onstrut neuro-ontrollers whih are stable. There have been even fewer attempts to add the ro-bustness riteria. As we shall disuss thoroughly in subsequent hapters, the dearthof suessful researh in this area is due to the inherent intratability of analyzing aneural network's dynami ontribution to a ontrol system. Despite the lak of di-retly relevant publiation in this area, there are a few noteworthy e�orts we outlinehere. 23



The unique, diret approah of Slotine and Sanner [Sanner and Slotine, 1992℄ u-tilizes hardware-realizable, analog, neural networks to implement a real-time, stable,adaptive ontroller for ontinuous-time, nonlinear plants. To ahieve this result, theydo require ertain a priori assumptions about the lass of nonlinearities whih hara-terize the plant. Slotine and Sanner present a proof based upon a Liapunov stabilityriterion: the neural network arhiteture is stable in the sense that the ontrol errorwill onverge monotonially to a minimum.This type of \robust stability proof" is ommon in the earlier work in stable neuro-ontrol. The Liapunov stability analysis (or Liapunov equation) is used to show thatnetwork learning algorithms ause the network outputs to asymptotially onvergeupon a stable solution. We outline Liapunov stability analysis in Setion 3.3. How-ever, this type of proof is not robust in the modern sense of robust ontrol onerningthe di�erenes between physial plant dynamis and plant model dynamis.The approah of Bass and Lee [Bass and Lee, 1994℄ is noteworthy for two reasons.They propose an arhiteture in whih the neural network is treated as unstruturedplant unertainty, and they also attempt to limit the magnitude of the neural networkby having it learn only the nonlinear omponent of the inverse plant. Their approahuses the neural network to linearize a nonlinear plant. Thus, the neural network doesnot provide any ontrol; simply, the neural network is used to learn the \unertainty"between the true plant and an LTI model of the plant. Then, a standard robustontroller is designed to ontrol this plant.Bass and Lee attempt to redue the magnitude of the neural network weightsby reduing the unertainty that the network represents. To aomplish this, they�rst ompute a linear model of the plant (o�-line) using standard ontrol tehniques.Then, the neural network is trained to ompute the di�erene between the linearmodel and the plant. One the network is trained, then they an ompute a boundon the magnitude of the neural network. They ombine this bound with a variant of24



the small gain theorem (see Setion 3.5) to prove stability. Bass and Lee do provideamong the �rst disussions of how to adapt the network's learning algorithm to ahievea bounded norm on the network output. The work in this dissertation is a signi�antstep forward in that we use the neural network to provide diret ontrol signals. Weemploy the full nonlinear, adaptive, power of the neural network to realize improvedontrol.Narendra and Levin [Levin and Narendra, 1993℄ propose a neuro-ontrol shemeinvolving feedbak linearization. An LTI model of a nonlinear plant is devised. Then,the neural network is used in several di�erent ways to stabilize the system about a�xed point. The stability guarantees are only valid for loal trajetories about the�xed point. The loal validity region may be arbitrarily small. Furthermore, theirmethod relies upon substantial state information that may not be observable fromthe plant.The NLq researh group of Suykens, De Moor, Vandewalle and others [Suykenset al., 1996; Suykens and Moor, 1997; Suykens et al., 1997; Verrelst et al., 1997;Suykens and Bersini, 1996; Suykens et al., 1993b; Suykens et al., 1993a; Suykenset al., 1995℄ is among the most well-developed e�orts at stable, robust neuro-ontrol.An NLq representation is a series of alternating linear and nonlinear omputationalbloks. The format is generi enough to inlude most lasses of neural networks aswell as many other arhitetures suh as parameterized systems and Kalman �lters.NLq is signi�ant in its formal generalization of ategorizing neural arhitetures ina framework that is suitable for appliation to ontrol theory.The seond ontribution of NLq theory is a series of proofs demonstrating theinternal stability of systems ontaining NLq omponents. The authors present threevariations of the proof, all of whih are based upon solving onvex optimization prob-lems known as LMIs (linear matrix inequalities). The LMIs are on�gured to arriveat stability via a quadrati Liapunov-type funtion. The NLq team is also among the25



�rst to attempt to devise a neural network learning algorithm based upon stabilityonstraints. They alter Narendras's Dynami Bak Propagation Algorithm [Narendraand Parthasarathy, 1990℄ to provide stability assuranes for their neuro-ontroller.However, their algorithm only provides \point-wise" stability assuranes: eah net-work weight value obtained during learning implements a stable system. But, thedynami system, in whih the network weights hange, is not guaranteed to produestable ontrol. In this dissertation, we distinguish the two approahes as the statistability problem and the dynami stability problem. Furthermore, the supervisedlearning algorithm of the NLq group does not utilize the exellent advantages of re-inforement learning. Still, their work is learly the leading pioneering e�ort in the�eld of stable neuro-ontrol.2.5 Reinforement Learning for ControlIn this setion we review the most signi�ant ontributions of reinforement learn-ing with emphasis on those diretly ontributing to our work in robust neuro-ontrol.Sutton and Barto's text, Reinforement Learning: An Introdution presents a detailedhistorial aount of reinforement learning and its appliation to ontrol [Sutton andBarto, 1998℄. From a historial perspetive, Sutton and Barto identify two key re-searh trends that led to the development of reinforement learning: the trail anderror learning from psyhology and the dynami programming methods from mathe-matis.It is no surprise that the early researhers in reinforement learning were moti-vated by observing animals (and people) learning to solve ompliated tasks. Alongthese lines, a few psyhologists are noted for developing formal theories of this \trialand error" learning. These theories served as spring boards for developing algo-rithmi and mathematial representations of arti�ial agents learning by the samemeans. Notably, Roger Thorndike's work in operant onditioning identi�ed an ani-26



mal's ability to form assoiations between an ation and a positive/negative rewardthat follows [Thorndike, 1911℄. The experimental results of many pioneer researhershelped to strengthen Thorndike's theories. Notably, the work of Skinner and Pavlovdemonstrates \reinforement learning" in ation via experiments on rats and dogsrespetively [Skinner, 1938; Pavlov, 1927℄.The other historial trend in reinforement learning arises from the \optimal on-trol" work performed in the early 1950s. By \optimal ontrol", we refer to the math-ematial optimization of reinforement signals. Today, this work falls into the ate-gory of dynami programming and should not be onfused with the optimal ontroltehniques of modern ontrol theory. Mathematiian Rihard Bellman is deservedlyredited with developing the tehniques of dynami programming to solve a lass ofdeterministi \ontrol problems" via a searh proedure [Bellman, 1957℄. By extend-ing the work in dynami programming to stohasti problems, Bellman and othersformulated the early work in Markov deision proesses.Barto and others ombined these two historial approahes in the �eld of rein-forement learning. The reinforement learning agent interats with an environmentby observing states, s, and seleting ations, a. After eah moment of interation(observing s and hoosing a), the agent reeives a feedbak signal, or reinforementsignal, r, from the environment. This is muh like the trial-and-error approah fromanimal learning and psyhology. The goal of reinforement learning is to devise aontrol algorithm, alled a poliy, that selets optimal ations (a) for eah observedstate (s). By optimal we mean those ations whih produe the highest reinfore-ments (r) not only for the immediate ation, but also for future ations not yetseleted. The mathematial optimization tehniques of Bellman are integrated intothe reinforement learning algorithm to arrive at a poliy with optimal ations.A key onept in reinforement learning is the formation of the value funtion.The value funtion is the expeted sum of future reinforement signals that the agent27



reeives and is assoiated with eah state in the environment. Thus V (s) is the valueof starting in state s and seleting optimal ations in the future; V (s) is the sum ofreinforement signals, r, that the agent reeives from the environment.A signi�ant advane in the �eld of reinforement learning is the Q-learning al-gorithm of Chris Watkins [Watkins, 1989℄. Watkins demonstrates how to orretlyassoiate the the value funtion of the reinforement learner with both the state andation of the system. With this key step, the value funtion an now be used to diret-ly implement a poliy without a model of the environment dynamis. His Q-learningapproah neatly ties the theory into an algorithm whih is both easy to implementand demonstrates exellent empirial results.Reinforement learning algorithms must have some onstrut to store the valuefuntion it learns while interating with the environment. These algorithms oftenuse a funtion approximator to store the value funtion; the performane of the al-gorithm depends upon the seletion of a funtion approximation sheme. There havebeen many attempts to provide improved ontrol of a reinforement learner by adapt-ing the funtion approximator whih learns/stores the Q-value funtion. Andersonadds an e�etive extension to Q-learning by applying his \hidden restart" algorith-m to the diÆult pole balaner ontrol task [Anderson, 1993℄. Moore's Parti-GameAlgorithm [Moore, 1995℄ dynamially builds an approximator through on-line expe-riene. Sutton [Sutton, 1996℄ demonstrates the e�etiveness of disrete loal funtionapproximators in solving many of the neuro-dynami problems assoiated with rein-forement learning ontrol tasks. We turn to Sutton's work with CMACs (CerebellarModel Artiular Controller) to solve some of the implementation problems for ourlearning agent. Anderson and Krethmar have also proposed additional algorithmsthat adapt to form better approximation shemes suh as the Temporal Neighbor-hoods Algorithm [Krethmar and Anderson, 1997; Krethmar and Anderson, 1999℄.Among the notable researh of reinforement learning is the reent suess of re-28



inforement learning appliations on diÆult and diverse ontrol problems. Critesand Barto suessfully applied reinforement learning to ontrol elevator dispathingin large sale oÆe buildings [Crites and Barto, 1996℄. Their ontroller demonstratesbetter servie performane than state-of-the-art, elevator-dispathing ontrollers. Tofurther emphasize the wide range of reinforement learning ontrol, Singh and Bert-sekas have out-ompeted ommerial ontrollers for ellular telephone hannel assign-ment [Singh and Bertsekas, 1996℄. There has also been extensive appliation to HVAControl with promising results [Anderson et al., 1996℄. An earlier paper by Barto,Bradtke and Singh disussed theoretial similarities between reinforement learningand optimal ontrol; their paper used a rae ar example for demonstration [Bartoet al., 1996℄. Early appliations of reinforement learning inlude world-lass hekerplayers [Samuel, 1959℄ and bakgammon players [Tesauro, 1994℄. Anderson lists sev-eral other appliations whih have emerged as benhmarks for reinforement learningempirial studies [Anderson, 1992℄.

29



Chapter 3Stability Theory Overview
As the primary goal of this dissertation is to guarantee stability for systems withneuro-ontrollers, it is important to rigorously develop the various onepts of sta-bility. If a neural network is to be inorporated as part of the ontrol sheme, wemust asertain the requirements on the neuro-ontrollerk suh that signals propagat-ing through the system do not \blow up" to in�nity for reasonable system inputs. Inthis hapter, we present a thorough overview of the various aspets of stability withspeial emphasis on the omponents of stability theory ontributing to the stabilityproofs for our neuro-ontrollers in LTI systems.This hapter serves two purposes. First, we ollet the de�nitions and theoremsthat we will require to prove neuro-ontrol stability. We selet and organize those on-epts germane to neuro-ontrollers and present them in a oherent frame of referene.The seondary objetive of this hapter is to provide a high-level overview of stabili-ty. For theoretiians trained in lassial eletrial engineering, muh of this materialan be skimmed. For the mathematially literate non-engineer, this hapter providesenough of the fundamental parts of stability theory neessary for understanding theproofs we present for neuro-ontrol stability. Numerous referenes are ited so thatinterested readers may pursue a more omprehensive treatment of the material.In many ways, stability theory is muh like the three blind men who touh variousparts of an elephant and eah form widely di�erent onlusions about what must30



onstitute an elephant. Similarly, we an approah stability theory from a numberof di�erent ways, eah of whih seems to be uniquely distint from the others. How-ever, beause eah approah to stability theory onerns with the same fundamentalde�nitions, eah of these di�erent approahes an be shown to be roughly equivalent.Despite their equivalene, they do o�er a di�erent view of the stability of dynamisystems; eah approah has advantages over the others in some situations. Thus, thishapter will present a number of the more ommon treatments of stability. Whereappropriate, we will demonstrate the equivalene of these approahes or will diretthe reader to referenes showing the equivalene.The �rst three setions of this hapter introdue di�erent, but equivalent, interpre-tations of the basi stability de�nitions. Setion 3.2 lists the fundamental de�nitionsthat form the basis of stability theory. An equivalent but alternative formulation isprovided by Liapunov's diret method introdued in Setion 3.3. While de�nitionalstability and Liapunov stability o�er an \internal view" of stability, a third interpre-tation in Setion 3.4, referred to as BIBO stability, presents stability from a systeminput/output perspetive.The �nal three setions examine feedbak systems; the topis here are fundamentalto standard ontrol theory. In Setion 3.6, we present nominal stability for feedbaksystems with pure LTI omponents. Setion 3.7 builds upon feedbak stability toarrive at the robust stability of systems with non-LTI omponents. We present twotehniques within robust ontrol to arrive at stability guarantees for non-LTI systems:�-analysis tehniques of robust ontrol are based upon the strutured singular valuewhile integral quadrati onstraints (IQC) derive from Liapunov theory.3.1 Dynami SystemsWe begin by desribing a generi ontinuous-time dynami system. All of the re-sults in this hapter are extendible to disrete-time dynami systems; in fat, the31



implementation of a neural network ontroller will be on a digital omputer. Lineardynami systems are easily onverted between the ontinuous-time and disrete-timedomain. Additionally, ontinuous-time is the standard way of presenting stabilitytheory, thus we will follow that onvention here. There are several exellent texts onintrodutory ontrol theory. Most of the de�nitions in this setion are paraphrasedfrom [Rugh, 1996; Vidyasagar, 1978; Desoer and Vidyasagar, 1975℄; exeptions tothese referenes are ited diretly in the text.Consider the general system spei�ed by an n-dimensional state vetor, x(t), a-epting an m-dimensional input vetor u(t), and produing the `-dimensional outputvetor y(t). The dynamis of suh a system are desribed by the set of di�erentialequations: _x(t) = f1[t; x(t)℄ + g1[t; u(t)℄ (3.1)y(t) = f2[t; x(t)℄ + g2[t; u(t)℄ (3.2)where f1; f2; g1; and g2 are all ontinuous vetor funtions. To steer toward our goalof neuro-dynami ontrol stability, we immediately restrit ourselves to studying asubset of this most general system. Namely, we onentrate on autonomous systems,often referred to as time-invariant systems, in whih the funtions f1; f2; g1; and g2do not depend upon t. Also we restrit ourselves to stritly proper systems in whihg2 = 0. Thus, we arrive at: _x(t) = f1[x(t)℄ + g1[u(t)℄ (3.3)y(t) = f2[x(t)℄ (3.4)A vast majority of the researh in stability theory involves linear systems. Tra-ditionally, the study of nonlinear system stability has been an exerise in theoretialmathematis; the intratable nature of nonlinear system analysis yields little pratial32



guidelines for onstruting stable nonlinear systems. Sine linear system analysis istratable, a signi�ant body of applied researh has been developed for suh systems.In the remainder of this setion, we onentrate primarily upon linear, time-invariant(LTI) systems, returning to nonlinear systems only to note ontrasts.A linear, time-invariant system is governed by the di�erential equations:_x(t) = Ax(t) +Bu(t) (3.5)y(t) = Cx(t) +Du(t) (3.6)in whih A;B;C; and D are onstant matries of the appropriate dimensions andD = 0 for stritly proper systems. This situation is depited graphially in Figure 3.1.
x(t)  =  A x(t) + B u(t)

y(t)  =  C x(t) + D u(t)

u(t) y(t)Figure 3.1: LTI Continuous-time SystemAt this point we should make a brief omment about the existene and uniquenessof solutions to (3.5) where a solution is an expliit funtion for x(t). In seeking thesesolutions, we primarily onentrate on the \zero-input" ase given by:_x(t) = Ax(t) (3.7)The general solution to (3.7) is of the form x(t) = �(t; t0)x0, where �(t; t0) is knownas the homogeneous solution and also the state transition matrix. For the linearase given by (3.7) solutions typially exist and are unique. The mathematiallyinterested reader is direted to [Rugh, 1996℄ for a omplete analysis of the uniquenessand existene of �(t; t0). 33



Returning to the full input/output system of (3.5), we arrive at the ompletesolution given in (3.8). Notie the solution is linear in x0 and u(t), and is omposedof a zero-input response given as the �rst term on the right hand side and a zero-stateresponse in the integral portion of the right hand side.x(t) = C�(t; t0)x0 + Z tt0 C�(t; t0)Bu(�)d� (3.8)In most systems of pratial interest, the solution given in (3.8) annot be omput-ed analytially. Often we an reover an approximate solution via numerial methods;however, any onlusions we then draw regarding stability are not absolute. Despitethese diÆulties, we an still propose some useful stability properties by examiningthe state matrix A. In the next setion, we introdue various de�nitions of stabilityand look as the trivial ases in whih we an verify stability.3.2 Basi Stability De�nitions and TheoremsAgain, let us onsider the linear, time-invariant, ontinuous time dynami systemwith zero-inputs. This system is restated here in (3.9):_x(t) = Ax(t) (3.9)De�nition 1 We say that �x is an equilibrium point of (3.9) if_x(t) = A�x = 0 (3.10)
We an assume that this equilibrium point is the zero vetor (�x = 0) without lossof generality, beause we an perform a simple hange of oordinates to produe anequivalent system in whih �x = 0 without a�eting the stability analysis. This shiftsimpli�es the de�nitions and proofs onerning stability.34



Thus, for a system started in state x(t0) = x0 = 0 at time t0, we have thatx(t) = 0 for all t. An interesting question to ask is what happens if the system isstarted in a state that is some arbitrarily small deviation away from �x? Or if thesystem is urrently at state �x and is then perturbed to some nearby state, what is theresulting trajetory of x(t)? If the system is \stable", we would like to know that thesystem will settle into the equilibrium state or, at least, that the system will not movearbitrarily far away from the equilibrium point (will not blow-up). Before we jumpinto a mathematially formal statement of stability, we briey disuss the oneptof a norm. A norm is a metri to measure the size of something. We have normsfor vetors, time-varying signals, and matries. A formal mathematial desriptionof norms is given in [Skogestad and Postlethwaite, 1996℄. A ommon example of avetor norm is the 2-norm given askx(t)k2 = xT (t)x(t) (3.11)whih is also the inner produt of vetor and is sometimes written as kx(t)k withoutthe 2 subsript. Now we are ready to present our �rst set of stability de�nitions:De�nition 2 The equilibrium point 0 of the ontinuous-time LTI system given by(3.9) is stable at time t0 if for eah � > 0 there exists a Æ(�) > 0 suh thatkx(t0)k < Æ =) kx(t)k < � 8t � t0 (3.12)
Notie that this de�nition does not speify onvergene upon the �xed point. Itsimply states that given any distane �, we an �nd a starting point, x(t0) < Æ, suhthat the system remains within � of the �xed point for all time. An example of asystem that is stable is a simple linear system with purely imaginary eigenvalues; the35



trajetory is an orbit of �xed distane from the origin. Notie also that k k is anynorm on <n as they are all topologially equivalent [Vidyasagar, 1978℄.Often, this same de�nition is given in another formulation. An alternative butequivalent formulation is [Rugh, 1996℄:De�nition 3 The equilibrium point 0 of the ontinuous-time dynami LTI systemgiven by (3.9) is stable at time t0 if there exists a �nite onstant  > 0 suh thatkx(t)k < kx(t0)k 8t � t0 (3.13)
This de�nition is sometimes referred to as the boundedness result beause the normof x(t) is bounded by a multiple of the norm of the initial state x0. Consider  = Æ�to see ompatibility with De�nition 2.While stability, as stated in the above two de�nitions, implies that the trajetorywill not move arbitrarily far away from a �xed point, it does not imply that thetrajetory will onverge upon the �xed point. Here, we present a stronger stabilityde�nition possessing this onvergene behavior:De�nition 4 The equilibrium point 0 of the ontinuous-time dynami LTI systemgiven by (3.9) is asymptotially stable at time t0 if it is stable at time t0 and thereexists a Æ > 0 suh that kx0k < Æ =) limt!1 kx(t)k = 0 (3.14)

This stability de�nition requires that for all initial states lose enough to the�xed point, the system will onverge to the equilibrium point eventually. Asymptoti
36



stability is also referred to as exponential stability 1. An equivalent restatement ofthis de�nition is:De�nition 5 The equilibrium point 0 of the ontinuous-time dynami LTI systemgiven by (3.9) is asymptotially stable at time t0 if it is stable at time t0 and thereexists a  > 0 and � > 0 suh thatkx(t)k � e��(t�t0)kx0k t � t0 (3.15)
Thus, the trajetory of x(t) is not only bounded by a onstant  of the initial statebut also by an exponentially dereasing funtion e��(t�t0). This ensures that alltrajetories will onverge to the �xed point as t!1.These two de�nitions (and their subtle variations) form the ore of stability theoryfor LTI systems. In the time-invariant ase we onsider here, the analysis of linearsystems is fairly straightforward. The stability of these systems depends diretly onthe eigenvalues of the A matrix:Theorem 1 The ontinuous-time LTI dynami system given by (3.9) is stable i�Re(�i) � 0 where �i is an eigenvalue of A. That is, the real parts of the eigenvaluesmust be less than or equal to zero. Furthermore, the system is asymptotially stablei� Re(�i) < 0.Thus, asertaining the stability of an LTI system amounts to heking the real parts ofthe eigenvalues of the state matrix A. For the lass of linear, time-invariant dynamisystems, stability determination is rather straightforward.1To be preise, there are subtle di�erenes between asymptoti stability and exponential stability;but they are equivalent for the autonomous ase. See [Rugh, 1996℄ for more details.37



For linear, time-varying systems (LTV), however, the eigenvalue ondition is in-suÆient; instead, one must satisfy ertain onstraints on the solutions � of the dif-ferential equations. As stated previously, omputing � exatly is often an intratabletask; therefore, asertaining the stability of LTV systems is problemati. Liapunov'sdiret method, disussed in the next setion, provides an alternative way to arrive atstability that overomes these diÆulties.3.3 Liapunov's Diret MethodIn this setion, we outline a di�erent approah to determine the stability of aontinuous-time dynami system. It is important to note that we are not rede�n-ing our notion of stability; instead Liapunov's diret method is merely an alternativeway of arriving at the same onlusions regarding system stability: two di�erent pathsto the same destination (we are now the blind man pulling on the elephant's trunkinstead of its tail). Any system that is proven stable via Liapunov's diret methodwill also be stable aording to the de�nitions presented in Setion 3.2, but for manysystems, it is easier to reah the stability onlusions using Liapunov's method ratherthan meeting the requirements spei�ed in the de�nitions. Again, the de�nitionsin this setion are taken primarily from [Rugh, 1996; Vidyasagar, 1978; Desoer andVidyasagar, 1975℄.For this setion, we return our attention to the generi formulation for a linear,possibly time-varying, ontinuous-time, dynami system with no input/output sig-nals: _x(t) = A(t)x(t) (3.16)Liapunov's diret method (also known as Liapunov's seond method) uses a fun-tion de�ned on the state spae. If this funtion meets ertain riteria, then it isreferred to as a Liapunov funtion. 38



De�nition 6 Consider the ontinuous-time dynamial system given by (3.16) withan equilibrium point at �x. A funtion V de�ned on a region 
 (
 � <n) of the statespae whih inludes �x is a Liapunov funtion andidate if1. V is ontinuous and ontinuously di�erentiable.2. V (x) > V (�x) 8x 2 
; x 6= �xEssentially, a Liapunov funtion andidate is a \bowl-shaped" funtion with aunique minimum at the �xed point.De�nition 7 Consider the ontinuous-time dynamial system given by (3.16) with anequilibrium point at �x. A Liapunov funtion andidate, V , is a Liapunov funtionif _V (x) � 0 8x 2 
 (3.17)
A Liapunov funtion meets the requirements of being a andidate and it alsois monotonially non-inreasing along trajetories of x(t). Returning to our visualimage of the bowl funtion, x(t) indiates how the state x moves along the surfaeof the bowl aording to the dynami system given by(3.16). A Liapunov Funtion,then, has trajetories whih never move up the surfae of the bowl { they alwaysmove downward on the bowl surfae. It is also onvenient to think of V as an energyfuntion. In fat, for many physial systems, V is onveniently hosen to be thetotal energy of the system. The de�nition of a Liapunov funtion failitates severalstability theorems.Theorem 2 If V is a Liapunov funtion for the system spei�ed by (3.16), then thesystem is stable. Furthermore, if _V (x) < 0, then the system is asymptotially stable.39



The proof of this theorem is omplex and thus the reader is direted to [Rugh, 1996;Vidyasagar, 1978; Aggarwal and Vidyasagar, 1977℄ for various versions of the proof.Often, there is some onfusion in the literature as to whether the time-derivative of theLiapunov funtion (3.17) is non-positive (stability) or stritly negative (asymptotistability); when reading other texts, the reader should be aware of whih version ofLiapunov funtion the author assumes.One partiular hoie of Liapunov funtions is the square of the 2-norm. If wean be assured that kxk2 dereases with t, then we have satis�ed the requirementsfor asymptoti stability:V (x(t)) = kx(t)k2 = xT (t)x(t) (3.18)_V (x(t)) = ddtkx(t)k2 = _xT (t)x(t) + xT (t) _x(t) (3.19)= xT (t)[AT (t) + A(t)℄x(t) (3.20)(3.20) is atually a restritive version of a more general formulation. To arrive at themore general formulation, we reast (3.18) as a quadrati form whih is also referredto as a quadrati Liapunov form by:xT (t)Q(t)x(t) (3.21)We require that the quadrati Liapunov funtion, Q(t), be symmetri and positive-de�nite. It an be shown that these stipulations on Q(t) are equivalent to the on-ditions to the Liapunov andidate funtion as stated in De�nition 6. Taking thetime-derivative of the quadrati form, we arrive at:ddt [xT (t)Q(t)x(t)℄ = xT (t)[AT (t)Q(t) +Q(t)A(t) + _Q(t)℄x(t) (3.22)40



Theorem 3 The ontinuous-time dynamial system given by (3.16) is stable i��I � Q(t) � �I (3.23)AT (t)Q(t) +Q(t)A(t) + _Q(t) � 0 (3.24)where �; � are positive onstants. Furthermore, the system is asymptotially stable i�(3.24) is replaed by AT (t)Q(t) +Q(t)A(t) + _Q(t) � �I (3.25)where � is a positive onstant.These quadrati forms are yet another way to arrive at the same stability onlu-sions. As we shall see in Setion 3.9, quadrati forms provide general and powerfulanalysis tools for stability.In summary, Liapunov's diret method is an alternative way to onlude stabilityresults for a dynami system. The system may be of suÆient omplexity that a s-traight forward appliation of the de�nitions given in Setion 3.2 may be exeedinglydiÆult or impossible. This is mostly due to the fat that one must solve the dif-ferential equation (3.7) of the system in order to meet the de�nitional requirements.Instead, if one an �nd suitable Liapunov funtions for these systems, then one may beable to prove the stability of suh systems. However, there is no step-by-step methodwhih generates Liapunov funtions. Often, one must rely upon intuition and experi-ene to formulate Liapunov funtion andidates and then �nd the andidates (if any)whih meet the trajetory requirements to beome full Liapunov funtions. Despitethis limitation, Liapunov funtions have been found for a large number of dynamialsystems. A thorough treatment of the subjet an be found in [Vidyasagar, 1978℄.
41



3.4 Input-Output StabilityIn the previous two setions, we primarily onsider the notion of stability for the zero-input ase; these setions present suÆient onditions for the stability of systems withexternal inputs set to 0. In this setion, we return to the ase where external inputsare non-zero. As yet another view of stability, we an approah the topi by lookingat onditions on the input/output behavior of the system. For larity, we restate thelinear, time-invariant system with inputs and outputs here:_x(t) = Ax(t) +Bu(t) (3.26)y(t) = Cx(t) (3.27)De�nition 8 Consider the ontinuous-time, LTI system given by (3.26, 3.27). Thesystem is bounded-input bounded-output stable (BIBO) if there exists a �niteonstant � suh that for any any input u(k) we havesupt�t0 ky(t)k � � supt�t0 ku(t)k (3.28)
where sup stands for supremum: a variant of max with mathematially subtle dif-ferenes 2. This de�nition provides the familiar \bounded-input, bounded-output"(BIBO) stability notion: if the input signal is �nite, then the output signal must alsobe �nite. The onstant, �, is often alled the gain of the system. Using the 2-norm,we onsider BIBO in the pratial terms of energy. The ratio of the output signalenergy to the input signal energy is a �nite onstant (i.e. the energy gain is �nite);2Maximum represents the largest value while supremum is de�ned as the least upper bound { theatual bound may not be reahed but only approahed asymptotially [Skogestad and Postlethwaite,1996℄ 42



the system annot injet an in�nite amount of energy, and thus, is stable. A usefulanalogy is served by water in a sink. When the tap is running, energy is being addedto the system (the water will ontinue to swirl around the basin). When the tap isturned o� the water will eventually drain from the basin and the sink will settle toits equilibrium point of no energy (no water). If the amount of water added from thetap is �nite, then the amount of water draining from the basin will also be �nite; thesink annot produe water.Even though we have stated BIBO stability for an LTI system, there is nothingspei� about LTI that a�ets the de�nition of stability. In fat, the same de�nitionapplies equally to other systems suh as time-varying and nonlinear systems.In the next theorem about BIBO stability we use two tehnial terms from theontrol �eld: ontrollability and observability. We briey de�ne them here; a moredetailed de�nition an be found in [Skogestad and Postlethwaite, 1996; Rugh, 1996;Vidyasagar, 1978℄. Controllability is the ability to diret the system from any arbitrarystarting state, x1, to any arbitrary ending state, x2, in a �nite amount of time by onlymanipulating the input signal u(t). If it is not possible to diret the system in thismanor, then the system is said to be unontrollable. Similarly, if we an reonstrutthe system state, x(t), by wathing only the system output, y(t), then the system issaid to be observable. An unobservable system may have hidden dynamis that a�etinternal states of the system but do not a�et the system output. For our purposes,we require the system to be ontrollable and observable so that we an relate BIBOstability to \internal stability" as stated in the previous two setions.Theorem 4 Consider the (ontrollable and observable) LTI system given by(3.26,3.27). The system is asymptotially stable i� it is BIBO stable.We see that BIBO stability is mathematially equivalent to the asymptoti stabilitydisussed early in the de�nitions and in Liapunov's diret method. Intuitively thismakes sense. If we injet a �nite amount of energy into the system (kuk < 1), and43



the output energy of the system is �nite (kyk < 1), then neessarily the internalsignals of the system must asymptotially deay to 0. The BIBO perspetive de�nesstability in terms of the input/output behavior of the system. This is the �rst steptowards examining the more omplex stability arrangements of feedbak systems.3.5 Feedbak StabilityTo this point, we have been onsidering ontinuous-time LTI systems in isolation(refer bak to Figure 3.1). Most ontrol systems of interest are omposed of multipleLTI systems ombined in an array of fashions suh as parallel onnetions, serialonnetions and partiularly feedbak onnetions. Generally, LTI systems ombineto form other LTI systems. Figure 3.2 depits a typial feedbak arrangement.
G1

G 2

y1(t)

u2(t)

u1(t)
+

+
y2(t)Figure 3.2: Feedbak SystemThere are a multitude of theorems that guarantee the stability of this type ofsystem for partiular lasses of systems for G1 and G2. We begin with the mostgeneral formulation in whih there are no restritions on G1 and G2, then we intro-due additional stability proofs involving spei�, but ommon, restritions on thesesubsystems.The main theorem of this setion is the Small Gain Theorem. Suppose we de-termine that the systems, G1, and G2, are both individually BIBO stable with gainsof �1 = 2 and �2 = 5, respetively. Consider a �nite amount of energy injeted intothis system at input u1. System G1 will magnify the energy by a fator of 2. Next,44



system G2 will magnify the energy by a fator of 5. As the energy irulates aroundthe feedbak loop, it is easy to see that it will be magni�ed by 10 for eah passaround loop; the energy will grow without bound. Even though both systems, G1and G2, are BIBO stable, the feedbak interonnetion of the omponents renders theoverall system unstable. Thus, the onnetedness of the omponents requires furtherrestritions on the omponent gains to make the overall system stable. We formal-ize this notion with the following statement of the Small Gain Theorem [Desoer andVidyasagar, 1975℄.Theorem 5 Consider the system depited in Figure 3.2. The equations of this systemare given by: y1 = G1(u1 + y2) (3.29)y2 = G2(u2 + y1) (3.30)Suppose that G1 and G2 are ausal and BIBO stable systems:kG1e1k � �1ke1k+ �1 (3.31)kG2e2k � �2ke2k+ �2 (3.32)If �1�2 < 1 then,ky1k � �1ke1k � �1(ku1k+ �2ku2k+ �2 + �2�1)(1� �1�2) (3.33)ky2k � �2ke2k � �2(ku2k+ �1ku1k+ �1 + �1�2)(1� �1�2) (3.34)Although (3.33) and (3.34) are somewhat omplex, this theorem essentially statesthat if the input energy in u1 and u2 is �nite and the loop gain is less than unity,then the output energy of y1 and y2 is also �nite. The small gain theorem is a very45



broad statement about feedbak system stability. It has been stated and proved inmany di�erent formulations. Several referenes provide this and other formulations inmore detail [Desoer and Vidyasagar, 1975; Vidyasagar, 1978; Megretski and Rantzer,1997a; Megretski and Rantzer, 1997b℄.3.6 Nominal StabilityIn the previous four setions, we have addressed stability from a mathematiian'sperspetive. While this perspetive is both valid and useful, a ontrol engineer astsa di�erent interpretation on stability. The engineer's perspetive addresses spei�systems enountered frequently in ontrol analysis and design. In this setion, weremove our mathematiians hat and replae it with that of the engineer. We examinestability from the utility of ontrol analysis.
-

r
Controller

K
Plant

G
+

e u y

Figure 3.3: Typial SystemConsider the dynami system typially enountered by a ontrol engineer as shownin Figure 3.3. Notie that this diagram ould easily be reast into the feedbakarrangement of Figure 3.2; we simply ombine the series bloks of the ontroller, K,and the plant, G, to arrive at G1. The feedbak system, G2, is a unity gain. Weould then apply the small gain theorem to prove stability for a partiular ontrollerand plant. However, the small gain theorem is a rather blunt tool to apply in thisase; more preise stability tools have been developed for this spei� arrangement,beause it is enountered so frequently.First, the system in Figure 3.3 is typially expressed in three di�erent represen-tations: the state spae equation, a time funtion, and the transfer funtion. The46



state spae representation is a set of di�erential equations desribing the behaviorof a system; this is the representation that we have been dealing with so far in thishapter (see Equation 3.5 for an example). In simpler systems, we an solve the set ofdi�erential equations to obtain an exat solution to the system. This solution is thetime funtion representation. Both the state spae and time funtion representationsare expressions in the time domain. In ontrast, the transfer funtion representationexpresses the system in the frequeny domain. One must use the Laplae transformto move bak and forth between the two domains.To illustrate the three representations, we show an example system in all threeformulations. Consider the system in Figure 3.4. In the top portion of this �gureis the ontrol system of Figure 3.3 with a spei� ontroller and plant. We drawa dotted box around this ontrol system and ompute the transfer funtion as seenfrom input r to output y. This is depited in the lower portion of Figure 3.4.
-

r
Controller Plant

+
e u

K = 1 G = 1/s

P

P = 1 / ( s + 1 )

Systemr y

y

Figure 3.4: Example System
Most ontrol engineering analysis is performed in the frequeny domain; hene,47



we start here. The ontroller, K(s), is unity and the plant, G(s), is an integratorexpressed as: K(s) = 1 (3.35)G(s) = 1s (3.36)where s is the Laplae variable (frequeny). We ombine these systems into the open-loop funtion, L(s) whih is the system with the feedbak path removed. In the timedomain, `(t), would be omputed with a messy onvolution integral; in the frequenydomain, however, L(s) is omputed by multipliation.L(s) = K(s)G(s) = 1s (3.37)Mason's Gain formula allows us to ompute the overall transfer funtion of the system(with the feedbak path added) [Phillips and Harbor, 1996℄:P (s) = L(s)1 + L(s) = 1s + 1 (3.38)The transfer funtion is a onvenient representation beause it failitates easy om-putation of the system output, Y (s), via multipliation with the system input, R(s):Y (s) = P (s)R(s) (3.39)The attrativeness of the transfer funtion's frequeny domain approah arises fromthe easy multipliation used to manipulate systems and ompute outputs.We use the inverse Laplae transform to obtain the time-domain response forP (s). 48



P (s) = 1s+ 1 InverseLaplae! y(t) = e�ty(t0) + Z t0 e��r(t� �)d� (3.40)where the right hand side is reognized as the standard solution to the di�erentialequation; this solution is omposed of the zero-input response and the onvolutionintegral for the zero-state response.The equivalent state spae representation is given as:_y(t) = Ay(t) +Br(t) = �y(t) + r(t) (3.41)Stability of these systems an be determined in a number of ways. Beause thesystem is LTI, the eigenvalues of the state matrix indiate stability (see Theorem 1).Here we have only one eigenvalue (� = �1) whih has a negative real portion; thusthe system is stable [Rugh, 1996℄.However, we often do not possess the state spae representation and it may bediÆult to ompute this from the transfer funtion. Instead, one an examine thepoles of the transfer funtion whih are the zeros in the denominator of the transferfuntion. If the zeros all lie in the left-half omplex plane (real part is negative), thenthe system will be stable. Here we see that the zero of s+ 1 is s = �1 and hene thesystem is stable [Phillips and Harbor, 1996℄.A typial ontrol problem involves devising a ontroller that maximizes the per-formane (minimum traking error) while providing a stable feedbak system. Thetwo main approahes are numerial and graphial. Numerial tehniques suh asH2 and H1 optimal ontrol rely upon omputers to �nd a ontroller to optimize apartiular matrix norm of the system [Skogestad and Postlethwaite, 1996℄. The artof the numeri methods onerns devising the appropriate matrix norm to aptureboth the stability and performane riteria. The graphial tehniques, often alledloop-shaping, depit the system visually [Phillips and Harbor, 1996; Skogestad and49



Postlethwaite, 1996℄. The stability and performane properties of the system an beseen by a well-trained ontrol engineer who adjusts the ontroller to better math adesired graphial feature. Unlike the numerial methods, loop-shaping is restritedto SISO (Single-Input, Single-Output) systems beause higher order MIMO (Multi-Input, Multi-Output) systems annot be portrayed graphially [Phillips and Harbor,1996℄.These two tehniques form the basis for muh of the voluminous history of on-trol theory. However, the tools of robust ontrol have reently emerged to addressweaknesses in these ontrol design tehniques. In the next setion, we outline an im-portant limitation with traditional ontrol and examine how robust ontrol overomesthis diÆulty.3.7 Robust StabilityThe ontrol engineer designs ontrollers for physial systems. These systems oftenpossess dynamis that are diÆult to measure aurately suh as frition, visous drag,unknown torques and other dynamis. Furthermore, the dynamis of the system oftenhange over time; the hange an be gradual suh as when devies wear or new systemsbreak in, or the hange an be abrupt as in atastrophi failure of a subomponentor the replaement of an old part with a new one. As a onsequene, the ontrolengineer never ompletely knows the preise dynamis of the system.Modern ontrol tehniques rely upon mathematial models. It is neessary toharaterize the system mathematially before a ontroller an be designed. A math-ematial model of the physial system is onstruted, the ontroller is designed for themodel, and then the ontroller is implemented on the physial system. If there aresubstantial di�erenes between the model and the physial system, then the ontrollermay operate with ompromised performane and possibly be unstable. The situationis exaerbated beause we typially require that the model be LTI; thus, the known,50



nonlinear dynamis of the system annot be inluded in the model. This problemof di�erenes between the model and the physial system is alled the robustnessproblem. A robust ontroller is one that operates well on the physial system despitethe di�erenes between the design model and the physial system.Traditional design methods (loop-shaping and numeri methods) are inadequateto deal with the robustness problem. Beause it is graphial, loop-shaping an a-tually overome model di�erenes. Appropriate fudge-fators an be inorporatedinto ontroller design making loop-shaping robust to a ertain extent. However, thegraphial tehniques are on�ned to SISO (single-input, single-output) systems; thisis a major limitation as most ontrol designs are MIMO (multiple-input, multiple-output). Numeri optimization methods are inadequate beause they design tightlyaround the model; numeri tehniques exploit the dynamis of the model in order toahieve the best ontrol performane. Beause these exploited dynamis may not bepresent in the physial system, the performane and stability of the ontroller an bearbitrarily poor when the ontroller is implemented on the physial system.Robust ontrol overomes this obstale by inorporating unertainty into themathematial model. Numerial optimization tehniques are then applied to themodel, but they are on�ned so as to not violate the unertainty regions. Whenompared to the performane of numeri optimization tehniques, robust designstypially do not perform as well on the model (beause the unertainty keeps themfrom exploiting all the model dynamis). However, while the numeri optimizationtehniques often perform very poorly on the physial plant, the performane of therobust ontroller on the physial plant is similar to its performane on the model.The key to robust designs is haraterizing the unertainty and adding it to themodel in the appropriate ways. Consider Figure 3.5 in whih unertainty has beenadded to the system. The unertainty blok is a transfer funtion (or equivalentlya state spae representation) that aptures the unmodeled dynamis of the system.51



Note, even though we have depited only one unertainty blok, models often ontainmultiple unertainty bloks to apture unmodeled dynamis in di�erent parts of thesystem.
-

r
Controller Plant

+
e u

K = 1 G = 1/s

Uncertainty

y

Figure 3.5: Control System with UnertaintyA full example of a robust ontrol design is given in Chapter 6 with the distillationproess example to motivate the need for robust ontrol designs and illustrate theadvantages of robust ontrol over numeri optimization tehniques. More detail onrobust ontrol is found in [Skogestad and Postlethwaite, 1996; Zhou and Doyle, 1998;Doyle et al., 1992℄.After the appropriate unertainty bloks have been added, the system is on-densed so that all the unertainty is grouped together in one blok, and all the LTIomponents are grouped together in a seond blok. Simple operations on ombiningsystems enable us to form this two sub-system formulation. Suh an arrangementis depited in Figure 3.6 where M represents the known LTI subsystem, and � rep-resents the unertain portion of the system. This arrangement belongs to a generallass of system on�gurations known as linear frational transforms (LFTs). LFTsare a framework strutured to failitate system analysis.One the system has been posed as an LFT with LTI in one blok and unertaintyin the other blok, then we an apply a number of tools to determine the stability ofsuh a system. Two of these tools are �-analysis and IQC-analysis. We present thebasis of �-analysis in the next setion and develop the IQC method in Setion 3.9.52



MFigure 3.6: M-� System Arrangement (as LFT)3.8 �-analysis�-analysis is a tool used to takle robust ontrol problems in whih the unertaintyis omplex and strutured [Balas et al., 1996; Pakard and Doyle, 1993; Young andDahleh, 1995℄. The primary parts of �-analysis are presented here. More detaileddesriptions are available in [Balas et al., 1996; Pakard and Doyle, 1993; Youngand Dahleh, 1995; Skogestad and Postlethwaite, 1996; Zhou and Doyle, 1998; Doyleet al., 1992℄. A traditional introdution to �-analysis onsists of two parts. In the�rst part, we de�ne a matrix funtion, �, and disuss ways to ompute it; this �rstpart is an exerise in linear algebra. In the seond part of the standard presentationof �-analysis, we show how the linear algebra result an be used to asertain thestability of dynami systems. We �rst begin by de�ning � in the ontext of a matrixfuntion.
M

u v

Figure 3.7: M-� System ArrangementConsider the two bloks interonneted in Figure 3.7 where M and � are omplexmatries. Again, we will later relate these bloks to dynami systems but for nowwe onsider them soley as interonneted matries for the purpose of exploring their53



mathematial properties. We plae the following restritions on M and �. Let Mbe an nxn omplex blok: M 2 Cnxn. We de�ne � to be a diagonal omplex blokparameterized by a set of integers (d1; d2; : : : ; dk; f1; f2; :::; f`). � onsists of two parts.The �rst part of � is a series of k identity matries multiplied by a onstant. Thedimension of eah identity matrix is dixdi and the onstant for eah is di. Theseidentity matries are plaed along the upper left diagonal of �. The seond part of� is a series of ` omplex bloks eah of dimension fjxfj. These full omplex bloks,denoted by Æfj , are plaed along the lower diagonal of �. Formally, � is the set ofall diagonal matries suh that� = fdiag[1Id1 ; :::; k; Idk ; Æf1 ; :::; Æf`℄g; (3.42)di 2 C; Æfi 2 Cfixfi; (3.43)kXi=1 dk + X̀i=1 fi = n: (3.44)As an example, onsider one partiular element of � with n = 6 parameterized by(d1 = 3; d2 = 1; f1 = 2). This element of � has two identity matries (we will use1 = 5+ i for the �rst onstant and 2 = 2 for the seond onstant); the dimension ofthe �rst identity matrix is d1xd1 = 3x3 and the seond has dimension d2xd2 = 1x1.These two identity matries are plae along the upper left diagonal of �. Then wehave one omplex blok of dimension f1xf1 = 2x2.26666664 5 + i 0 0 0 0 00 5 + i 0 0 0 00 0 5 + i 0 0 00 0 0 2 0 00 0 0 0 2:1� 0:1i 5i0 0 0 0 46:8 �7 + 3i
37777775 (3.45)

It is important to note that the above example is a partiular element of �; reall �is atually de�ned as the set of all matries meeting the onditions of the parameter54



set (d1; d2; : : : ; dk; f1; f2; :::; f`). Also note that � is \blok diagonal" meaning thatthere are sub-bloks within � that oupy the diagonal of �.De�ne ��(�) to be the largest singular value of �; this is the largest ampli�ationpossible by the matrix. Finally, we arrive at the fundamental de�nition and theoremfor �-analysis.De�nition 9 The omplex strutured singular value, ��(M), is the size of thesmallest � whih makes I �M� singular. It is de�ned as:��(M) = 1min� f��(�)j det(I �M�) = 0g (3.46)
��(M) = 0; if no � makes I �M� singular: (3.47)

Before we onlude the linear algebra part and begin the system stability analysispart, we briey disuss the omputation of �. For the vast majority of \interesting"M matries an exat omputation of � is not possible. Instead we ompute lower andupper bounds. A well known property of � is given by the following theorem [Pakardand Doyle, 1993; Skogestad and Postlethwaite, 1996℄:Theorem 6 For the feedbak system in Figure 3.7,�(M) � ��(M) � ��(M) (3.48)
where �(M) is the spetral radius (the maximum eigenvalue), and ��(M) is the largestsingular value. Despite the diÆulties in omputing �, the omputation of both �(M)55



and ��(M) is omparatively simple. However, these two bounds are not generally verytight and thus are not partiularly useful in this form. The trik is to exploit thediagonal struture of � in order to tighten these bounds. We employ a saling matrixD to replaeM with DMD�1. For di�erent lasses of matries D, this multipliationhanges both �(M) and ��(M), but does not a�et ��(M). See [Pakard and Doyle,1993℄ for the detailed restritions on D. From the lass of permissable D matries,we hoose a spei� matrix to minimize the upper bound of �� and from a di�erentlass we selet a di�erent saling matrix to maximize the lower bound of �. Note,the matries for maximizing the lower bound and minimizing the upper bound aredi�erent and there are di�erent restritions on the lass of eah matrix. Fortunately,�nding the optimal D matries for either bound is a linear matrix inequality (LMI)problem that is easily solved in polynomial time [Gahihet et al., 1995℄. With thesesaled bounds, we are typially able to approximate � quite tightly.At this point, we have presented a mathematial de�nition of � in terms of amatrix funtion and we have shown how to approximate � using upper and lowerbounds. Now we turn to the seond part of � involving the appliation of the matrixfuntion to the stability analysis of systems. We apply a variant of the small gaintheorem to prove that this system is stable given the restritions onM and �. Then,we show that this arrangement an be formed for any LTI system with a spei� typeof unertainty.The de�nition of � ( De�ntion 9 ) yields an immediate stability result. A variantof the small gain theorem employs � to haraterize the losed-loop gain of the sys-tem. The importane of this appliation of � is learly and onisely explained byDoyle [Pakard and Doyle, 1993℄; thus, I quote his explanation here:It is instrutive to onsider a \feedbak" interpretation of ��(M) at thispoint. Let M 2 Cnxn be given, and onsider the loop shown in Fig-ure 3.7. This piture is meant to represent the loop equations u = Mv,56



v = �u. As long as I �M� is non-singular, the only solutions u, v tothe loop equations are u = v = 0. However, if I �M� is singular, thenthere are in�nitely many solutions to the equations, and norms kuk, kvkof the solutions an be arbitrarily large. Motivated by the onnetionswith stability of systems, we will all this onstant matrix feedbak sys-tem \unstable". Likewise, the term \stable" will desribe the situationwhen the only solutions are identially zero. In this ontext then, ��(M)provides a measure of the smallest strutured � that auses \instability"of the onstant matrix feedbak loop. The norm of this \destabilizing" �is exatly 1=��(M).There are atually many di�erent \avors" of stability theorems involving �; eahvariation measures a slightly di�erent system property and arrives at a di�erent sta-bility result. The result of eah theorem is a � stability test that involves omputing �for a spei� part of the perturbed system. We summarize one of the more prominent�-stability theorems [Pakard and Doyle, 1993℄:Theorem 7 �-analysis stability theoremConsider the linear system given by:24 xk+1errk+1uk+1 35 = 24 M11 M12 M13M21 M22 M23M31 M32 M33 3524 xkdkvk 35 (3.49)vk = �uk (3.50)� = � �1 �2 � (3.51)whih is depited in Figure 3.8.The following are equivalent:1. The dynami system is stable,2. ��S(M) < 1 , 57



3. max�2[0;2�℄ ��P (L(ej�In;M)) < 1.
M

x x

err d

u v

k+1 k

k+1 k

k+1 k

Figure 3.8: �-analysis System ArrangementThe omplete analysis and proof for the �-analysis stability theorem are availablein [Pakard and Doyle, 1993℄. The diret result of Theorem 7 are two �-analysisstability tests. Beause they are so entral, we restate them here:��S(M) < 1; (3.52)max�2[0;2�℄��P (L(ej�In;M)) < 1: (3.53)Equation 3.52, ommonly known as the state spae � test, measures the struturedsingular value for a spei� subomponent of M [Pakard and Doyle, 1993℄. If � isless than unity, then the system represented by M is robustly stable. Equation 3.53,referred to as the frequeny domain � test, measures a slightly di�erent aspet of thesystem. Again, if the � < 1 ondition is satis�ed, then robust stability is ahieved.The L notation refers to an LFT formed from the nominal ontrol system and theunertainty bloks. More details an be found in [Pakard and Doyle, 1993℄.As disussed previously, � annot be omputed diretly. Instead, upper and lowerbounds for � are used as an approximation. We are partiularly onerned withthe upper bounds as these provide limitation on the size of the perturbation. Thefollowing three upper bounds are used for atual omputations:58



infDs ��(D1=2s MD�1=2s ) < 1; (3.54)infDp max�2[0;2�℄ ��[D1=2p (L(ej�In;M)D�1=2p ℄ < 1; (3.55)max�2[0;2�℄ infDp ��[D1=2p (�)L(ej�In;M)D�1=2p (�)℄ < 1; (3.56)All of the above omputations use the maximum singular value, ��, as the upperbound approximation to �. Reall, that the singular value an be modi�ed via salingmatries, D, in order to tighten the upper bound. This allows us to approximate �quite tightly. Equation 3.54 omputes the upper bound for the state spae � test ofEquation 3.52. For the frequeny domain � test of Equation 3.53, there are atuallytwo di�erent upper bound approximations. Equation 3.55 employs onstant D salingmatries while Equation 3.56 bases its alulations on saling matries that vary asa funtion of frequeny.The distintion between Equation 3.55 and Equation 3.56 is ritial beause eahtest has restritions on the type of strutured unertainty inluded in �. Spei�ally,the frequeny varying upper bound test of Equation 3.56 requires that the unertaintyaptured by � be LTI while the stronger � tests of Equation 3.54 and Equation 3.55allow unertainty that is both time-varying and \bounded" nonlinear. The Matlab�-analysis toolbox implements the frequeny varying � test, and thus, is appliableonly to systems with LTI unertainty. At the moment, this is the only available �test implemented in software. The stronger versions of � tests are not implementedin available software.For the work in this dissertation, we use the � tests to asertain the stability ofsystems ontaining a neuro-ontroller. The neural network ontroller has both time-varying and nonlinear dynamis. As a result, the stability guarantees of the Matlab �test do not apply to our neuro-ontrol system. Playing the role of Devil's Advoate,we an onstrut systems with non-LTI dynamis that pass the frequeny-varyingtest of Matlab's �-analysis toolbox, but are atually quite unstable.59



While the exat mathematial guarantees of �-analysis stability do not hold forour neuro-ontrol systems, the �-analysis toolbox does still play an important role forour work. For the neuro-ontrol systems onsidered in this dissertation, the �-analysistest works well as an indiator of system stability. Despite the fat that our non-LTIunertainty violates the strit mathematial assumptions in the � stability test, inpratie, the � stability test serves as a very good indiator of our system stability.Thus, we use Matlab's �-analysis toolbox as an approximation of system stability.In the next setion, we introdue a di�erent stability tool, IQC. The stability testwith IQC does apply to our non-LTI unertainty, and thus, we do have a formalmathematial guarantee of stability. We also inlude the �-analysis stability testbeause this is the primary ommerial stability software urrently on the market,it is well-known among researhers in the �eld, it does work aurately in pratiefor our systems, and it is likely that a stronger, non-frequeny varying, ommerial,produt will be added to the Matlab toolbox in the future.3.9 IQC StabilityIntegral quadrati onstraints (IQC) are a tool for verifying the stability of systemswith unertainty. In the previous setion, we applied the tool of �-analysis to deter-mine the stability of suh a system. IQC is a di�erent tool whih arrives at the samestability results. In this setion, we present the basi idea behind IQCs. The inter-ested reader is direted to [Megretski and Rantzer, 1997a; Megretski and Rantzer,1997b; Megretski et al., 1999℄ for a thorough treatment of IQCs.Consider, one again, the feedbak interpretation of a system as shown in Fig-ure 3.9. The upper blok, M , is the known LTI omponents; the lower blok, � isthe unertainty.De�nition 10 An integral quadrati onstraint (IQC) is an inequality desrib-ing the relationship between two signals, w and v. The relationship is haraterized60



+

+

M
w

v f

e

Figure 3.9: Feedbak Systemby the matrix � as: Z 1�1 ���� v̂(j!)ŵ(j!) ������(j!) ���� v̂(j!)ŵ(j!) ���� d! � 0 (3.57)where v̂ and ŵ are the Fourier Transforms of v(t) and w(t). We now summarize themain stability theorem of IQC [Megretski and Rantzer, 1997a℄.Theorem 8 Consider the interonnetion system represented in Figure 3.9 and givenby the equations v =Mw + f (3.58)w = �(v) + e (3.59)Assume that:� The interonnetion of M and � is well-posed. (i.e., the map from (v; w) !(e; f) has a ausal inverse)� The IQC de�ned by � is satis�ed.� There exists an � > 0 suh that���� M(j!)I ������(j!) ���� M(j!)I ���� � ��I (3.60)61



Then the feedbak interonnetion of M and � is stable.A few omments are in order. First, the utility of this method relies upon �nd-ing the orret IQC, �, whih aptures the unertainty of the system. In general,�nding IQCs is a diÆult task that is beyond the grasp of most engineers who wishto apply this method. Fortunately, a library of IQCs for ommon unertainties isavailable [Megretski et al., 1999℄; more omplex IQCs an be built by ombining thebasi IQCs.Seond, the omputation involved to meet the requirements of the theorem isnot diÆult. The theorem requirements also transform into an LMI (linear matrixinequality). The LMI is a onvex optimization problem for whih there exist fast,ommerially available, polynomial time algorithms [Gahihet et al., 1995℄.Third, the IQC does not rede�ne stability. One again the IQC is a tool to arriveat the same stability onlusions as other tehniques. The inventors of IQC readilydemonstrate that IQC is a generalization of both Liapunov's diret method and thesmall gain theorem; a slightly more omplex analysis shows the onnetion to �-analysis. The interested reader an �nd these details in [Megretski and Rantzer,1997a; Megretski and Rantzer, 1997b℄.

62



Chapter 4Stati and Dynami StabilityAnalysis
In the previous hapter, we onstruted an inreasingly sophistiated notion of sta-bility by progressing from simple de�nitional stability, through Liapunov stability,to input/output stability and then �nally system stability with �-analysis and IQC-analysis. This hapter builds upon this previous framework to develop our maintheoretial results. First we present a method to determine the stability status of aontrol system with a stati neural network, a network with all weights held onstant.We prove the that this method identi�es all unstable neuro-ontrollers. Seondly, thishapter presents an analyti tehnique for ensuring the stability of the neuro-ontrollerwhile the weights are hanging during the training proess. We refer to this as dy-nami stability. Again, we prove that this tehnique guarantees the system's stabilitywhile the neural network is training.It is ritial to note that dynami stability is not ahieved by applying the statistability test to the system after eah network weight hange. Dynami stability isfundamentally di�erent than \point-wise" stati stability. For example, suppose thatwe have a network with weight vetor W1. We apply the stati stability tehniques ofthis hapter to prove that the neuro-ontroller implemented by W1 provides a stablesystem. We then train the network on one sample and arrive at weight vetor W2.Again we an demonstrate that the stati system given by W2 is stable. However,63



this does not prove that the system, while in transition from W1 to W2, is stable. Werequire the additional tehniques of dynami stability analysis in order to formulatea reinforement learning algorithm that guarantees stability throughout the learningproess. We inlude the stati stability ase for two important reasons. The statistability analysis is neessary for the development of the dynami stability theorem.Additionally, the existing researh literature on neural network stability addresses on-ly the stati stability ase; here, we make the distintion expliit in order to illustratethe additional power of a neuro-ontroller that solves the dynami stability problem.This hapter atually presents two di�erent variations of stati and dynami sta-bility, one variation using �-analysis and the other variation using IQC-analysis.While these two tools arrive at roughly equivalent deisions regarding system sta-bility, the spei� implementation details are di�erent. We inlude both stabilitytools, �-analysis and IQC-analysis, for several reasons. The �-analysis stability testis bene�ial beause it is well-known among researhers in robust ontrol and there isa ommerial implementation available through Matlab. As disussed in Setion 3.8,there are atually many di�erent stability tests based upon the strutured singularvalue, �. Some of these tests allow non-LTI unertainty funtions while other variantsof the � test are restrited to LTI unertainty funtions; beause the �-analysis sta-bility test implemented in Matlab requires LTI unertainty while our neuro-ontrollerpossesses non-LTI unertainty, we invalidate the mathematial guarantees of stabilitywhen we use the ommerial Matlab produt with our neuro-ontrol system. How-ever, for the type of systems we enounter, the Matlab �-analysis stability test doeswork well in pratie. Thus, it serves as a good approximate indiator of systemstability. It is likely that other � stability tests not requiring LTI unertainty maybeome ommerially available in the near future. Therefore, we inlude a �-analysisversion of the stability \proofs" here and we use �-analysis as a stability tool in ourase studies. We inlude IQC-analysis beause it is appliable to non-LTI unertainty.64



With IQC-analysis, we do ahieve the strit mathematial guarantees of system stabil-ity. The drawbak of IQC-analysis is that the software is not ommerially available;there is an unsupported beta version available from MIT [Megretski and Rantzer,1997a; Megretski and Rantzer, 1997b; Megretski et al., 1999℄. Our experienes withexperiments in the ase studies indiate that IQC-analysis is omputationally moretime-onsuming than �-analysis.In summary, the �-analysis version of the Stati and Dynami Stability Theoremspresented in this hapter are valid; however, our appliation of the theorems is awedbeause we use the Matlab �-analysis toolbox whih does not permit non-LTI uner-tainty. For the IQC-analysis, both the theorems and our appliation of the theoremsare valid for the non-LTI unertainty.The remainder of this hapter is organized as follows. In Setion 4.1, we disussthe general approah and framework for proving the stability of systems with neuralnetwork ontrollers. This hapter then divides into two trends; one is based on using�-analysis as the underlying tool for proving stability while the other trend utilizesIQC-analysis. Setion 4.2 disusses how to onvert the neural network into a formatompatible with �-analysis. Then Setion 4.3 and Setion 4.4 introdue and provethe Stati Stability Theorem and the Dynami Stability Theorem based upon the�-analysis tool. The other trend onerning IQC-analysis has three orrespondingsetions. Setion 4.5 shows how to onvert the neural network into the IQC for-mat. Setion 4.6 and Setion 4.7 present and prove the Stati and Dynami StabilityTheorems based upon IQC-analysis. Finally, the two trends onverge as Setion 4.8skethes the stable learning algorithm based upon the Dynami Stability Theorem.4.1 An Overview of the Neural Stability AnalysisStati and dynami stability proofs are developed by onstruting and analyzing amathematial model of the plant. As disussed in Setions 3.6 and 3.7, the design65



engineer typially onstruts an LTI model of the plant before building a ontroller.The plant model is an LTI (linear, time-invariant) system beause a vast body ofontrol researh and software tools are available to aid in the onstrution of stable andhigh-performing ontrollers for LTI systems. Conversely, the design of ontrollers fornon-LTI systems is greatly ompliated by the prohibitively omplex dynamis and,therefore, the lak of analytial tools. If the engineer desires stability assuranes, thehoie of a non-LTI ontroller is non-existent for all but the most trivial systems.Adding the neural network to the system introdues nonlinearity. The nonlinearityis a desirable feature beause the neural network derives muh of its omputationalpower from the nonlinearity. However, the introdution of nonlinearities prohibits usfrom applying the theory and tehniques based on LTI systems. Even if we restritourselves to linear networks (a major sari�e in the omputational ability of a neuralnetwork), we still enounter diÆulties as the network weights hange during learning;this system is time-varying, and still violates the LTI assumption.Thus, we arrive at the dilemma that has impeded progress in neuro-ontrol to date.We desire the nonlinear omponent of neural networks for their ability to implementbetter ontrollers, but we require the system be LTI so that we an employ ouranalysis tools onerning stability. We also need to allow the network weights tohange during learning { a further violation of the LTI priniple. In this hapter,we �rst present a tehnique to overome the stati stability problem; we permit thenonlinearity of a neural network while still guaranteeing stability. We then present aseond tehnique to solve the dynami stability problem so that neural networks withtime-varying weights are guaranteed to be stable.In this dissertation, we use the tehniques of robust ontrol to propose a solutionto both of these problems. As detailed in Setion 3.7, robust ontrol enables thedesign of ontrollers for systems that ontain unknown nonlinearities and time-varyingdynamis. This is ahieved by identifying and haraterizing the non-LTI omponents66



and then overing them with an unertainty funtion. The robust ontrol designtehniques build ontrollers that remain stable for not only the LTI system, butalso any unknown non-LTI omponents of the system existing within the unertaintyregion.We reate two \versions" of the neuro-ontrol system. The �rst version ontainsthe neural network with all of its nonlinear and time-varying features. We refer to thisas the applied version of the neuro-ontroller beause it is this version that is atuallyimplemented as our ontrol sheme. The seond version is a purely LTI model withthe non-LTI parts of the neural network onverted to unertainty bloks. This version,the testable version, is used only for the robustness tests to determine the stabilitystatus of the applied version. If we hoose the unertainty funtions orretly, thenstability guarantees of the testable version imply stability guarantees for the appliedversion of the neuro-ontrol system. The next setion addresses the problem of howto over the neural network's nonlinearity with an appropriate unertainty funtion;that is, we disuss how to derive the testable version from the applied version of theneuro-ontroller. The analysis of the next setion is spei� to the �-analysis tools.Setion 4.5 provides the same onversion for the IQC-analysis stability tool.4.2 Unertainty for Neural Networks: �-analysisThe neural network possesses two violations of the LTI priniple. The �rst violation isthe nonlinear ativation funtion of the network's hidden layer. The seond violationis the time-varying weight hanges that the network inurs during training. If we areto inlude a neural network as part of the ontrol system, then we must \onvert" thenon-LTI parts of the neuro-ontroller. In this setion, we address the �rst violation.We temporarily ignore the seond violation of time-varying dynamis by stipulatingthat the networks' weights remain �xed. Spei�ally, this setion disusses the mod-i�ations we make on the applied version of the neuro-ontroller in order to onvert67



it to the testable version of the neuro-ontroller in whih the nonlinear hidden unitsare overed with unertainty funtions. Again, the analysis of this setion assumesthat �-analysis is the intended stability tool. Refer to Setion 4.5 to see a parallelonversion for the IQC-analysis stability tool.At this point, we interjet a few omments about arhitetural deisions regardingthe neural network. There are a multitude of neural networks from whih we anselet; here we have hosen a ommonly used arhiteture with two feed forwardlayers, a nonlinear hyperboli tangent funtion in the ativation layer, and a linear(no ativation funtion) output layer. We have made further stipulations regardingthe number of hidden units (h) and the number of layers (2). We need to be preisein sorting out our motivations for seleting a partiular arhiteture. Spei�ally, weneed to indiate whih arhiteture hoies are a result of the requirements of thestability theory, the desire to hoose ommon and simple arhitetures, and the needto selet an arhiteture that works well in pratie for a partiular problem. Forthe moment, we simply present the neural network arhiteture. We disuss why andhow we arrived at this arhiteture in Chapter 5.Let us begin with the onversion of the nonlinear dynamis of the network's hiddenlayer into an unertainty funtion. Consider a neural network with input vetore = (e1; :::; en) and output vetor û = (û1; :::; ûm). The symbols e and û are hosenintentionally to be onsistent with the network used as a ontroller in other hapters(the network input is the traking error e = r � y, and the network output is theappended ontrol signal û). The network has h hidden units, input weight matrixWhxn, and output weight matrix Vmxh where the bias terms are inluded as �xedinputs. The hidden unit ativation funtion is the ommonly used hyperboli tangentfuntion. The neural network omputes its output by:�j = Pni=1Wi;j ei;ûk = Phj=1 Vk;j tanh(�j): (4.1)68



We an write this in vetor notation as� = We;T = tanh(�);û = V T: (4.2)These are the equations of the applied version of the neuro-ontroller. This is theneuro-ontroller that will atually be inorporated into the physial ontrol system.With moderate rearrangement, we an rewrite the vetor notation expression in (4.2)as � = We;j = ( tanh(�j)�j if �j 6= 01 if �j = 0 ;� = diagfjg;û = V ��: (4.3)The funtion, , omputes the output of the hidden unit divided by the input ofthe hidden unit; this is the gain of the hyperboli tangent hidden unit. Figure 4.1is a plot of both the tanh funtion and the gain of the tanh funtion. The gain oftanh is bounded in the unit interval:  2 [0; 1℄. Equivalently, we say that tanh isa setor bounded funtion belonging to the setor [0,1℄. This setor boundedness isdemonstrated in Figure 4.2a.Equation 4.3 o�ers two ritial insights. First, it is an exat reformulation of theneural network omputation. We have not hanged the funtionality of the neuralnetwork by restating the omputation in this equation form; this is still the appliedversion of the neuro-ontroller. Seond, Equation 4.3 leanly separates the nonlin-earity of the neural network hidden layer from the remaining linear operations ofthe network. This equation is a multipliation of linear matries (weights) and onenonlinear matrix, �. Our goal, then, is to replae the matrix � with an unertaintyfuntion to arrive at the testable version of the neuro-ontroller.69



−4 −2 0 2 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
tanh

−4 −2 0 2 4
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
gain of tanh

Figure 4.1: Funtions: tanh and tanh gain

a. tanh in [0,1℄ b. improved setorFigure 4.2: Setor Bounds on tanh� is a diagonal matrix with the js along its diagonal where j is the nonlineargain of the jth hidden unit. We \over" � by �nding an unertainty funtion for eah and onstruting the orresponding diagonalized matrix. To over  we employ anaÆne funtion:  � � + ~Æ (4.4)where � and ~ are onstants, and Æ 7! [�1; 1℄ is the unit unertainty funtion. Ina strit mathematial sense, Æ is simply a funtion that returns a real value on therange [�1; 1℄. From an engineering perspetive, Æ is the system information that is70



unknown. We normalize the unknown to have a magnitude of unity by hoosing theappropriate onstants � and ~. From a stability perspetive, we an envision someoneplaying the role of Devil's Advoate by seleting values for Æ that make our systemas unstable as possible. Æ is the range, or size, of values for whih our system mustremain stable.As a �rst attempt, we bound, or over,  with an unertainty region of �1 asshown in Figure 4.2a (� = 0; ~ = 1). Note however, this region is double the size ofthe [0,1℄ setor; it is overly onservative. We an form a tighter inequality by hoosing� = 0:5 and ~ = 0:5 to arrive at  = 0:5+ 0:5Æ. Thus, we over  with a known �xedpart, 12 , and an unknown, variable part [�12 ; 12 ℄. The �xed part is the median value ofthe unertainty, and the unknown part is one half the range. This improved setor isshown in Figure 4.2b. We now express  as:j � � + ~Æj; (4.5)Æj 7! [�1; 1℄; (4.6)� = (MAX + MIN)=2 = 12 ; (4.7)~ = (MAX � MIN)=2 = 12 : (4.8)Finally, we arrive at an expression for our testable version of the neural networkin matrix notation: �� = diagf�g;~� = diagf~Æjg;ûtestable = V (�� + ~�)�= V ��� + V ~��: (4.9)Equation 4.9 is a reformulation of the neural network; this is the testable versionof the neuro-ontroller. It is no longer an exat representation of the network beausewe have approximated the nonlinear hidden unit with an unertainty region. But the71



formulation given by Equation 4.9 \overs" the dynamis of the original network givenin Equation 4.1. That is, any value from the applied version of the neural networkfuntion, û, an be ahieved in the testable version, ûtestable, by an appropriate hoieof values for the unertainty funtions, Æj's. Notie that all the �s and ~s are thesame for eah hidden unit, but the Æj's are unique for eah hidden unit. Also theoverage of �� + ~� exeeds the atual funtion area of �.At this point, we have reast the nonlinear applied version of the neural networkas an LTI system plus an unertainty omponent. To iterate, this testable versionof the neural network is used for the stability analysis while the applied version isatually employed in the physial system as part of the ontroller. The next step is toapply the stability analysis tools to determine the stability status of the neuro-ontrolsystem.4.3 Stati Stability Theorem: �-analysisNow that we have reast the nonlinear, applied, neural network into a testable ver-sion omposed of linear, time-invariant omponents and an unertainty funtion, westate our Stati Stability Theorem. This version of the Stati Stability Theorem isprediated upon using �-analysis as the underlying tool to prove stability. Setion 4.6presents a nearly idential version of the same theorem using IQC-analysis.Theorem 9 (Stati Stability Theorem: �-analysis version)Given the following:1. We have an LTI ontrol system with a (nonlinear) neural network as a ompo-nent. We refer to this as the applied version of the neuro-ontroller.2. The nominal LTI losed-loop system (without the neural network) is internallystable. 72



3. The neural network is stati: the hidden layer and output layer weights are heldonstant.4. We an reast the neural network into an LTI blok plus an unertainty funtion.We refer to this as the testable version of the neuro-ontroller.5. The indued norm of the testable version of the neural network is greater thanor equal to the indued norm of the applied version of the neural network.6. A �-analysis robust stability tool (that permits non-LTI unertainty) indiatesthat the testable version of the neuro-ontrol system is stable.Under these onditions, the applied version with the full nonlinear neural network isstable.Proof:We separate the proof of the Stati Stability Theorem into two parts. The �rstpart primarily onerns assumptions 4 and 5. Spei�ally, if we reast the appliedversion of the neural network as an LTI system and an unertainty funtion (thetestable version), then the indued norm of the applied version is bounded by theindued norm of the testable version. We demonstrate that the spei� unertaintyfuntion outlined in Setion 4.2 meets the indued norm assumption. The seond partof the proof restates the onlusion of the �-analysis Stability Theorem (Theorem 7from Setion 3.8).Part IReall from Setion 4.2, we an state the omputation of a two-layer network withtanh ativation funtions in the hidden layer as:
73



û = V ��� = We;� = diagfjg;j = ( tanh(�j)�j �j 6= 01 �j = 0 : (4.10)This is the applied version of the neuro-ontroller that will be implemented in thereal ontrol system. We have manipulated the standard formulation to produe theabove expression where all the nonlinearity is aptured in the matrix �. Furthermore,the nonlinearity in � is posed as a hidden layer gain. We then derived the testableversion of this formulation as: ûtestable = V ��� + V ~�� (4.11)where the unertainty funtion, Æ 7! [�1; 1℄, is inluded in the diagonal matrix ~�.Given these two formulations of the neural network, we need to show that the induednorm of the testable version is greater than or equal to the indued norm of the appliedversion.At this point, it is helpful to view the neural networks as expliit vetor fun-tions. That is, û and ûtestable are vetor funtions and should be written as û(e) andûtestable(e) respetively.The indued norm of a vetor funtion, f , is given bykfk = maxe 6=0 kf(e)kkek : (4.12)The indued norm of a funtion is the maximum gain of that funtion. The induednorm is usually rewritten in a more familiar, yet equivalent, formulation as [Skogestadand Postlethwaite, 1996℄: 74



kfk = maxkek=1 kf(e)k: (4.13)We now state the indued norm of the applied version of the neural network as:kû(e)k = maxkek=1 kV �Wek; (4.14)and the indued norm of the testable version askûtestable(e)k = maxkek=1 kV (�� + ~�)Wek: (4.15)The di�erene in these two norms arises from the distintion between � for theapplied version and (�� + ~�) for the testable version. These �'s are all diagonalmatries; thus we �rst onsider a omparison on a per element basis. In the appliedversion of �, eah diagonal element is given by j. Reall that j is the gain of anonlinear tanh hidden unit. Also reall that the gain is bounded by the setor [0; 1℄.For the testable version, the diagonal elements of (�� + ~�) are given by (�j + ~jÆj)where �j = 12 , ~j = 12 , and Æj is a funtion whose range is [�1; 1℄.It is lear that eah element of the testable version overs eah element of theapplied version. That is, for some partiular element of the applied version, j, wean selet a value for Æj 2 [�1; 1℄ suh that k(�j + ~jÆ)k � kjk. The same argumentextends for the other elements along the diagonals beause we an hoose eah Æjindependently. Then, we say that the matrix funtion (�� + ~�) overs the matrix �.From inspetion of Equation 4.14 and Equation 4.15, we arrive at:kû(e)k � kûtestable(e)k: (4.16)This satis�es Part I of the proof. 75



Part IIIn Chapter 3, we presented the formal framework for robust stability. Spei�ally,Setion 3.8 outlines robust ontrol theory and states the �-analysis Stability Theorem.Part II of this proof is a straight-forward appliation of this theorem.Reall that Theorem 7 (the �-analysis Stability Theorem) has the the followingonditions:1. The known parts of the system an be grouped into a single funtional boxlabelled M.2. The system is internally stable. (M is a stable system).3. The nonlinear and time-varying omponents are replaed by unertainty fun-tions.4. The unertainty funtions have indued norms whih bound the indued normsof the unknown (and possibly non-LTI) dynamis they replae.5. These unertainty funtions are usually normalized (with onstants of normal-ization being absorbed into the M blok) and grouped together in a � box.Then �-analysis performs omputations on the LFT formed by the M-� interon-netion. Based upon the result of this omputation, we an infer the stability of theoriginal non-LTI system.We meet these onditions of the �-analysis Stability Theorem through the as-sumptions listed in the Stati Stability Theorem and through the result of Part I ofthe proof. Thus, we apply the result of the �-analysis Stability Theorem to onludethat the applied version of our neuro-ontroller is stable. Q.E.D.
76



4.4 Dynami Stability Theorem: �-analysis ver-sionWe extend the appliation of robust stability theory from stati stability analysis tohandle dynami stability analysis. Dynami stability di�er from stati stability inthat we permit the weights of the neural network to hange as a result of training;this is a further violation of the LTI model. The key onept for dynami stabilityanalysis is to onsider neural network weight updates as perturbations to the networkweights. We add additional unertainty to the network weights and then apply the�-analysis tools to asertain the stability status of the system. Again, we emphasizethat the theorem in this setion assumes the use �-analysis as the stability tool. Thereis a parallel version of the Dynami Stability Theorem for the IQC-analysis tool inSetion 4.7.To begin, we again onsider an LTI system with a neural network as a non-LTIomponent. Reall that the network is a two-layer, feed forward network with tanhativation funtions in the hidden layer. The network has two sets of weight matries:Whxn is the input-side weight matrix and Vmxh is the output-side weight matrix (ninputs, h hidden units, and m outputs with the bias terms inluded as �xed inputs).Let us form the matrix B as a diagonal matrix in whih the weights of W and V aredistributed along the diagonal
B = 2666666664

W1;1 W1;2 ::: Wh;n V1;1 ::: Vm;h
3777777775 : (4.17)

Matrix B is of size zxz where z = hn+mh. Now we form a diagonal matrix BP (theP subsript denotes perturbation) also of size zxz by:77



BP = 2664 Bp1 Bp2 ::: Bpz 3775 ; (4.18)where eah Bpi 2 <. Finally, we form a diagonal matrix �L (the L subsript denoteslearning) again of size zxz:
�L = 2664 Æl1 Æl2 ::: Ælz 3775 ; (4.19)where Æli 7! [�1; 1℄ is the unit unertainty funtion as desribed in the previous setionon stati stability. These square matries, B, BP , and �L, are all diagonalized sothat when they are multiplied together, the orresponding entries of eah matrix willmultiply together.At this point it is instrutive to disuss the purpose of BP and �L. Even thoughtheir semanti interpretations have little bearing on the Dynami Stability Theorem,it is important to understand why we are adding unertainty to the system in the formofBP . We regardBP as a set of individual perturbation sizes, one per weight inW andV , that will allow us to add unertainty to the individual network weights. Essentially,Bpi is the amount of permissible unertainty for the orresponding neural networkweight in B. This unertainty diretly translates into how muh of a perturbationwe tolerate for eah individual network weight. We will manipulate the perturbationsizes in BP until the �-analysis stability tool veri�es that the overall ontrol systemis stable for all these perturbations. In the dynami stability proof whih follows, wedemonstrate that given spei� stipulations regarding BP we an arrive at a stabilityguarantee for a neural network with dynami weight hanges. In other words, BP isthe part of the unertainty funtion that overs the time-varying LTI violations of alearning neural network. 78



Returning to the disussion of BP , we form the interonnetion system in Fig-ure 4.3. This arrangement is referred to as \multipliative unertainty" beause theunertainty in BP is a fator of the known LTI system in B. Equivalently, Figure 4.3has a transfer funtion of B(I +BP�L). Thus eah element of BP is a multipliationfator for a orresponding weight in B.
B

B

+

P L

Figure 4.3: Multipliative Unertainty Funtion for Network WeightsThe �L matrix selets some portion of that perturbation to apply in either thepositive or negative diretion. Eah Æli in �L an be hosen individually; beausethere are z di�erent network weights, we have z degrees of freedom in seleting howto \weight" the perturbation sizes in BP . Notie also that Æli = 1 �nds the largestpositive perturbation for the orresponding weight in B and Æli = �1 designates thesmallest (most negative) perturbation. For example, onsider the �rst neural networkweight on the diagonal in B, W1;1. The orresponding perturbation for W1;1 in BP isBp1, the upper left element of BP . This will be multiplied by Æl1 in �L. If Æl1 = 1, thenthe maximum perturbed value for W1;1 equals W1;1(1 +Bp1). Similarly the minimumperturbed value is W1;1(1�Bp1). In this way, the �L matrix has the e�et of seletinga range of possible perturbed values for eah weight in the neural network.De�nition 11 The perturbed range, RWi, of a network weight is the ontinuousrange of values for the network weight spei�ed by the maximum, MaxWi, and mini-mum, MinWi, perturbed values of the network weight.
79



RWi = [MinWi;MaxWi℄ (4.20)MinWi =Wi(1�Bpi) (4.21)MaxWi =Wi(1 +Bpi) (4.22)We are now ready to state the Dynami Stability Theorem.Theorem 10 (Dynami Stability Theorem: �-analysis version)Given the following:1. We have an LTI ontrol system with a nonlinear, time-varying neural networkas a omponent. We refer to this as the applied version of the system.2. The nominal LTI losed-loop system (without the neural network) is internallystable.3. We reast the neural network into an LTI blok plus an unertainty blok toover the nonlinear hidden layer. This proess is fully desribed in the StatiStability Theorem. We refer to this as the testable version.4. To the testable version, we introdue multipliative weight unertainty in theform of a diagonalized matrix as desribed by BP in this setion. This results ina maximum, MaxWi, and minimum, MinWi, perturbed value for eah weight inthe neural network. These values speify a perturbed range, RWi, for eah neuralnetwork weight. This introdues additional unertainty to the system. With bothunertainty funtions (one for the nonlinear hidden layer and one for the time-varying weights), we now have the full testable version of the system.5. When training the neural network in the applied version of the system, theaumulated hanges to eah neural network weight do not ause the weight toexeed its perturbed range, RWi. 80



6. A �-analysis stability tool (that permits non-LTI unertainty) indiates that thetestable version system is stable.Under these onditions, the applied version of the system with the learning, non-linear neural network is stable.Proof:The proof for the Dynami Stability Theorem immediately follows from that of theStati Stability Theorem. As is the ase with the Stati Stability Theorem, we sep-arate the proof of the Dynami Stability Theorem into two parts. In the �rst part,we establish that the unertainty funtion overs the non-LTI dynamis of the non-linear tanh hidden layer and the time-varying weights. In the seond part, we showthat meeting the onditions stated in the Dynami Stability Theorem imply that theoverall applied version of the system (with learning neural network) is stable.Part IWe again need to establish the onditions for replaing the non-LTI omponentsin the system with unertainty bloks. That is, we need to ensure that the induednorm of the unertainty blok is no smaller than the indued norm of the non-LTIbloks by showing: kû(e)k � kûtestable(e)k (4.23)where kû(e)k is the indued norm of the applied version (nonlinear and time-varying)and kûtestable(e)k is the indued norm of the testable version.This result is slightly more mathematially omplex than the stati stability asebeause we have two unertainty bloks in the dynami stability ase. When wereon�gure the system into the M �� feedbak arrangement for the stati stabilityase, the only soure of unertainty in � arises from the matrix of hidden layer gains,�. In the dynami stability ase, the � in the M � � arrangement ontains both81



the hidden layer gains, �, and also the time-varying neural network weights, W andV . Beause the � matrix is blok diagonal, we an satisfy the overall indued normondition on � by satisfying the indued norm ondition on eah individual partof �. We need to show that the indued norm of the nonlinear part is less thanthe indued norm of unertainty funtion we use to over it, and we need to showthat the indued norm of the time-varying part is less than the indued norm of theunertainty funtion we use to over this latter part.Regarding the nonlinear hidden layer, we need only show (�� + ~�) overs �. Thisfat was established in the proof of the Stati Stability Theorem.Regarding the time-varying weight hanges, we must demonstrate that the un-ertainty funtion of the testable version overs the weight hanges of the appliedversion of the neuro-ontroller. Condition 5 of the Dynami Stability Theorem sup-poses this very ondition. The unertainty funtion forms a region of permissibleweight hanges, RWi; as stated in Condition 5, we need only ensure that the neuralnetwork training algorithm does not exeed any of these ranges.Beause the unertainty funtions in the testable version of the neuro-ontrollerover both the nonlinear dynamis of the hidden layer and the time-varying dynamisof the weight hanges, we an hoose Æ's suh the indued norm of the testable versionis at least as large as the indued norm of the applied version. We have met theondition in Equation 4.23 and Part I of the proof is omplete.Part IIAs we did for the Stati Stability Theorem, Part II of the proof for the Dynam-i Stability Theorem is simply a restatement of the �-analysis Stability Theorem (Theorem 7 in Setion 3.8). The presuppositions outlined in the Dynami StabilityTheorem and Part I of the proof meet the requirements for the �-analysis StabilityTheorem. It is then trivial to onlude that the applied version of the neuro-ontroller(with dynami weight updates) is a stable system.82



Q.E.D.Again, we emphasize that the above theorems on stati and dynami stabilityare presented in terms of the �-analysis stability tool. The mathematial orretnessof these theorems requires that the �-analysis stability tool aommodate non-LTIunertainty. In pratie, the only urrently available �-analysis stability tool pre-supposes LTI unertainty. Thus, our appliation of the theorems will be tehniallyawed beause we are using the wrong variant of the �-analysis stability tool. How-ever, �-analysis is the most ommon software tool for researh in robust stability and,for our partiular uses, the LTI-unertainty �-analysis tool provides a very good ap-proximation to the stability status of the neuro-ontroller. In the next three setions,we introdue a parallel development of stati and dynami stability in terms of theIQC-analysis tool. The urrent implementation of IQC software does support non-LTI unertainty. Even though IQC-analysis is not widely used or aepted, it doesprovide the strit mathematial guarantees of stability not available in the urrentimplementation of �-analysis.4.5 Unertainty for Neural Networks: IQC-analysisIn Setion 4.2, we showed how to onvert the nonlinear portion of the neural networkinto an LTI blok plus an unertainty funtion. The analysis in this previous setionassumes that �-analysis is the tool used for stability heking. Here, in this setion,we present a similar transformation from the applied version of the neuro-ontrollerto the testable version, exept that we assume IQC-analysis will be the underlyingstability analysis tool. Spei�ally, we show how to over the nonlinear gain in thetanh hidden units with an appropriate IQC funtion and the time-varying weighthanges with another IQC funtion. The reader is direted to Setion 3.9 for detailson IQC-analysis and a list of referenes. 83



Let us �rst start with the nonlinear tanh hidden units and assume that the neuralnetwork weights are held onstant. Reall that we have transformed the omputationof the neuro-ontroller to the following equations:û = V ��;� = We;� = diagfjg;j = ( tanh(�j)�j if �j 6= 01 if �j = 0 (4.24)where � is a diagonal matrix funtion that aptures all the nonlinearity in the neuralnetwork.Just as we did for the �-analysis ase, we need to �nd a funtion that oversthe non-LTI dynamis in the above neural network. In this IQC-analysis ase, theovering funtion must be of the IQC form. As disussed previously, ustom buildingIQCs is a highly speialized task requiring extensive training in nonlinear systemanalysis. While this level of analysis is beyond the sope of this dissertation, theinterested reader an �nd some of the details and further referenes in [Megretski andRantzer, 1997a; Megretski and Rantzer, 1997b; Megretski et al., 1999℄. Fortunately,IQCs for many ommon non-LTI funtions have already been built and arranged inan aessible library. We will use two of these pre-existing IQCs to over the non-LTIfeatures of the neuro-ontroller.First, we must �nd an appropriate IQC to over the nonlinearity in the neural net-work hidden layer. From Equations 4.10, we see that all the nonlinearity is apturedin a diagonal matrix, �. This matrix is omposed of individual hidden unit gains,, distributed along the diagonal. In IQC terms, this nonlinearity is referred to asa bounded odd slope nonlinearity. There is an Integral Quadrati Constraint alreadyon�gured to handle suh a ondition. The IQC nonlinearity,  , is haraterized byan odd ondition and a bounded slope [Megretski et al., 1999℄:84



 (�x) = � (x); (4.25)�(x1 � x2)2 � ( (x1)�  (x2))(x1 � x2) � �(x1 � x2)2: (4.26)Let us examine how this IQC funtion,  , \overs" the nonlinearity of the neuralnetwork hidden layer. First, Equation 4.25 requires  to be an odd funtion. Next,we examine how Equation 4.26 indiates that  must meet a slope-boundednessrequirement. Without loss of generality, �rst onsider the ase in whih x1 > x2; thenEquation 4.26 redues to�(x1 � x2) � ( (x1)�  (x2)) � �(x1 � x2): (4.27)Looking at the left-hand inequality �rst, we see that�(x1 � x2) � ( (x1)�  (x2)); (4.28)or � �  (x1)�  (x2)x1 � x2 : (4.29)Notie that the r.h.s of Equation 4.29 is the \slope" of the funtion. If this inequalityholds for all x1 and x2, then the slope (or derivative) of  is no smaller than �.Similarly, we take the right-hand inequality of Equation 4.27 to see that the slope of is no larger than �. A parallel analysis holds for the ase of x2 > x1. In summary,this IQC has a bound limitted slope in the range of [�; �℄. For our spei� use, wehoose � = 0 and � = 1 to aommodate eah hidden unit gain, j. Beause thehidden unit gain is a nonlinear funtion bounded by [0; 1℄, we know that the bounded85



odd slope nonlinearity is an appropriate IQC to over the nonlinear hidden units ofthe neural network.The tanh hidden unit funtion satis�es these two IQC onstraints. Clearly, tanhis an odd funtion as: tanh(�x) = �tanh(x): (4.30)It is also evident that tanh meets the bounded slope ondition as:0 � (tanh(x1)� tanh(x2))(x1 � x2) � (x1 � x2)2; (4.31)whih redues to (assuming x1 � x2 without loss of generality)0 � (tanh(x1)� tanh(x2)) � (x1 � x2): (4.32)This too is satis�ed beause tanh is a monotonially inreasing funtion.We now need only onstrut an appropriately dimensioned diagonal matrix ofthese bounded odd slope nonlinearity IQCs and inorporate them into the system inplae of the � matrix. In this way we form the testable version of the neuro-ontrollerthat will be used in the Stati Stability Theorem in the following setion.Before we jump into the Stati Stability Theorem, we also address the IQC used toover the other non-LTI feature of our neuro-ontroller. In addition to the nonlinearhidden units, we must also over the time-varying weights that are adjusted duringtraining. Again, we will forego the ompliation of designing our own IQC and,instead, selet one from the preonstruted library of IQCs. The slowly time-varyingreal salar IQC is de�ned by relationship [Megretski and Rantzer, 1997a℄:
86



w(t) =  (t)v(t); (4.33) (t) � �; (4.34)_ (t) � �; (4.35)where  is the non-LTI funtion (our neuro-ontroller). The key features are that  is a salar funtion of time, that  is �nite, and the rate of hange of  is boundedby some onstant, � (a di�erent � than used in the bounded slope odd IQC). We anview eah weight in our neuro-ontroller as a salar fator. Beause the weights alterduring neural network training, these \salar fators" hange as a funtion of time.If we an adjust the neural network learning rate so that there is an upper boundon the rate of hange, then this IQC is overs the time-varying nonlinearity in ourlearning neural network.4.6 Stati Stability Theorem: IQC-AnalysisWe are now again able to onstrut two versions of the neuro-ontrol system. Theapplied version ontains the full, nonlinear neural network. For this stati stabilitysetion, we temporarily assume the network weights are held onstant. We also areable to form the testable version by replaing the nonlinear hidden unit gains with thebounded odd slope nonlinearity IQC. We now restate the Stati Stability Theoremin terms of IQC-analysis.Theorem 11 (Stati Stability Theorem: IQC-analysis version)Suppose the following:1. We have an LTI ontrol system with a (nonlinear) neural network as a ompo-nent. We refer to this as the applied version of the neuro-ontroller.87



2. The nominal LTI losed-loop system (without the neural network) is internallystable.3. The neural network is stati: the hidden layer and output layer weights are heldonstant.4. We an reast the neural network into an LTI blok plus an IQC funtion. Werefer to this as the testable version of the neuro-ontroller.5. The IQC overs the nonlinearity of the neural network hidden unit.6. The IQC-analysis robust stability tool �nds a feasible solution to the IQC thusindiating that the testable version of the neuro-ontrol system is stable.Under these onditions, the applied version with the full nonlinear neural network isstable.Proof:The proof for this theorem is straight forward. Beause we have seleted the ap-propriate IQC to address ondition 5, we need only apply IQC theory (see Setion 3.9)to onlude that our applied version of the neuro-ontroller is stable.Q.E.D.4.7 Dynami Stability Theorem: IQC-AnalysisWe are now ready to state the Dynami Stability Theorem in terms of IQC-analysis.Theorem 12 (Dynami Stability Theorem: IQC-analysis version)Suppose the following:1. We have an LTI ontrol system with a nonlinear, time-varying neural networkas a omponent. We refer to this as the applied version of the system.88



2. The nominal LTI losed-loop system (without the neural network) is internallystable.3. We reast the neural network into an LTI blok plus an IQC blok to over thenonlinear hidden layer. This proess is fully desribed in Setion 4.5. We referto this as the testable version.4. To the testable version, we introdue an additional IQC blok to over the time-varying weights in the neural network. This proess is also desribed in Se-tion 4.5.5. When training the neural network in the applied version of the system, the rateof hange of the neuro-ontroller's vetor funtion is bounded by a onstant.6. The IQC-analysis stability tool indiates that the testable version system is stableby �nding a feasible solution satisfying the IQCs.Under these onditions, the applied version of the system with the learning, non-linear neural network is stable.Proof:The proof for the Dynami Stability Theorem also immediately follows from that ofthe Stati Stability Theorem. The onditions listed above satisfy the preonditionsof IQC stability theory. We need only apply the IQC theorems to onlude that ourapplied version of the neuro-ontroller is stable. Q.E.D.In the next setion, we sketh the basi stable learning algorithm. This is theonrete realization of the Dynami Stability Theorem. The stable learning algorithmallows us to implement a learning agent with a neuro-ontroller and to safely integratethis agent into a ontrol environment in whih instability annot be tolerated. The89



following setion is meant only to introdue the high-level onept of a stable learningalgorithm. Many of the details that we have overlooked will be addressed in Chapter 5.4.8 Stable Learning AlgorithmThe Dynami Stability Theorem of the previous setion naturally spei�es an algo-rithmi implementation. Many of the previous theoretial results in neuro-ontrolstability have assumptions in their theorems whih are violated when applying thetheory to pratial problems. One of the key features of the Dynami Stability The-orem is its appliability to real-life ontrol problems without violating any of theassumptions in the proof. We ombine the aspets of the Stati and Dynami Sta-bility Theorems with a learning algorithm to arrive at the following stable, learningalgorithm.The stable learning algorithm alternates a stability testing phase with a learningphase. The purpose of the stability testing phase is to �nd the largest set of neuralnetwork weight perturbations that still retain system stability. These perturbationsform a \safety region" for eah weight in the network; we an move eah individualweight within its safety region and still guarantee system stability. In the seondphase, the learning phase, we train the network until either we are satis�ed with theontrol performane or until one of the network weights exeeds its safety region. Thenthe algorithm repeats with additional series of alternating stability testing phases andlearning phases. These steps are expliitly desribed in the following proedure:Stable Learning Algorithm1. We hek the stability of the nominal system (without the neuro-ontroller).Reall that BIBO stability presupposes internal stability of the nominal system.2. If the nominal system is stable in Step 1, then we add the neuro-ontroller,replae the non-LTI neural ontroller with an LTI unertainty blok, and then90



perform a stati stability hek with either the �-analysis or IQC-analysis sta-bility tools. This ensures that the initial weight values of the neuro-ontrollerimplement a stable system. Initially, we hoose the network output weightsto be small so that the neuro-ontroller has little e�et on the ontrol signalof the system. Thus, if the nominal system is stable, then the \initialized"neuro-ontroller is typially stable as well.3. The next step is the stability testing phase. We ompute the maximumnetwork weight unertainty that retains system stability. This is done with thefollowing subroutine:Stability Testing Phase
(a) For eah individual weight in the neural network, we selet an unertaintyfator. These unertainty fators are the diagonal entries in the BP matrix.(b) We then ombine all the unertainty into the M � � LFT arrangementand apply either the �-analysis tool or the IQC-analysis tool.() If � (or IQC) indiates that we have a stable system, we will inrease eahindividual weight unertainty fator. We multiply all the weights by thesame fator to keep all the ratios onstant. This issue is disussed in detailin Setion 6.2.4 and Setion 6.2.5.(d) Similarly, if � (or IQC) indiates that we have an unstable system, wederease eah individual weight unertainty by multiplying eah weightsby the same fator to keep all the ratios �xed.(e) We repeat sub-steps 3 and 3d until we have the largest set of individualweight perturbations in BP that still just barely retain system stability.91



This is the maximum amount of perturbation eah weight an experienewhile still retaining a stable ontrol system.4. We then use these unertainty fators to ompute a permissible perturbationrange, RWi, for eah individual network weight. The perturbation range is the\safety range" for eah individual weight; all perturbations to a weight thatkeep the weight within this range are guaranteed not to indue instability.5. We then enter the learning phase. Notie at this point we have not spei�eda partiular learning algorithm. We ould employ any learning algorithm thatupdates the neuro-ontroller weights as long as we do not violate the allowableperturbation range.Learning Phase(a) Train on one sample input.(b) Compute the desired weight updates.() If the weight updates do not exeed any network weight's perturbationrange, update the weights and repeat with the next training example.(d) If the weight updates do exeed a perturbation range, stop learning withthe last set of allowable network weights.The above desription is a high-level sketh of the stable reinforement learningalgorithm. At this point, we onlude the theoretial ontribution of the dissertation,having established a learning algorithm whih is guaranteed to be stable in a ontrolenvironment.
92



Chapter 5Learning Agent Arhiteture
Our seondary goal is to demonstrate the appliability of the Dynami Stability The-orem to real ontrol situations. Before we an apply the theory to several ase studies,we must �rst onstrut a detailed neuro-ontrol agent to bridge the gap between the-ory and pratie. This agent must aommodate both the stipulations of the stabilitytheory and also the requirements of pratial ontrol situations. In this hapter, wedetail the development of this stable neuro-ontrol agent.First, we motivate our hoie of the reinforement learning algorithm by ompar-ing it to alternative algorithms in Setion 5.1. We then address the high-level ar-hitetural issues of the learning agent. Essentially, the high-level arhiteture mustfailitate the dual role of the learning agent; the learning agent must at both like areinforement learner and a ontroller. Eah role has spei� funtional requirementsthat sometimes onit with the other role. We disuss how to resolve the dual natureof the learning agent in Setion 5.2. We also onsider the low-level arhiteture ofthe system; we selet spei� neural networks for implementing di�erent parts of theagent in Setion 5.3. In Setion 5.4, we resolve neuro-dynami diÆulties unique toour ontrol situation. Finally, Setion 5.5 summarizes all the omponent arhiteturesand presents the detailed learning algorithms.

93



5.1 Reinforement Learning as the AlgorithmA myriad of learning algorithms have been developed for use in neural network-s, mahine learning, statistial learning, planning, and other branhes of arti�ialintelligene. We de�ne the learning algorithm to be the abstrat proedure that a-umulates the agent's experiene and uses this experiene to make deisions withinan environment. The arhiteture is the physial struture that implements the al-gorithm. Naturally, the two onepts are odependent; thus, we should be areful tonot blindly design for one of these onepts without onsidering the other. However,for the purposes of lear exposition, we �rst present the hoie of a learning algorithmin this setion and then defer the disussion of the spei� learning arhiteture untilthe subsequent two setions.A widely aepted taxonomy of learning algorithms lassi�es algorithms based ontheir information exhange with the environment [Haykin, 1994℄. There are threebroad ategories of learning algorithms based upon the type of information theyreeive from the environment: supervised learning, reinforement learning, and unsu-pervised learning listed from the most feedbak information available to the algorithmto the least.Supervised learning assumes that the environment provides a teaher. The super-vised learner ollets information from the environment and then produes an output.The teaher provides feedbak in the form of the \orret" output. The supervisedlearner hanges its internal parameters to produe the orret deision next time itobserves the same state. The standard bak propagation algorithm is an exampleof supervised learning. In the ontrol situation, we typially do not know a prioriwhat the optimal ontrol ation is for any given state. The optimal ontrol ation isdependent on the objetive of minimizing traking errors over time and on the om-pliated dynamis of the plants. Consequently, we annot use supervised learning as94



the primary learning algorithm 1.The unsupervised learner observes system states and produes outputs. However,an unsupervised agent reeives no feedbak from the environment. Instead, it adjustsparameter vetors to apture statistial tendenies in the frequeny and distribution ofthe observed states. Kohonen has proposed a number of lustering algorithms that areall unsupervised in nature [Kohonen, 1997℄. We ould employ unsupervised learningin this situation; however, we would not be using all the information available to us.While we annot know the optimal ontrol ation, we an measure its performane byaumulating the traking error over time. The unsupervised algorithm does not usethis information. Furthermore, the result of an unsupervised algorithm, statistialinformation about the system, is really not the desired result. We desire a ontrollerto produe ontrol ations per eah observed state.In between the extremes of supervised and unsupervised algorithms is reinfore-ment learning. Upon observing the system state and produing an output, the rein-forement learner reeives an evaluation signal from the environment indiating theutility of its output. Through trial and error, the reinforement learner is able todisover better outputs to maximize the evaluation signal. The reinforement learneradjusts its internal parameters to improve future outputs for the same observed state.Thus, reinforement learning is an ideal hoie, beause the information needs of thealgorithm exatly math the information available from the environment.Other aspets of reinforement learning also math well with our ontrol environ-ment. Primary among these is the ability of a reinforement learner to optimize overtime [Sutton and Barto, 1998℄. Spei�ally, we desire to minimize the mean squaredtraking error over time. For most ontrol problems, eah ontrol ation a�ets notonly the immediate traking error of the next time step, but also the traking error1We will use a form of bak propagation to adjust a part of the neuro-ontroller, but the natureof the algorithm is based on reinforement learning priniples95



at time steps into the future. Thus, the goal of eah ontrol ation is to minimizethe sum of future traking errors. The statistial sampling nature of reinforementlearning permits the optimization of ontrol deisions without having to keep trakof lengthy traking error sums [Sutton and Barto, 1998; Kaelbling et al., 1996℄.Closely assoiated with optimization-over-time is the ability of a reinforementlearner to naturally handle delays, or time-onstants, in the system. Suppose thatthe system is a disrete-time system with a delay of two time steps. Any ation madeat time step k will not a�et the output at time k + 1, but instead, �rst a�ets theoutput at time k+3. Delays are a ommon feature in many of the ontrol systems ofinterest. Often, the delays in these systems are of unknown duration and an be highlyvariable for MIMO systems (there will be di�erent delay dynamis from eah inputto eah output). Naturally, this greatly ompliates the design proedure. Again,beause of the statistial sampling nature of reinforement learning, the learningagent \disovers" these delays and learns a ontrol funtion that is appropriate forthe delays. In reinforement learning, the problem of delayed rewards is referred toas the temporal redit assignment problem [Sutton and Barto, 1998℄; reinforementlearning provides an elegant solution.Reinforement learning is strutured for a trial-and-error approah to learning.Most reinforement learning algorithms have an exploration fator that an be tunedto vary the degree to whih the agent tries new ations (high exploration) versusexploits aumulated knowledge (low exploration). Typially, the exploration fatoris set high initially and then \annealed" as the learning progresses. This tendenyfor exploration allows the reinforement learner to disover new and possibly betterontrol ations. Through repeated attempts at novel ontrol ations, the reinfore-ment learning algorithm aumulates information used to produe improved ontrol.It is this feature of reinforement learning that allows adaptive ontrol algorithms tooutperform traditional ontrol tehniques on omplex plants. However, it is also this96



feature that forms the most signi�ant drawbak of reinforement learning for thisappliation; intermediate ontrol funtions aquired during the learning proess oftenperform poorly and are frequently unstable.In Setion 5.5, we expliitly list the entire stable learning algorithm inluding thedetailed reinforement learning portion. More detailed reviews of learning algorithmsan be found in [Hertz et al., 1991; Hassoun, 1995; Rumelhart et al., 1986b℄. Formore detail on reinforement learning in partiular, onsult [Sutton and Barto, 1998;Kaelbling et al., 1996℄. In Setion 5.5, we expliitly list the entire stable learningalgorithm inluding the detailed reinforement learning portion.5.2 High-Level Arhiteture: The Dual Role of theLearning AgentAmong our top onerns in seleting a spei� high-level arhiteture for the learningagent is the need to balane the algorithmi requirements of reinforement learningwith the funtional aspets of a ontrol task. By high-level arhiteture, we meanthe design features of the learning agent whih aommodate the unique ontrollerenvironment.Essentially, the agent must at like a reinforement learner by storing and manip-ulating value funtions, by performing poliy evaluation, and by performing poliyimprovement. In ontrast, the agent must also at like a ontroller whih requiresan additional set of funtions from the agent. Primary among these requirements,the agent must provide the orret ontrol ation for a given state; that is, it mustimplement a poliy. Furthermore, we stipulate that the ontrol ations be availablein real-time. This prohibits the storage of the poliy in a format that is not readilyaessible. The stability proofs for our neuro-ontroller also plae restritions on therole of the agent as a ontroller.The dihotomy of the agent as a reinforement learner and the agent as a on-97



troller is depited in Figure 5.1. Shown in Figure 5.1a is the anonial representationof a spei� type of reinforement learner: a Q-learning agent [Watkins, 1989℄. Astate/ation pair are input to the Q-learner to produe the value funtion representa-tive of the input pair. This value funtion is ommonly referred to as a Q-value. TheQ-learning agent spei�ally implements the reinforement learner by storing valuefuntions. Via these value funtions, the Q-learner an perform poliy evaluation andpoliy improvement. [Sutton and Barto, 1998; Kaelbling et al., 1996℄ provide detailedinformation on Q-learners and value funtions.Contrast this with the diagram in Figure 5.1b showing the agent as a ontroller.Input to this agent is the urrent state of the system; the output is the agent's ontrolsignal. This agent implements a poliy.
Q(s,a)

s

a Agent
Q-Learning

nerual net
learning

reinforcemente (state) u (control action)a. Reinforement Learner b. ControllerFigure 5.1: Reinforement Learning and Control AgentsMany neuro-ontrollers designed by the reinforement learning ommunity im-plement the Q-learner of Figure 5.1a. This spei� high-level arhiteture suits therequirements of the agent-as-reinforement-learner, but does not ful�ll the duties ofthe agent-as-ontroller. A subtle but important point of disussion is that the Q-learner does not store a poliy. There is no expliit funtion in whih the state isinput and an ation output. The question naturally arises, if this agent is inapableof storing an expliit poliy, then why is this type of learning arhiteture so ommon(and suessful) in ontrol problems found in the reinforement learning researh lit-erature? The answer to this dilemma is that while the Q-learner is unable to omputean expliit poliy, the agent an implement an impliit poliy. Beause the value fun-tion is stored in the Q-learner, it is able to perform a searh over the set of ations98



to �nd the best ation for a partiular state; this \best ation" is the one with thelargest value funtion. Thus, impliitly, the optimal poliy an be omputed via asearh proedure [Sutton and Barto, 1998℄.While the impliit poliy is satisfatory for many ontrol tasks, it still falls shortof our requirements in two important ways. First, the searh proedure is potentiallyquite lengthy and omplex. We stipulate that the ontrol ations of the agent mustbe available in real-time. In some dynami systems, the impliit poliy omputationtime may exeed the time window in whih we must produe a ontrol ation. Theseond, and more important, failure of the Q-learner onerns the robust stabilityanalysis of the previous hapter. We require an expliit poliy funtion to determinewhether it meets the stability requirements; the poliy must be available as an expliitmathematial funtion. The impliit poliy searh is not amenable to the stabilityanalysis.Beause of these diÆulties, we annot utilize the ommon Q-learning, high-level,arhiteture for our agent. We require an agent with a split personality { an agen-t that expliitly implements both arhitetures in Figure 5.1. We fall bak uponearly e�orts in reinforement learning arhiteture to utilize the ator-riti design.Here, we highlight the features of this dual arhiteture; more information an beobtained for ator-riti arhitetures in [Sutton and Barto, 1998; Barto et al., 1983;Witten, 1977℄. The ator-riti arhiteture has two di�erent networks, one to imple-ment the reinforement learner (riti), and one to implement the ontroller (ator).This arrangement, depited in Figure 5.2, is opied from Sutton and Barto's text onreinforement learning [Sutton and Barto, 1998℄.The ator network an be thought of as the ontrol agent, beause it implementsa poliy. The ator network is part of the dynami system as it interats diretly withthe system by providing ontrol signals for the plant. The riti network implementsthe reinforement learning part of the agent as it provides poliy evaluation and an99



Environment

Function
Value

Policy

Actor

Critic

state

action

TD Error

reward

Figure 5.2: Ator-Criti Agentbe used to perform poliy improvement. This learning agent arhiteture has theadvantage of implementing both a reinforement learner and a ontroller. Beausethe poliy is omputed expliitly in the ator network, we an meet the real-timedemands of the ontrol system. Also, we an selet an ator network arhiteturethat is amenable to the robust stability onstraints. Note that the riti network isnot atively onneted to the ontrol system; it is a \meta-system" that guides thehanges to the ator network.The drawbak of the two-network arhiteture is a more omplex training algorith-m and extended training time [Sutton and Barto, 1998℄. The primary reason why theQ-learning arhiteture is frequently used today is the simpli�ed training algorithm.The Q-learner is not only easier to ode, but more signi�antly, the neuro-dynamisof the learning agent are greatly simpli�ed. Beause we must use the ator-ritidesign for our high-level arhiteture, we are faed with additional neuro-dynamiproblems that will be detailed in the next setion. At this point we have rafted asuitable high-level arhiteture for our learning agent. Next we turn our attention tothe low-level design of the system. Namely, we must selet a spei� neural network100



for both the ator and riti omponents.5.3 Low-Level Arhiteture: Neural NetworksSplitting the learning agent into two omponents, ator and riti, introdues a num-ber of tehnial problems. We solve these problems with judiious design hoies ofspei� neural networks for both the ator and riti networks.We begin by seleting an arhiteture for the ator network (the ontroller). Forthe ator, we selet the two-layer, feed forward network with tanh hidden units andlinear output units. This arhiteture expliitly implements a poliy as a mathemat-ial funtion and is thus amenable to the stability analysis detailed in Chapter 4.Beause this arhiteture is a ontinuous network rather than a disrete network, theator will be able to provide better resolution and more losely learn the desired on-trol poliy 2. Also, the ontinuous network is better suited to the stability analysis,beause a disrete network would require a piee-meal approah to the stability anal-ysis rather than the one-shot analysis possible with the ontinuous network. Anotheradvantage of this network arises beause it is a global network rather than a loalnetwork; thus, the network would likely be able to learn the ontrol poliy faster 3.It is likely that other neural arhitetures would also work well for the ator netprovided they met the onditions of the stability theorems. Here, we intend only todemonstrate that the stability theory is appliable to real ontrol problems by usingsome neural arhiteture; it is not our goal to demonstrate that the two-layer, feedforward network is the best hoie. The two-layer, feed forward, neural network is a2A disrete network has a disrete funtion mapping from the input spae to the output spaewhile the ontinuous network has a ontinuous mapping. See [Haykin, 1994; Royas, 1996; Hertzet al., 1991℄ for more details3A global network has \ativation" inputs that typially extend over the a large part of the inputspae whereas a loal network is only ativated by inputs in a small, loalized region of the inputspae. See [Haykin, 1994; Royas, 1996; Hertz et al., 1991℄ for more details.101



ommon and widely studied neural arhitetures and also this arhiteture satis�esthe requirements of the stability theorems; thus, we utilize this arhiteture for ourneuro-ontroller.Next we turn our attention to the riti network (the reinforement learner).Reall that the riti aepts a state and ation as inputs and produes the valuefuntion for the state/ation pair. The state is the traking error, e, and the ation isthe ontrol signal, û. The key realization is that the riti network is not a diret partof the ontrol system feedbak loop and thus is not limited by the stability analysisrequirements. For the ase studies of the next hapter, we originally implementedseveral di�erent arhitetures for the riti network and found that a simple tablelook-up mehanism is the arhiteture that worked best in pratie 4.A CMAC (Cerebellar Model Artiulation Controller) network is a more sophis-tiated variant of table lookup methods [Sutton, 1996; Miller et al., 1990℄ whihfeatures an improved ability to generalize on learning examples; often CMAC net-works require more training time than table look-up methods to reah their �nalweight values. We �nd that CMAC also worked well, but the table look-up providednearly the same ontrol performane and required less training time than the puretable look-up arhiteture.The reasons for �nally arriving at the table look-up sheme for the riti networkare quite omplex; the table look-up arhiteture was seleted beause it overameseveral neuro-dynami problems that arose due to the multiple feedbak loops presentin the neuro-ontroller. The reader who is not interested in these details may skipthe next setion and move to the disussion of a reinforement learning algorithm inSetion 5.5 without loss of ontinuity. However, the analysis and solution to theseneuro-dynami problems is an important aspet in the design and implementation of4Some researhers in Arti�ial Intelligene do not lassify a table look-up arhiteture as a trueneural network 102



the neuro-ontroller. Thus, we inlude these details in the subsequent setion.5.4 Neuro-Dynami ProblemsIn this setion, we �rst disuss how the omplex, feedbak loops of the ator-ritiontroller introdue two neuro-dynami problems, and then we show why the a tablelook-up arhiteture for the riti network solved these problems.The �rst irular relationship in our agent stems from the interation between theator network and the plant. The ator network reeives the traking error e fromthe plant to produe a ontrol signal, û. This ontrol signal is fed bak to the plantand thus a�ets the future state of the plant. The ator network is trained on theinput/output pairs it experienes. Beause the ator net is tied to a plant, the stateof the plant ditates the training examples for the ator network. Our �rst irularrelationship arises between the ator network whih direts the state of the plant,and the plant whih ditates the training inputs for the ator network.The irular relationship beomes more omplex with the addition of the ritineural network. The riti network reeives its inputs (traking error, e, and ontrolsignal, û) from the plant and ator net respetively. Thus, the plant and ator netdetermine whih training examples the riti will experiene. In turn, the ritinetwork forms the gradient information that is used to train the ator network; theriti network auses hanges in the ator network.In summary, the plant a�ets both the ator network and riti network by di-tating whih training samples the neural networks experiene. The ator networkprovides an input to the plant that determines its future states. The riti networkprovides a training gradient to the ator network to determine hanges in the atornetwork's poliy. As a result of this omplex interation, the training examples forthe neural networks exhibit a haoti sampling distribution; the training samples willbe similar for extended periods of time, then suddenly, the training samples will shift103



Actor Net

Critic Net
Nominal

Systemexperience

actions
control gradient

Figure 5.3: Cirular Causality in the Ator-Criti Arhiteturewidely into a di�erent \operating regime".Intuitively, the sampling poliy is similar to the the Lorenz Attrator [Gleik,1987℄ whih looks like two irular rings adjoined at one intersetion point. In thisattrator, the state of the dynami system is on�ned to one of two nearly irularorbits for long periods of time; then the system state will suddenly jump into theother orbit. It is the nature of haoti mathematis that this jump between operatingregimes annot be predited. In the same way, the plant state (and hene trainingexamples) is on�ned to a small region of the plant state spae for large periods oftime. Then the plant state quikly hanges to a di�erent on�ned region of the statespae.The haoti sampling auses problems in onvergene of the weights for the twoneural networks. Beause training inputs are onentrated in one small part of thestate spae for a long period of time, the neural network tends to \memorize" thissmall operating regime at the expense of remembering training examples from otherparts of the state spae. We introdue two new terms, value migration and valueleakage to desribe this neuro-dynami phenomena. Value migration ours when aneural network weights hange so as to leave some parts of the state spae under104



represented while other parts of the state spae are heavily onentrated with neuralnetwork resoures. We de�ne value leakage as the phenomena in whih the fun-tion learned by a neural network is inorretly hanged as a result of a non-uniformsampling distribution.Value migration ours when neural network learning resoures are inorretlydistributed within the state spae of training examples. Here, we examine this generalphenomena as it spei�ally applies to the riti network. Reall the riti networkprodues an output (the value funtion) in response to a state/ation input pair,(e; û). The (e; û) inputs an be viewed as k-dimensional input vetors, and eahinput sample as a point in <k spae 5. The riti network is a funtion: <k 7! <.While <k is in�nitely large, in pratie the training inputs tend to be onentratedin a smaller subspae of <k determined by the physial limitations of the plant andthe ontrol signals of the ator network. The riti network does not need to map afuntion from the entire domain of <k to <, but instead only needs to map from arestrited region of <k to <.The neural network that implements the riti network uses omputational re-soures to perform this mapping. Depending on the spei� neural arhiteture, theseomputational resoures are hidden tanh units, rbf units, tables in a table look-upsheme, splines, or other related neural network omponents (see [Hertz et al., 1991;Haykin, 1994℄ for a detailed desription of neural networks as geometrial spae map-pings). Beause there are only a �nite number of omputational resoures availableto a neural network, it is ritial that the network loate them within the input spaeappropriately so as to provide the best possible approximation to the funtion beinglearned. For example, it does not make sense to loate hidden sigmoid units withina region of the state spae where there will be no training samples; this is a waste5The atual numerial value for k depends on the dimension of e and û.105



of the network's omputational resoures. Beause the orret loations for trainingresoures is not usually known a priori, part of the training routine for a neural net-work is to plae the network's omputational resoures in the orret loations in thestate spae; that is, the network's resoures should be loated among the dense areasof training samples in the input state spae.Typial neural network training algorithms make small hanges to the ompu-tational resoures ( for example, adjusting the input-side weights for a two-layer,feed forward network ) to loate the omputational resoures loser to input trainingvetors. Usually, these algorithms require a uniform sampling distribution so thattraining samples are drawn from all parts of the state spae. This prevents networkresoures from migrating toward any one over-sampled region of the input spae. Thisis preisely the problem that ours with our haoti sampling in the on-line, neuro-ontrol framework, beause we do not have ontrol over the distribution of trainingsamples.To overome value migration, we must either ensure a uniform sampling distribu-tion or we must �x the omputational resoures in parts of the state spae a priori;the latter option is the only viable option for our neuro-ontrol sheme. Throughinspetion of the traking error, e, and by knowing bounds on the ator network'soutput signal, û, we an estimate the subregion of the state spae, <k, in whih thetraining samples will be drawn. Our table look-up network, evenly distributes om-putational resoures (table entry boundaries) among this subregion of the input statespae. We do not hange the table boundaries as a result of training experiene.The disadvantage is that we annot �ne-tune the omputational resoures to better�t this subregion of training samples; but the advantage we an is that our tablelook-up network is immune to value migration.The seond neurodynami problem, value leakage, ours when the network's out-put funtion is adversely a�eted by an uneven sampling distribution. Tehnially,106



value migration is a subset of value leakage, but here, we use value leakage in refer-ene to additional neurodynami problems. Consider a neural network whose om-putational resoures are statially loated within the input state spae (the networkresoures will not hange as a result of training). Additionally, let these omputation-al resoures either be global or be loal with ontinuous ativation funtions. Mostneural network training algorithms update the output funtion (output weights, tableentries) in proportion to the ativation of the omputational resoures.Resoures that are global, will be fully ativated by a large number of inputs be-ause eah unit's region of ativation extends globally aross the input state spae.The output values orresponding to these resoures will hange as a result of inputsamples that fall within the region of ativation. Resoures that are loal and ontin-uous are fully ativated only by those input samples that fall within the loal region ofativation. However, these same resoures will be slightly ativated for input samplesthat our near to the loal region of ativation. Thus, these loal, ontinuous re-soures reeive a full training update for a small number of input samples, but reeiveslight training updates for other training inputs adjaent to the ativation region.These type of neural network omputational resoures, global or ontinuous andloal, require training samples that are uniformly distributed among the input statespae. With our haoti training samples, the network reeives a large number ofloally onentrated training samples at a time. This disrupts the output values ofeither global resoures or nearby ontinuously loal resoures. As a result, the neuralnetwork's weights are unable to onverge to the appropriate values.To overome this problem, we selet a neural network whose omputational re-soures are loal and disrete. The table look-up method meets both of these require-ments. These and other neurodynami problems are an area of ative researh. Afew groups have begun to answer parts of the overall problem; the interested read-er is direted to [Krethmar and Anderson, 1997; Krethmar and Anderson, 1999;107



Anderson, 1993; Sutton, 1996; Sutton and Barto, 1998℄ for more information.5.5 Neural Network Arhiteture and LearningAlgorithm DetailsIn this setion, we present the details of the neural networks and the robust, stable,reinforement learning algorithm. Figure 5.4 depits the ator and riti networks. Asummary of the details for eah omponent is listed here:
W V

u(k)

h mn

e(k)
e(k)

u(k)

Q(e,u)Ator CritiFigure 5.4: Network Arhitetures
Ator Net� Feed-forward, two-layer, neural network,� Parameterized by input and output weights, W and V ,� n (# inputs) determined by the ontrol task. For most tasks, this inludes thetraking error and possibly additional plant state variables. Also inluded is anextra variable held onstant at 1 for the bias input.� m (# outputs) determined by the ontrol task. This is the number of ontrolsignals needed for the plant input. 108



� h (# hidden units) A free variable we an hoose to be smaller for faster learningor larger for more expressive ontrol funtionality.� tanh hidden unit ativation funtions,� linear output unit ativation funtions,� e(k) is the input signal at time k. The signal is omposed of the traking errorand additional plant and ontroller internal state variables. Also inludes thebias input set to 1.� û(k) is the output signal at time k. Computed by the ator net via feed forwardomputation: �j = Pni=1Wi;j ei;ûk = Phj=1 Vk;j tanh(�j):� Trained via bak propagation (gradient desent). Training example providedby riti net.Criti Net� Table look-up,� Parameterized by table, Q,� n�1+m inputs determined by the ontrol task. The input to the riti networkinludes the ator net input, e(k) (without bias term) and the ator net output,û(k) signals. The ator net input has n� 1 signals (without bias term) and theator net output has m signals for a total n� 1 +m input signals to the ritinetwork. 109



Initialize: W,V = arbitrarily small random numbersQ = 0 (set table look-up entries to 0)Repeat /* Stability Phase *//* omputes maximum weight perturbations */BP = stability phase(P ,W ,V );/* Learning Phase *//* trains network weights */W ,V ,Q = learning phase(P ,W ,V ,Q,BP ,)Until ( desired traking performane level ahieved ORno further traking performane obtained )Figure 5.5: Stable Reinforement Learning Algorithm� A single output, the value funtion Q(e; û).� Trained via SARSA, a variant of reinforement learning [Sutton, 1996℄.The learning algorithm is omposed of two primary phases: a stability phase in whihwe use � or IQC to ompute the largest set of perturbations that an be added to theator net weights while still keeping the overall system stable, and a learning phase inwhih we use reinforement learning to train both the ator and riti neural networks.We start with the high-level desription of the algorithm and then present the detailsof eah of the two phases. Figure 5.5 lists the steps in the high-level desription,while Figure 5.6 and Figure 5.7 detail the steps in the stability and learning phases,respetively.We now desribe eah step of the Stability Phase algorithm as given in Fig-ure 5.6:� Step 1:The inputs to this routine are the ontrol problem, P , and the urrent atornetwork weights in W and V . 110



1. Inputs:� P : The ontrol system (used for � or IQC alulations),� W ,V : The urrent neuro-ontroller weights whih form B.2. Initialize the individual neural network weight perturbations in BP . Set eahperturbation, Bpi, proportional to its orresponding weight in B. (The rationalefor keeping the perturbations proportional is disussed at length in Setion 6.2.3and Setion 6.2.4 in the next hapter).Bpi = BiPB3. Set: Bbase = BP , minf = 1, maxf = 14. Arrange the overall system, P , and the LTI unertainty (with BP ) into theM �� LFT. Compute � (or IQC).5. If � (or IQC) indiates that the system is stable, thenWhile ( system is stable ) doBegin maxf = maxf � 2BP = Bbase �maxfreompute � (or IQC)End6. Else if � (or IQC) indiates that the system is not stable, thenWhile ( system is not stable ) doBegin minf = minf � 2BP = Bbase �minfreompute � (or IQC)End7. Redue the range between minf and maxf by:While ( maxf�minfminf < 0:05 )Begin test = minf + (maxf �minf)=2ompute � for BP = Bbase � testif stable, then minf = test, else maxf = testEnd8. Return Bbase �minf Figure 5.6: Stability Phase111



� Step 2:We must selet initial values for the perturbations in the BP matrix. We havez degrees of freedom in seleting the perturbations. Reall that z is the numberof weights in the ator network, z = nh + hm. We opt to initialize the per-turbations so that they are all some �xed onstant times their orrespondingweight in B. There are other ways to assign the initial values for perturbations.In Setions 6.2.3 and 6.2.4 we disuss why we use this partiular method forinitializing the perturbations.� Step 3:Bbase stores the initial set of perturbations. We will be assigning the atualperturbations in BP by multiplying Bbase by some other onstants. minf andmaxf are two suh onstants. We will ompute BP = minf � Bbase and BP =maxf � Bbase as two possible perturbation matries to use when omputing �.In general, we would like minf to be the largest onstant for whih � indiatesstability and maxf to be the smallest onstant for whih � indiates instability.Eventually, minf ats like a lower bound for stability, and maxf ats like anupper bound. However, in this initial step, we seed them both,minf andmaxf ,with the value of 1.� Step 4:We arrange the system into an LFT and ompute �. For all future � ompu-tations, we use this same LFT arrangement exept that we substitute in newvalues for BP , the perturbation matrix.� Step 5:If the initial value for maxf = 1 produes a stable system for �, then we willdouble the value of maxf until BP = maxf � Bbase produes an unstable �value. Thus, maxf lies in the set of onstants produing unstable systems.112



� Step 6:Similarly, if the initial value for minf = 1 produes an unstable system for �,then we will halve the value of minf until BP = minf �Bbase produes a stable� value. Thus minf is in the range of onstants that produe stable systems.� Step 7:At this point, minf is a onstant that produes stable systems, and maxf is aonstant that produes unstable systems. Our objetive is to �nd the onstantin between minf and maxf for whih the system is still just barely stable. This\ross-over point" represents the maximum perturbation sizes the system anhandle and still be stable. In this step of the algorithm, we use binary searh tohalve the distane between minf and maxf on eah loop pass. We stop whenwe are arbitrarily lose to the ross-over point (5% in our algorithm).� Step 8:minf is now very lose to the ross-over point into instability. Yet BP =minf � Bbase still produes a stable system. We return this BP matrix as aresult of the stability phase of the algorithm.We now desribe eah step of the Learning Phase algorithm as listed in Fig-ure 5.7:� Step 1:The inputs to this routine are the ontrol system (P ), the ator network weights(W and V ), and the riti network weights (Q). The allowable ator networkperturbations, BP , are also input. These perturbations are omputed in thestability phase; we use them to determine the allowable perturbation ranges,R, for eah weight in the ator net. The �nal input is , the halting riteria.The learning phase of the algorithm will ontinue until training auses oneof the ator network weights to exeed its perturbation range. If this never113



1. Inputs:� P : The system (used for � or IQC alulations),� W ,V : The urrent neuro-ontroller weights.� Q : The urrent table look-up values.� BP : Set of ator net perturbations (omputed in stability phase).�  : A riteria for halting the training.2. Initialize:� e = urrent state of system (traking error and possibly other variables).� û = urrent ator net ontrol ation.3. Take ontrol ation u = u + û and observe new state (traking error) e'.4. Choose next ontrol ation: û0 = ��greedy(e).� = tanh(We0)û0 = �V � with probability 1� �û0 = �V + random from 0:1(ûMAX � ûMIN) with probability �5. Train riti network:Q(e; û) = Q(e; û) + �((r � y +Q(e0; û0))�Q(e; û))6. Compute desired ator net output: û� = gradient searh(Q(e; �))7. Train ator network: V = V + �1�(û� � û)W = W + �2eV (1� �2)(û� � û)If W and V exeed perturbation ranges R, then retain previous values of Wand V and exit learning phase.8. Update state information: e = e0, û = û09. If perturbation riteria  is met, then exit learning phase. Otherwise, gotoStep 3. Figure 5.7: Learning Phase114



happens, then the algorithm would proeed inde�nitely. To prevent an in�niteloop situation, we provide additional halting riteria. In our ontrol tasks,this takes the form of a �xed number of training trials; after we train for themaximum number of samples, we exit the learning phase.� Step 2:We ompute the urrent traking error e by subtrating the plant output y fromthe referene signal r. We then add any additional signals required by the atornetwork inputs to form the e vetor. This \state vetor" e is then fed to theator network to produe the ontrol vetor û.� Step 3:We �rst ombine the ator net ontrol vetor û with the nominal ontrollervetor u to produe the overall ontrol vetor u. We feed the ontrol vetorto the plant and observe the new plant output y0. We then ompute the newtraking error e0.� Step 4:We use a well-known algorithm alled ��greedy to ompute the next ator net-work ontrol ation û0. The ��greedy algorithm uses the ator network outputwith probability 1 � � or adds a small random perturbation to the ator net-work output with probability �. This provides a natural exploration apabilityto allow our ator network to searh for better ations and not onverge toa suboptimal ontrol poliy too quikly. See [Sutton, 1996℄ for details on the��greedy algorithm.� Step 5:The riti network table stores the value funtion for our system. The tableis indexed by state/ation pairs: Q(e; û). Eah entry in the table refers to thevalue of a partiular state/ation pairing. Reall that value refers to the sum of115



the future traking errors over time. For example, if our system is urrently atstate e and we seleted ontrol ation û, then we should expet our future sum oftraking errors to be Q(e; û). If our system then moves to the next state/ation(e0; û0), we should expet our sum of future traking errors to be Q(e0; û0). Ifwe add the urrent traking error, r � y, to Q(e0; û0) we should expet this tobe equal to Q(e; û). Any di�erene between these two quantities is alled ourtemporal di�erene error. In reinforement learning, we ompute the temporaldi�erene error and then perform gradient desent to update the table entriesso as to minimize the temporal di�erene error. The learning rate is given by�. One additional feature is the disount fator of  6. For ontrol tasks thatdo not typially end after a �nite number of steps, the sum of future ontrolerrors will grow to in�nity and all the values in the riti network table look-upwill grow to in�nity. For these tasks, we use a disount fator identi�ed by theonstant  to keep the Q-values in the riti network �nite. We use 0.95 and0.90 for our disount fators in di�erent tasks. See [Sutton, 1996℄ for detailedinformation on disount fators in in�nite horizon, temporal di�erene learningalgorithms.� Step 6:In the next step, we use the bak propagation algorithm to train the atornetwork. Sine bak propagation is a supervised learning algorithm, we needa training exemplar, û�, for the ator network. We use the information in theriti network to ompute the training exemplar. For example, the system isurrently in a state spei�ed by the traking error e. Using e as an input, theator network produed a ontrol signal as output, û. This might not be the6The  used here is not to be onfused with our earlier use of  when onverting the nonlineartanh hidden layer to an unertainty blok. Reinforement learning algorithms have traditionallyused the symbol  as a onstant disount fator.116



best ontrol signal; there may be a better ontrol signal, û� whih minimizesthe sum of future traking errors. Beause the riti network stores the valuefuntions (sum of future traking errors), we an use the riti to �nd the\optimal" ontrol ation û�. First we de�ne a loal neighborhood around theator network's urrent output, Ûln. We do not want to searh globally forû� beause we want our ator net to make small inremental adjustments toits ontrol funtion output. We map out a grid of ontrol ations within theneighborhood Ûln to �nd the ontrol ation with the smallest value funtionaording to the riti network. We use this value as the training exemplar forthe ator net. Ûln = small loal neighborhood of ûû� = minû2ÛlnQ(eln; û)� Step 7:This step is the standard bak propagation algorithm for a two-layer, feed for-ward neural network with tanh hidden unit ativation funtions and linear out-put unit ativation funtions. See [Hassoun, 1995; Rumelhart et al., 1986a;Haykin, 1994; Hertz et al., 1991℄ for more information on the bak propagationalgorithm. Importantly, in this step we test to see if the weight updates to theator network would exeed the perturbation ranges spei�ed by BP . If the per-turbation range would be exeeded by the update, then we do not perform theweight update, exit the learning phase, and return the urrent network weightvalues W , V , and Q.� Step 8:We update the state information.� Step 9:At this point, we test to see if we have met the additional halting riteria117



spei�ed by input . If we have not, then we repeat the algorithm for a newtraining sample. Again, examples of halting riteria inlude a stopping after amaximum number of training iterations or a ondition to halt when the networkhas eased to improve ontrol performane. If we do not inlude the additionalhalting riteria, then the learning phase might ontinue inde�nitely as it ispossible that the neural network weights may never exeed the perturbationranges.

118



Chapter 6Case Studies
In the previous two hapters, we develop both the theory and the pratial arhite-ture for a robust reinforement learning neuro-ontrol agent. Spei�ally, Chapter 4introdues a framework in whih a neural network is reast as an LTI system; wepresent onditions on this network suh that the resulting ontrol system is stablewith �xed network weights (stati stability) and varying network weights (dynamistability). Chapter 5 onerns the details of onstruting an agent suitable for im-plementing the stati and dynami stability theory. Also in Chapter 5, we disusspratial design deisions required to �t the learning agent into the unique environ-ment of the ontrol agent.In this urrent hapter, we apply the learning agent to four example ontrol tasks.The purpose of this hapter is to serve as a ase study for the appliation of the stat-i/dynami stability theory to real-life ontrol problems. We intend to demonstratethat the theory is easily amenable to pratial ontrol appliation. The purpose ofthis hapter is not to provide an empirial study on the performane of this method,nor is it to ompare this learning agent's ontrol performane with other ontrol de-signs. However, we will show that the ontrol performane of our learning agent is atleast omparable to other ontrol methods in order to demonstrate that the statiallyand dynamially stable learning agent is able to perform well in pratie.The four example tasks we have seleted for our ase study eah a�ord a di�er-119



ent demonstrative purpose. The �rst two ontrol tasks are relatively simple from aontrol standpoint; both are dynami systems of simple enough omplexity that thereader an easily visualize the ontrol dynamis. The �rst task is a simple �rst-orderpositioning ontrol system. The seond task adds seond-order dynamis whih aremore harateristi of standard \physially realizeable" ontrol problems.The third ase study involves a hallenging distillation olumn ontrol task whihis seleted from a robust ontrol textbook [Skogestad and Postlethwaite, 1996℄. Thedistillation olumn task is MIMO (multi-input, multi-output) with highly unoupleddynamis that make this task a highly diÆult ontrol problem. The �nal ase studyonerns an HVAC (Heating, Ventilation, and Air-Conditioning) ontrol system. Weapply our robust ontrol agent to a model of a heating oil and disuss the suitabilityof applying our robust ontrol agent to simulation models.6.1 Case Study: Task 1, A First-Order PositioningSystemTask 1 is a simple non-mehanial positioning task. A single input alled the referenesignal, r moves on the interval [�1; 1℄ at random points in time. The plant output,y, must trak r as losely as possible. The system is depited in Figure 6.1
ry

-1 -0.5 0 0.5 1Figure 6.1: Task 1: First Order SystemThe plant is a �rst order system and thus has one internal state variable x. Itis the plant output, y, that must trak r. A ontrol signal u is provided by theontroller(s) to position y loser to r. A blok diagram of the system is shown inFigure 6.2. 120



-
r

Controller
K

Plant
G

+
e u y

Figure 6.2: Task 1: Nominal Control SystemAlthough the original task is posed in the ontinuous time, we onvert it to adisrete-time system for ompatibility with the digital learning agent. The dynamisof the disrete-time system are given by:x(k + 1) = x(k) + u(k) (6.1)y(k) = x(k) (6.2)where k is the disrete time step representing 0:01 seonds of elapsed time. Weimplement a simple proportional ontroller (the ontrol output is proportional to thesize of the urrent error) with Kp = 0:1.e(k) = r(k)� y(k) (6.3)u(k) = 0:1e(k) (6.4)Notie that the system is �rst order with none of the physially interpretable prop-erties suh as frition, momentum and spring fores.6.1.1 Learning Agent ParametersReall from Chapter 5 that the learning agent has a dual network arhiteture. Theriti network is responsible for learning the value funtion (mapping state variableand ontrol ation to ontrol performane) and the ator network is responsible forlearning the ontrol poliy (mapping state variables to ontrol ations).121



The riti network is a table look-up with input vetor [e; û℄ and the single valuefuntion output, Q(e; û). The table has 25 partitions separating eah input forminga 25x25 matrix. The ator network is a two-layer, feed forward neural network. Thetwo inputs are (e; 1) where the 1 is the �xed-input bias term. There are three tanhhidden units, and one network output û. The entire network is then added to theontrol system. This arrangement is depited in blok diagram form in Figure 6.3.

Plant

Actor Net

Critic Net

Nominal
Controller

r e

u

u u y

e

e gradient

+

+
+

-

Figure 6.3: Task 1: Control System with Learning AgentFor training, the referene input r is hanged to a new value on the interval [�1; 1℄stohastially with an average period of 20 time steps (every half seond of simulatedtime). We train for 2000 time steps at learning rates of � = 0:5 and � = 0:1 for theriti and ator networks respetively. Then we train for an additional 2000 stepswith learning rates of � = 0:1 and � = 0:01. Reall from Setion 5.5 that � is thelearning rate of the riti network and � is the learning rate for the ator network.In Setion 5.4 we disussed the reason for the di�erent learning rates: in order toensure that both networks onverge during learning, the riti network must learn122



faster than the ator network.In the above desription, we make several deisions regarding design issues suhas network sizes, network types, and learning rates. We must be expliit aboutthe motivations behind eah design deision. For the ator and riti networks, thenumber of inputs and outputs are predetermined by the task; Task 1 has one statevariable and one ontrol variable that neessitate the input/output sizes of the twonetworks. We use trial and error to test several di�erent numbers of hidden units forthe ator network; three hidden units seem to provide adequate funtional expressionfor learning the ator net's poliy. We aution that this trial and error approah is notan exhaustive or thorough empirial investigation into whih number of hidden unitsprovides the best results in terms of learning speed and overall ontrol performane.The trial and error testing simply allows us to quikly �nd network parameters (thenumber of hidden units in this ase) whih seem to work well in pratie. We applysimilar trial and error testing to arrive at the learning rates and the number of requiredtraining iterations. Regarding the type of network, we hoose a table look-up networkfor the riti net in order to avoid neuro-dynami problems; these are disussed ingreat detail in Chapter 5. The ator net is a two-layer feed forward net with tanhhidden unit ativation funtions as per the requirements also stated in Chapter 5: weneed a ontinuous funtion to implement the poliy in order to satisfy the theoretialrequirements of stati and dynami stability analysis.6.1.2 Stati Stability AnalysisIn this setion, we will assess the stability of neuro-ontrol system using both �-analysis and IQC-analysis. �-analysis is an optional software toolbox o�ered withthe Matlab ommerial software pakage. Simulink, also part of the Matlab toolboxolletion, allows ontrol engineers to depit ontrol systems with blok diagrams.We onstrut several of these Simulink diagrams in this hapter. Figure 6.4 depits123



the Simulink diagram for the nominal ontrol system in Task 1. We refer to this asthe nominal system beause there is no neuro-ontroller added to the system. Theplant is represented by a retangular blok that implements a disrete-time statespae system. The simple proportional ontroller is implemented by a triangular gainblok. Another gain blok provides the negative feedbak path. The referene inputis drawn from the left and the system output exits to the right.
Sum

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Plant−1

1

Controller

Figure 6.4: Task 1: Nominal SystemNext, we add the neural network ontroller to the diagram. Figure 6.5 shows theomplete version of the neuro-ontroller inluding the tanh funtion. This diagram issuitable for onduting simulation studies in Matlab. However, this diagram annotbe used for stability analysis, beause the neural network, with the nonlinear tanhfuntion, is not represented as an LTI system. Constant gain matries are used toimplement the input side weights, W , and output side weights, V . For the statistability analysis in this setion, we start with an ator net that is already fullytrained. The stati stability test will verify whether this partiular neuro-ontrollerimplements a stable ontrol system. In the next setion on dynami stability, wedemonstrate how we ensure stability while the ator net is training.Notie that the neural network (in blue) is in parallel with the existing proportionalontroller; the neuro-ontroller adds to the proportional ontroller signal. The otherkey feature of this diagram is the absene of the riti network; only the ator net isdepited here. Reall that the ator net is a diret part of the ontrol system while124



K

W

K

V

tanhMux

−1

1 y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Discrete Plant

1

Figure 6.5: Task 1: With Neuro-Controllerthe riti net, more of a meta-system, does not diretly a�et the feedbak/ontrolloop of the system. The riti network only inuenes the diretion of learning for theator network. Sine the riti network plays no role in the stability analysis, thereis no reason to inlude the riti network in any Simulink diagrams.Figure 6.6 shows the the LTI version of the same system. Reall from Setion 4.2that we replae the nonlinear tanh funtion with  omposed of a known �xed partand an unknown unertainty part. The upper path represents the �xed part (0:5)while the lower path implements the unknown unertainty (�0:5). The unertaintyis represented in Simulink by the irular input-output bloks.Again, we emphasize that there are two versions of the neuro-ontroller. In the�rst version, shown in Figure 6.5, the neural network inludes all its nonlinearities.This is the atual neural network that will be used as a ontroller in the system.The seond version of the system, shown in Figure 6.6, ontains the neural networkonverted into the LTI framework; we have replaed the nonlinear tanh hidden layerwith LTI unertainty. This version of the neural network will never be implementedas a ontroller; the sole purpose of this version is to ensure stability. Beause thisversion is LTI, we an use the �-analysis tools to ompute the stability margin of the125



1

K

W

K

V
Mux

K0.5

−1

0.5

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Discrete Plant

1

Controller

1

1

Figure 6.6: Task 1: With Neuro-Controller as LTILTI system. Again, beause the LTI system overestimates the gain of the nonlinearityin the non-LTI system, a stability guarantee on the LTI version also implies a stabilityguarantee on the non-LTI system.The next step is to have Matlab automatially formulate the LFT, and then toapply �-analysis. The Matlab ode for this step is shown in Appendix A. The Simulinkdiagram of Figure 6.6 is given as input to the Matlab �-analysis ommands. Reallfrom Setion 3.8 that ��(M) omputes the reiproal of the smallest perturbationthat will ause the system to be unstable. The only unertainty (perturbation) in thesystem originates in the neural network hidden layers. Reall we have also normalizedthe unertainty to have a maximum norm of 1. After normalization, if �(M) isomputed to be less than unity at all frequenies, then our system is guaranteed tobe stable. In fat, we would like � to be signi�antly less than unity, beause thisindiates that our system is very stable (the loser to 1, the loser to instability) andthe smaller � value gives us extra \room" in whih to adjust the network weights. Wewill be adding additional unertainty in the dynami stability setion and we wouldlike to have extra \stability room" for adjusting network weights during learning.Figure 6.7 shows the results of the � omputation plotted by frequeny. Reall that�-analysis operates by omputing the � value on a frequeny by frequeny basis. As126



seen in Figure 6.7, � attains a maximum of approximately 0:128 whih is signi�antlyless than 1; our system with neuro-ontroller is very stable.

10
−2

10
−1

10
0

10
1

10
2

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

0.125

0.13
Task1 mu plot: K=0.1, H=1

Figure 6.7: Task 1: �-analysisReall that IQC-analysis (integral quadrati onstraints) is an additional toolfor stability analysis [Megretski and Rantzer, 1997a; Megretski and Rantzer, 1997b;Megretski et al., 1999℄. IQC is a non-ommerial Matlab toolbox whih arrives atequivalent stability guarantees using di�erent methods. For IQC-analysis, we makesome slight hanges to the \LTI-version" of the Simulink diagram. Figure 6.8 de-pits the Simulink diagram ready to perform IQC stability analysis on Task 1. Thenonlinearity of the neural network is simpli�ed by the single IQC blok labeled oddslope nonlinearity. IQC provides a number of bloks for di�erent types of unertain-ties. The performane blok is another IQC blok that must be inluded in all IQCSimulink diagrams.When we run the IQC ommands, the automated software exeutes a feasibilitysearh for a matrix satisfying the IQC funtion. If the searh is feasible, the systemis guaranteed stable; if the searh is infeasible, the system is not guaranteed to be127



stable. IQC does not produe the frequeny-by-frequeny result of �-analysis; insteadit simply responds with a single feasible/infeasible reply. We apply the IQC ommandsto the Simulink diagram for Task 1 and �nd that the feasibility onstraints are easilysatis�ed; the neuro-ontroller is guaranteed to be stable. This reaÆrms our resultsobtained with �-analysis. See Appendix A for details on the IQC software ommands.
performance

odd slope nonlinearity

K

eyeV

K

W

K

V

x’ = Ax+Bu
 y = Cx+Du

State−Space

Mux

−1

0.1

1

Figure 6.8: Task 1: With Neuro-Controller as LTI (IQC)At this point, we have assured ourselves that the neuro-ontroller, after havingompletely learned its weight values during training, implements a stable ontrol sys-tem. Thus we have ahieved stati stability. We have not, however, assured ourselvesthat the neuro-ontroller did not temporarily implement an unstable ontroller whilethe network weights were being adjusted during learning.6.1.3 Dynami Stability AnalysisIn this subsetion we impose extra limitations on the learning algorithm in order toensure the network is stable aording to dynami stability analysis. In Chapter 4 wedeveloped a \stable reinforement learning algorithm"; in Setion 5.5 we detail thesteps of the algorithm. Reall this algorithm alternates between a stability phase anda learning phase. In the stability phase, we use �-analysis or IQC-analysis to omputethe maximum allowed perturbations for the ator network weights that still provide128



an overall stable neuro-ontrol system. The learning phase uses these perturbationsizes as room to safely adjust the ator net weights.To perform the stability phase, we add an additional soure of unertainty tothe Simulink diagrams of the previous setion. In Figure 6.9 we see the additionalunertainty in the green setion. The important matries are dW and dV . Thesetwo matries are the perturbation matries. In our previous analysis, we ombine allthe entries into one matrix alled BP . In this Simulink diagram, we must divide BPinto its two parts: one for the ator net input weights, W , and one for the ator netoutput weights, V . An inrease or derease in dW implies a orresponding inrease orderease in the unertainty assoiated with W . Similarly we an inrease or dereasedV to enat unertainty hanges to V .The matries WA, WB, V A, and V B are simply there for redimensioning thesizes of W and V ; they have no a�et on the unertainty or norm alulations. Inthe diagram, dW and dV ontain all the individual perturbations along the diagonalwhile W and V are not diagonal matries. Thus, Whxn and dWhnxhn are not di-mensionally ompatible. By multiplying with WA and WB we �x this \dimensionalinompatibility" without a�eting any of the numeri omputations. Similarly withV and dV .The stability phase algorithm interats with the Simulink diagram in Figure 6.9 to�nd the largest set of unertainties (the largest perturbations) for whih the systemis still stable. As a result of this proess, we now possess a very ritial piee ofinformation. We are now guaranteed that our ontrol system is stable for the urrentneural network weight values. Furthermore, the system will remain stable if we hangethe neural network weight values as long as the new weight does not exeed the rangeR spei�ed by the perturbation matries, dW and dV ( formally alled BP ). In otherwords, we alter network weight values and are ertain of a stable ontrol sheme aslong as the hanges do not exeed R. In the learning phase, we apply the reinforement129



32

1 K

eyeV

K

dW

K

dV

K

WB

K

WA

K

W

K

VB

K

VA

K

V

Mux

Mux1
0.5

−1

0.5

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Discrete Plant

0.1

Controller

1

32

1

Figure 6.9: Task 1: Simulink Diagram for Dynami �-analysislearning algorithm until one of the network weights exeeds the range spei�ed bythe additives.

performance

odd slope nonlinearity1

2.

gainW

2.

gainV

K

eyeV

K

dW

K

dV

K

WB

K

WA

K

W

K

VB

K

VA

K

V

Sum4
x’ = Ax+Bu
 y = Cx+Du

State−Space

STVscalar2STVscalar1

Mux

Mux1

−1

0.1

Controller

1

Figure 6.10: Task 1: Simulink Diagram for Dynami IQC-analysisWe have an additional Simulink diagram for dynami stability analysis with IQC.We use an STV (Slowly Time-Varying) IQC blok to apture the weight hange130



unertainty. This diagram is shown in Figure 6.10. Other than the di�erent Simulinkdiagram, the IQC dynami stability algorithm operates in exatly the same way as�-analysis. We simply use IQC-analysis to ompute the stability of the network foreah set of perturbations spei�ed in dW and dV .6.1.4 SimulationWe fully train the neural network ontroller as desribed in Setion 6.1.1 and Se-tion 6.1.3. After training is omplete, we plae the �nal neural network weight values(W and V ) in the onstant gain matries of the Simulink diagram in Figure 6.5. Wethen simulate the ontrol performane of the system. A time-series plot of the simu-lated system is shown in Figure 6.11. The top diagram shows the system with onlythe proportional ontroller orresponding to the Simulink diagram in Figure 6.4. Thebottom diagram shows the same system with both the proportional ontroller andthe neuro-ontroller as spei�ed in Figure 6.5. The blue line is the referene input r.The green line is the plant output y. The red line is the ontrol signal u.The system is tested for a 10 seond period (1000 disrete time steps with asampling period of 0.01). We ompute the sum of the squared traking error (SSE)over the 10 seond interval. For the proportional only ontroller, the SSE = 33:20.Adding the neuro-ontroller redued the SSE to 11:73. Clearly, the reinforementlearning neuro-ontroller is able to improve the traking performane dramatially.Note, however, with this simple �rst-order system it is not diÆult to onstrut a bet-ter performing proportional ontroller. In fat, setting the onstant of proportionalityto 1 (Kp = 1) ahieves optimal ontrol (minimal ontrol error). We have purposelyhosen a suboptimal ontroller in this ase study so that the neuro-ontroller hasroom to learn to improve ontrol performane.
131



0 1 2 3 4 5 6 7 8 9 10
−1.5

−1

−0.5

0

0.5

1

1.5
Task1: without neuro−controller

Time (sec)

P
os

iti
on

0 1 2 3 4 5 6 7 8 9 10
−1.5

−1

−0.5

0

0.5

1

1.5
Task1: with neuro−controller

P
os

iti
on

Time (sec)Figure 6.11: Task 1: Simulation Run6.2 Detailed Analysis of Task 1In this setion, we provide a more thorough analysis of Task 1. Spei�ally, we presenta detailed analysis of the neuro-dynamis and the trajetory of weight updates. Wealso provide a disussion of how the \stability" part of the algorithm a�ets thereinforement learning part. This analysis is possible beause of the simple dynamisinvolved in Task 1; we annot perform this analysis with the other three ase studiesbeause of the higher order dynamis. This analysis is the primary motivation forinluding Task 1 in our ase study despite the unhallenging ontrol problem thistask presents. 132



6.2.1 Ator/Criti Net AnalysisIn order to provide a better understanding of the nature of the ator-riti design, weinlude the following diagrams. Reall that the purpose of the riti net is to learnthe value funtion (Q-values). The two inputs to the riti net are the system state(whih is the urrent traking error e) and the ator net's ontrol signal (û). Theriti net forms the Q-values, or value funtion, for these inputs; the value funtion isthe expeted sum of future squared traking errors. In Figure 6.12 we see the valuefuntion learned by the riti net. The traking error e is on the x-axis while theator network ontrol ation û forms the y-axis. For any given point (e; û) the height(z-axis) of the diagram represents the expeted sum of future squared traking errors.We an take \slies", or y-z planes, from the diagram by �xing the trakingerror on the x-axis. Notie that for a �xed traking error e, we vary û to see a\trough-like" shape in the value funtion. The low part of the trough indiates theminimum disounted sum squared error for the system. This low point orrespondsto the ontrol ation that the ator net should ideally implement. We use the troughgradient to do bak propagation for the ator net. The surfae gradient in the ritinet is used to provide training exemplars for the ator net.It is important to keep in mind that the riti network is an approximation to thetrue value funtion. The riti network improves its approximation through learningby sampling di�erent pairs (e; û) and omputing the resulting sum of future trakingerrors. This \approximation" aounts for the bumpy surfae in Figure 6.12. Aftermore training, the surfae smoothes as it beomes loser to the true value funtion.This is also why it is important to have a faster learning rate for the riti networkthan for the ator network. Beause the value funtion learned by the riti networkdirets the updates of the ator network, we must be able to learn the gradient of theriti network faster than the ator network hanges its weight values.The ator net's purpose is to implement the urrent poliy. Given the input of133



−1

−0.3

0.3

1

−1
0

1
−1

0
0

0.5

1

1.5

2

2.5

3

3.5

Tracking ErrorControl Action

Q
(e

,u
)

Figure 6.12: Task 1: Criti Net's Value Funtionthe system state (e), the ator net produes a ontinuous-valued ation (û) as output.In Figure 6.13 we see the funtion learned by the ator net. For negative trakingerrors (e < 0) the system has learned to output a strongly negative ontrol signal. Forpositive traking errors, the network produes a positive ontrol signal. The e�etsof this ontrol signal an be seen qualitatively by examining the output of the systemin Figure 6.11.Note, these diagrams are only possible beause of the extraordinary simpliity ofthis ontrol task. Beause this ase study has �rst order dynamis, the system hasonly one internal state variable, the traking error e. With only one internal state,the output of the ator network an be viewed in a two-dimensional plot while theoutput of the riti network is aptured with a three-dimensional surfae plot. Thisvisualization is not possible with the higher-order tasks in the next three ase studies.134



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Tracking Error

C
on

tr
ol

 A
ct

io
n

Figure 6.13: Task 1: Ator Net's Control Funtion6.2.2 Neural Network Weight TrajetoriesFrom our disussion in previous setions, we know that the learning algorithm is arepetition of stability phases and learning phases. In the stability phases we omputethe maximum additives, dW and dV , whih still retain system stability. In thelearning phases, we adjust the neural network weights until one of the weights exeedsits range spei�ed by its orresponding additive. In this setion, we present a visualdepition of the learning phase for an agent solving Task 1.In order to present the information in a two-dimensional plot, we swith to aminimal ator net. Instead of the three tanh hidden units spei�ed earlier in thishapter, we use one hidden unit for this subsetion only. Thus, the ator networkhas two inputs (the bias = 1 and the traking error e), one tanh hidden unit, andone output (û). This network will still be able to learn a relatively good ontrol135



funtion. Refer bak to Figure 6.13 to onvine yourself that only one hidden tanhunit is neessary to learn this ontrol funtion; we simply found, in pratie, thatthree hidden units often resulted in faster learning and slightly better ontrol.For this redued ator net, we now have smaller weight matries for the inputweights W and the output weights V in the ator net. W is a 2x1 matrix and V isa 1x1 matrix, or salar. Let W1 refer to the �rst omponent of W , W2 refer to theseond omponent, and V simply refers to the lone element of the output matrix.The weight, W1, is the weight assoiated with the bias input (let the bias be the �rstinput to the network and let the system traking error, e, be the seond input). Froma stability standpoint, W1 is insigni�ant. Beause the bias input is lamped at aonstant value of 1, there really is no \magni�ation" from the input signal to theoutput. The W1 weight is not on the input/output signal pathway and thus there isno ontribution of W1 to system stability. Essentially, we do not are how weight W1hanges as it does not a�et stability. However, both W2 (assoiated with the inpute) and V do a�et the stability of the neuro-ontrol system as these weights oupythe input/output signal pathway and thus a�et the losed-loop energy gain of thesystem.To visualize the neuro-dynamis of the ator net, we trak the trajetories ofthe individual weights in the ator network as they hange during learning. Theweights W2 and V form a two-dimensional piture of how the network hanges duringthe learning proess. Figure 6.14 depits the two-dimensional weight spae and thetrajetory of these two weights during a typial training episode. The x-axis showsthe seond input weight W2 while the y-axis represents the single output weight V .The trajetory begins with the blue olorings, progresses to red, green, magenta, andterminates with the yellow oloring. Eah point along the trajetory represents aweight pair (W2,V ) ahieved at some point during the learning proess.The olors represent di�erent phases of the learning algorithm. First, we start136



−1 −0.5 0 0.5 1 1.5
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Weight W
2

W
ei

gh
t V

Figure 6.14: Task 1: Weight Update Trajetorywith a stability phase by omputing, via �-analysis or IQC-analysis, the amount ofunertainty whih an be added to the weights; the resulting perturbations, dW anddV , indiate how muh learning we an perform and still remain stable. The bluepart of the trajetory represents the learning that ourred for the �rst values of dWand dV . The blue portion of the trajetory orresponds to the �rst learning phase.After the �rst learning phase, we then perform another stability phase to omputenew values for dW and dV . We then enter a seond learning phase that proeedsuntil we attempt a weight update exeeding the allowed range. This seond learningphase is the red trajetory. This proess of alternating stability and learning phasesrepeats until we are satis�ed that the neural network is fully trained (more ommentsabout this in the next setions). In the diagram of Figure 6.14 we see a total of �velearning phases (blue, red, green, magenta, and yellow).137



6.2.3 Bounding BoxesReall that the terms dW and dV indiate the maximum unertainty, or perturbation,we an introdue to the neural network weights and still be assured of stability. IfW2 is the urrent weight assoiated with the input e, we an inrease or derease thisweight by dW and still have a stable system. W2+dW and W2�dW form the range,RW2 , of \stable values" for the input ator weight W2. These are the values of W2for whih the overall ontrol system is guaranteed to be stable. Similarly V � dVform the stable range of output weight values. We depit these ranges as retangularboxes in our two-dimensional trajetory plot. These boxes are shown in Figure 6.15.

−1 −0.5 0 0.5 1 1.5
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Weight W2

W
ei

gh
t V

Trajectory of Actor Network with Stability Regions

Figure 6.15: Task 1: Trajetory with Bounding BoxesAgain, there are �ve di�erent bounding boxes (blue, red, green, magenta, and yel-low) orresponding to the �ve di�erent stability/learning phases. As an be seen fromthe blue trajetory in this diagram, training progresses until the V weight reahes the138



edge of the blue bounding box. At this point we must ease our urrent reinfore-ment learning phase, beause any additional weight hanges will result in an unstableontrol system (tehnially, the system might still be stable but we are no longerguaranteed of the system's stability { the stability test is onservative in this respet).At this point, we reompute a new bounding box (red) using a seond stability phase;then we proeed with the seond learning phase until the weights violate the newbounding box. In this way the stable reinforement learning algorithm alternatesbetween stability phases (omputing bounding boxes) and learning phases (adjustingweights within the bounding boxes).It is important to note that if the trajetory reahes the edge of a bounding box,we may still be able to ontinue to adjust the weight in that diretion. Hitting abounding box wall does not imply that we an no longer adjust the neural networkweight(s) in that diretion. Reall that the edges of the bounding box are omputedwith respet to the network weight values at the time of the stability phase; these initialweight values are the point along the trajetory in the exat enter of the boundingbox. This entral point in the weight spae is the value of the neural network weightsat the beginning of this partiular stability/learning phase. This entral weight spaepoint is the value of W2 and V that are used to ompute dW and dV . Given that oururrent network weight values are that entral point, the bounding box is the limit ofweight hanges that the network tolerates without forfeiting the stability guarantee.This is not to be onfused with an absolute limit on the size of that network weight.We will return to address this point further in the next subsetions.The green trajetory reveals some insightful dynamis. The green portion of thetrajetory stops near the edge of the box (doesn't reah it), and then moves baktoward the middle. Keep in mind that this trajetory represents the weight hangesin the ator neural network. At the same time as the ator network is learning, theriti network is also learning and adjusting its weights; the riti network is busy139



forming the value funtion. It is during this green phase in the training that the ritinetwork has started to mature; the \trough" in the riti network has started to form.Beause the gradient of the riti network direts the weight hanges for the atornetwork, the diretion of weight hanges in the ator network reverses. In the earlypart of the learning (red and blue trajetories) the riti network gradient indiatesthat \upper left" is a desirable trajetory for weight hanges in the ator network. Bythe time we enounter our third learning phases in the green trajetory, the gradientin the riti network has hanged to indiate that \upper-left" is now an undesirablediretion for movement for the ator network. The ator network has \over-shot" itsmark. If the ator network has higher learning rates than the riti network, then theator network would have ontinued in that same \upper-left" trajetory, beause theriti network would not have been able to learn quikly enough to diret the atornet bak in the other diretion.Further dynamis are revealed in the last two phases. As an be seen from themagenta and yellow trajetories, the ator network weights are not hanging as rapidlyas they did in the earlier learning phases. We are reahing the point of optimaltraking performane aording to the gradient in the riti network. The point ofonvergene of the ator network weights is a loal optima in the value funtion of theriti network weights. We halt training at this point beause the ator weights haveeased to move and the resulting ontrol funtion improves performane (minimizestraking error) over the nominal system.This two dimensional plot of the trajetory enables us to demonstrate some ofthe ritial dynamis of the stable reinforement learning algorithm. The plot showshow the weights adjust during a typial reinforement learning session. More im-portantly, by super-imposing the bounding boxes, the relationship between a \pure"reinforement learning algorithm and the dynami stability proof is demonstrated.We show that the bounding boxes represent the urrently known \frontier" of safe140



neural network weight values { those weights whih implement stable ontrol in theator network. We also use this diagram to show how the riti network a�ets thelearning trajetory of the ator network weights. The disussion to this point pro-vides a reasonable overview of the neuro-dynami details of the stable reinforementlearning algorithm. However, there are some subtle implementation issues whih areritial to the operation of the algorithm. In the remainder of this subsetion weaddress a number of these more subtle issues. Namely, we disuss the details of om-puting dW and dV , how to deide when to stop training, and how the trajetoriesand bounding boxes might di�er for other ontrol problems.6.2.4 Computing Bounding BoxesDuring the stability phases, we ompute the maximum perturbations, dW and dV ,whih an be added to the ator neural network's input and output weights whilestill guaranteeing stability for the overall ontrol system. Eah individual hange toan entry in dW (or in dV ) will a�et the stability alulations of �-analysis and IQC-analysis. Given a urrent set of neural network weights (W;V ), we use �-analysis to�nd out how muh total unertainty the system an handle. We an then distributethis total unertainty among the various elements of dW and and dV 1. As a onse-quene of these multiple degrees of freedom, we now must �nd a method for seletingthe individual entries of the additive matries dW and dV .It is ritial to note that how we selet entries for dW and dV has absolutelyno impat on the ultimate weights that the ator neural network learns; this point isspelled out expliitly in Setion 6.2.5 below. Instead, our seletion of the perturbationmatries will impat only the eÆieny of our algorithm; the impat arises in the1In reality, �-analysis does not work this way. We annot ompute a total amount of unertaintyand then go bak to redistribute it among dW and dV . Beause � is largely a boolean test (T =stable, F = not stable), we an only preselet dW and dV and then use � to test their stabilitystatus. A possible diretion of future researh would be to develop a � tool that works in this way.141



number of omputationally expensive stability phases that must be exeuted. Byjudiious hoie of how we distribute unertainty among dW and dV , we an make thelearning algorithm faster omputationally, but we annot hange the weight updatetrajetory formed during learning.Refer bak to the bounding boxes of Figure 6.15. In this �gure, we have twoweights of interest, W2 and V . The matrix dW has two entries, dW1 and dW2 orre-sponding to the two entries in W . Similarly, dV has one entry orresponding to theone entry of V . We have already indiated that W1, whih is tied to the bias inputterm, has no e�et on the stability alulations. Thus dW1 is ignored or set to 0.We now possess two degrees of freedom in seleting unertainty for neural networkweights: dW2 and dV . These two additive matrix entries are two \dials" that wean turn to adjust the amount of unertainty assoiated with their respetive neuralnetwork weights. If we ompute � for the Simulink diagram and the result is less thanunity (indiating stability), then we are permitted to inrease one or both of thesedials. Conversely, if � indiates instability, we must derease the dials { derease theamount of weight unertainty. We an also inrease one dial, say dW2, while simul-taneously dereasing the other dial, dV , in order to reah the same �-analysis result.In general, �, whih produes our stability result, is not an expliit funtion availablefor introspetion; that is, we annot �gure out exatly how muh to turn a partiulardial in order to reah a desired stability result. Instead, we must simply set the dials(set the levels for dW and dV ) and then reompute � to asertain the result. It isvery muh a set-and-test proedure.Looking bak at the trajetory of Figure 6.15, we see how these \dials" ome in toplay. Reall that dW2 is the amount of unertainty assoiated with the W2 weight onthe x-axis; W2�dW2 forms the left and right edges of the bounding boxes. Similarly,V � dV2 form the upper and lower edges of the bounding boxes. The relative size ofdW2 vs dV determines the \shape" of our bounding boxes. Large dW2=dV produe142



wide and short boxes while small dW2=dV result in tall, narrow boxes. We an turnthe dW2 and dV knobs to reah any desired retangular shape that we wish. Roughly,though not exatly, the area of the retangle remains somewhat onstant due to the� stability omputations; the larger the area of the retangle, the loser to instability.The purpose of the stability phase is to �nd the largest area retangle whih is stilljust barely stable.One obvious question now remains: how do we set dW2 in relation to dV ? Dowe want tall, skinny boxes or short, wide boxes? The answer depends on the futuretrajetory of the network weights. If the ator net training results in weight hangesonly to V and notW2, then we would want tall skinny boxes to maximize the amountof unertainty assoiated with V and minimize the amount of unertainty assoiatedwith W2. However, we would not know this a priori and thus annot predit howfuture learning might progress 2.For the work in this dissertation, we selet the following method of relating dW2to dV . We set the ratio of dW2=dV to the ratio of W2=V and we keep dW2 and dV inthis ratio throughout a stability/learning phase. One the ratio has been set, we anthen inrease or derease the total amount of unertainty by multiplying dW2 and dVby the same onstant. The larger the onstant, the more total weight unertainty,and the loser to system instability. The stability phase of eah learning episode is amini-searh to �nd the largest suh onstant that just barely retains system stabilityguarantees. Keeping dW2=dV equal to W2=V has an intuitive appeal, beause it �xesthe relative amount of learning available to eah weight equal to the relative urrentsize of eah weight (small amounts of learning allowed for small weights, large amountsof learning allowed for larger weights). We do not laim that this is the optimal way2Atually, there are several ways in whih we might try to predit future learning. Two of theminvolve extrapolating from the urrent learning trajetory, and looking at the urrent gradient in theriti network. These and other options are disussed in Chapter 7 on future researh diretions.143



to assign dW2 and dV ; other possibilities are mentioned in the onluding hapter.This method has the other advantage that it is easily salable to the more ompliatedtasks with more states and larger neural network weights.6.2.5 E�ets on Reinforement LearningA drawbak of the bounding-box imagery is that one often asribes more restritivepowers to the bounding box than atually exist. It is ritial to note that the boundingbox does not neessarily form an absolute limit on the size of eah network weight.We must distinguish the loal limits imposed on neural network weights by eahbounding box from the absolute limits on neural network weights imposed by stabilityonsiderations.For example, suppose we start with an initial point in the weight spae (an initialset of network weights), ompute the bounding box using �-analysis, and then plot thebounding box on our two-dimensional trajetory diagram. This bounding box formsa loal limit on how muh weight hanges we an tolerate before going unstable. Intruth, we may be able to tolerate muh larger weight hanges, but from our urrentperspetive at the initial weight point, we an only ensure stability up to the edgeof the bounding box. We then exeute one reinforement learning step to make onesmall inremental adjustment to the network weights. We thus have a seond pointin the weight spae. These two points, the initial weights and the new weights, formthe �rst two points in our network weight trajetory. After this �rst learning stepis omplete, we ould reompute a new bounding box by exeuting a new stabilityphase (more � alulations). This seond round of stability alulations will resultin di�erent values for dW and dV and thus form an entirely new bounding box. Itis probable that this new bounding box enloses \safe" areas of the two-dimensionalweight spae that were not enlosed in the �rst bounding box. Thus, we have addedto the overall region of network weight values that implement stable ontrollers. This144



overall safe region is the absolute limit on neural network weight values. In pratie,we do not exeute a stability phase alulation at eah learning step, beause stabilityphases are omputationally expensive operations. Instead, we ontinue to learn untilwe reah the urrently known limits of the safe weight range, that is, until we hit theedge of our bounding box. Then we are fored to return to the stability phase if wedesire to make any further weight updates.Figure 6.16 illustrates a number of ritial points regarding the interation of thestability phases and the reinforement learning phases. In the enter of Figure 6.16 is asmall bounding box drawn in blak. There is an initial trajetory (also in blak) whihstarts at the enter of the bounding box and moves toward the lower right orner. Thebounding box is omputed during the stability phase. The initial weight point (W2; V )in the enter of the bounding box is used for the �-analysis omputation. The result ofthe stability phase is the pair (dW2; dV ) whih form the side and top/bottom portionsof the bounding box, respetively. The result of the � omputation is the largestamount of unertainty that the network an tolerate from our urrent perspetiveat the initial weight point (W2; V ). We may be able to tolerate more unertainty,but we annot asertain this by �-analysis performed on the urrent weight point(W2; V ). In fat, if we selet other initial weight points we will generate additionalbounding boxes. It is the overall union of all bounding boxes that truly indiates theentire sope of the \safe" network weight values: those network weight points whihimplement stable ontrol.In Figure 6.16 we have arti�ially drawn this global safety range as a red irle.For real ontrol tasks, it is unlikely that this region is the shape of a irle; we havemerely drawn it as a irle for simpliity. This region is real in the sense that insidethe irle are network weights whih implement stable ontrol and outside the irleare network weights whih do not implement stable ontrol. We ould perform anumber of stati stability tests for (W2; V ) points; those points inside the irle would145



2

Stable

V

W

Bounding Box

Improves Performance

Optimal Performance

Figure 6.16: Ator Network Weight Spae: Stability and Performane ImprovingRegionspass the stati stability test while those weight points outside the irle would failthe stati stability test.Although the global stable region exists, it is entirely possible that the networkweights may never reah the edge of this red irle during learning; all the boundingboxes might fall well within the interior of the irle. In fat, the trajetory inFigure 6.15 is suh an example where all our bounding boxes fall well within theinterior of our stability region. We disuss the situation in whih learning does ausethe trajetory to approah the edge of the global stability region at the end of thissubsetion.There is a seond region in Figure 6.16 whih is also of interest. Show in the blueretangle is the performane improving region. Again, the true performane improving146



region is not likely to be retangular in shape. In this region are the set of all neuralnetwork weights whih provide improved ontrol (smaller total traking error) over thenominal system without the neuro-ontroller. The interior points of this region formimproved neuro-ontrollers, the exterior points implement worse performing neuro-ontrollers, and the border points implement the same level of ontrol performane asthe nominal system 3. There exists a point (or points) within this region that providesthe best traking performane possible. This point is the set of ator network weightswith optimal performane.There are numerous ways in whih these two regions an interat. The size, shape,and overlap of the regions is determined by the ontrol task and by the neural networkarhiteture. One suh possible arrangement is for the performane-improving regionto be a subset of the stable region; all network weights whih improve the trakingperformane are also stable. The other possibilities are presented in the following listin whih SR is the stable region, PR is the performane-improving region, and OPis the optimal performane point:1. SR � PR2. PR � SR3. SR \ PR = ;4. SR \ PR 6= ;; OP 2 SR5. SR \ PR 6= ;; OP =2 SR6. SR = ;7. PR = ;3As a tehnial point, the origin is the point where all the network weights are zero whihis, essentially, the nominal system. Thus the origin is always on the border of the performane-improving region. 147



For the third ase, we have the unfortunate situation where the performane-improving region and stable region are disjoint, there will be no neural networkweights whih are both stable and provide improved ontrol 4. Cases (4) and (5)above are illustrated in Figure 6.16 where the two regions overlap, but are not on-tained within eah other. Here we must distinguish the ase where the point ofoptimal performane is or is not within the stable region. There are also the speialases where the stable set is empty (5); this ours if there are no possible neuralnetwork weight values whih will implement a stable ontroller. The other possibility(6) is that there are no neuro-ontrollers whih will improve the traking performaneover the nominal system; this would have been the ase if we had used an optimalontroller (Kp = 1) for example Task 1.Finally we ome to the main fous of this subsetion: bounding boxes do not a�etthe trajetory of weights enountered during learning. Essentially, the reinforementlearning part of the algorithm is oblivious to the existene of the bounding boxes.The network will sequene through the same set of weight values during learningwhether there are bounding boxes or not. The only exeption to this rule is whenthe bounding boxes happen to abut the global stability region (red irle). Only thendoes the \stability" part of the algorithm a�et the \reinforement learning" part ofthe algorithm. We disuss this speial ase immediately below. Consequently, howwe hose bounding boxes will not a�et what the network is able to learn, beausewe are not a�eting the weight trajetory formed during learning. The hoie of howwe make bounding boxes only a�ets how often we must re-ompute new boundingboxes.What happens as learning progresses and takes the weight trajetory lose to theedge of the global stability region? The �rst thing that happens is the ontrol system4Tehnially they annot be ompletely disjoint due to the trivial ase of the origin whih isalways \in" both sets. 148



edges loser and loser to an unstable operating point; there will be less room forunertainty beause more unertainty will push us over the edge of guaranteed sta-bility. As a result, the perturbations (dW2; dV ) omputed during the stability phasewill be smaller and smaller. Thus the area of the bounding box dereases. In thelimit as the weight trajetory approahes the edge of the global stability region, theperturbations and the area of the bounding box go to zero. It is at this point that nofurther learning an our. This is the only instane in whih the \stable reinfore-ment learning algorithm" di�ers from a regular reinforement learning algorithm. Infat, this is the ideal situation, we would like learning to proeed without interfereneuntil learning attempts to push the neuro-ontroller into a point where the overallsystem is not guaranteed to be stable.6.3 Case Study: Task 2, A Seond-Order SystemThe seond task, a seond order mass/spring/dampener system, provides a morehallenging and more realisti system in whih to test our neuro-ontrol tehniques.One again, a single referene input r moves stohastially on the interval [�1; 1℄; thesingle output of the ontrol system y must trak r as losely as possible. However,there are now frition, inertial, and spring fores ating on the system to make thetask more diÆult than Task 1. Figure 6.17 depits the di�erent omponents of thesystem.We use the same generi blok diagram for Task 2 exept that we must keep in mindthat the plant now has two internal states (position and veloity) and the ontrolleralso now has an internal state.
149



0 -0.5 -1.00.51.0         

yr

Mass

Friction

Spring

Figure 6.17: Task 2: Mass, Spring, Dampening System
-

r
Controller

K
Plant

G
+

e u y

Figure 6.18: Task 2: Nominal Control SystemThe disrete-time update equations are given by:e(k) = r(k)� y(k) (6.5)u(k) = Kpe(k) + Z Kie(k) (6.6)Kp = 0:01 Ki = 0:001 (6.7)x(k + 1) = � 1 0:05�0:05 0:9 �x(k) + � 01:0 �u(k) (6.8)y(k) = � 1 0 �x(k) (6.9)Here, the nominal ontroller is a PI ontroller with both a proportional term andan integral term. This ontroller is implemented with its own internal state variable.The more advaned ontroller is required in order to provide reasonable nominalontrol for a system with seond-order dynamis as is the ase with Task 2. Theonstant of proportionality, Kp, is 0:01, and the integral onstant, Ki, is 0:001. One150



again, we have purposely hosen a ontroller with suboptimal performane so thatthe neural network has signi�ant margin for improvement.6.3.1 Learning Agent ParametersThe neural arhiteture for the learning agent for Task 2 is mostly idential to thatused in Task 1. Here we have an ator network with two inputs (the bias term and theurrent traking error) and one output (the appended ontrol signal). We retain thethree hidden units beause, in pratie, three tanh hidden units seemed to providethe fastest learning and best ontrol performane.Again, for training, the referene input r is hanged to a new value on the interval[�1; 1℄ stohastially with an average period of 20 time steps (every half seond ofsimulated time). Due to the more diÆult seond-order dynamis, we inrease thetraining time to 10,000 time steps at learning rates of � = 0:5 and � = 0:1 for theriti and ator networks respetively. Then we train for an additional 10,000 stepswith learning rates of � = 0:1 and � = 0:01.6.3.2 SimulationIn Figure 6.19, we see the simulation run for the seond order task. The top portionof the diagram depits the nominal ontrol system (with only the PI ontroller) whilethe bottom half shows the same system with both the PI ontroller and the neuro-ontroller ating together. The blue line is the referene input r and the green lineis the position of the system (there is a seond state variable, veloity, whih isnot depited). Importantly, the Ki and Kp parameters are suboptimal so that theneural network has opportunity to improve the ontrol system. As is learly shown inFigure 6.19, the addition of the neuro-ontroller learly does improve system trakingperformane. The total squared traking error for the nominal system is SSE = 246:6while the total squared traking error for the neuro-ontroller is SSE = 76:3.151



0 1 2 3 4 5 6 7 8 9 10
−1.5

−1

−0.5

0

0.5

1

1.5
Task 2: Nominal System

P
os

iti
on

0 1 2 3 4 5 6 7 8 9 10
−1.5

−1

−0.5

0

0.5

1

1.5
Task 2: With Neuro−Controller

P
os

iti
on

Figure 6.19: Task 2: Simulation Run6.3.3 Stability AnalysisIn the previous setion, we demonstrate the ability of the neuro-ontroller to improveontrol performane. In this setion, we address the stability onerns of the ontrolsystem. In Figure 6.20 we see the Simulink diagram for dynami stability ompu-tations of Task 2 using �-analysis. This diagram is neessary for omputing themaximum additives, dW and dV , that an be appended to the ator neural networkweights while still retaining stability. These additives are omputed anew for eahpass through the stability phase. Then, during the learning phase, the ator net istrained via reinforement learning until one of the weight hanges exeeds the safetyrange denoted by the additives. The �nal weights used to produe the simulation152



diagram in Figure 6.19 were learned using this �-analysis Simulink diagram.
32

1 K

eyeV

K

dW

K

dV

K

WB

K

WA

K

W

K

VB

K

VA

K

V

Mux

Mux1
0.5

−1

0.5

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Discrete Plant

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Discrete Controller

Demux

1

32

1

Figure 6.20: Task 2: Dynami Stability with �-analysisWe also repeat the learning with IQC-analysis to arrive at similar results. TheSimulink diagram for IQC is shown in Figure 6.21. For IQC-analysis, we again makeslight modi�ations to the Simulink diagram suh as the IQC performane blok, theIQC odd-slope nonlinearity blok and the IQC slowly time-varying blok. Using theIQC stability ommand, the optimizer �nds a feasible solution to the onstraint prob-lem; thus the system is guaranteed to be stable. Again, this reinfores the identialstability result obtained with �-analysis.We perform three di�erent training senarios with Task 2. The �rst two trainingsenarios involve the stable reinforement learning algorithmwith �-analysis and IQC-analysis, respetively. In the third training senario, we train with only reinforementlearning and no stability analysis. All three training senarios result in similar ontrolperformane; all three produe similar weights for the ator network. The bottomhalf of Figure 6.19 depits the stable training episode using �-analysis but the other153



performance

odd slope nonlinearity1

1.

gainW

1.

gainV

K

eyeV

K

dW

K

dV

K

WB

K

WA

K

W

K

VB

K

VA

K

V

Sum4
x’ = Ax+Bu
 y = Cx+Du

State−Space

STVscalar2STVscalar1

−1

0.1

Controller

Figure 6.21: Task 2: Dynami Stability with IQC-analysistwo senarios produe almost idential simulation diagrams. However, there is oneimportant di�erene in the three senarios. While all three senarios produe a stableontroller as an end produt (the �nal neural network weight values), only the stable�-analysis and IQC-analysis senarios retain stability throughout the training. Thestand-alone reinforement learning senario atually produes unstable intermediateneuro-ontrollers during the learning proess.For the stand-alone reinforement learning senario (the one without the dynam-i stability guarantees) we demonstrate the ator net's instability at a point duringtraining. Figure 6.22 depits a simulation run of Task 2 at an intermediate pointduring training (the red shows the other state variable, veloity, and the teal repre-sents the ontrol signal, u). Clearly, the ator net is not implementing a good ontrolsolution; the system has been plaed into an unstable limit yle, beause of the atornetwork. Notie the sale of the y-axis ompared to the stable ontrol diagram of Fig-ure 6.19. This is exatly the type of senario that we must avoid if neuro-ontrollersare to be useful in industrial ontrol appliations. To verify the instability of thissystem, we use these temporary ator network weights for a stati stability test. �-154



analysis reports � = 1:3 and the IQC-analysis is unable to �nd a feasible solution.Both of these tests indiate that the system is indeed unstable. Again, we restate therequirement of stability guarantees both for the �nal network (stati weights) and thenetwork during training (dynami weights). It is the stable reinforement learningalgorithm whih uniquely provides these guarantees.

0 1 2 3 4 5 6 7 8 9 10
−30

−20

−10

0

10

20

30
Task2: Limit Cycle Imposed by Neuro−controller

Time (seconds)Figure 6.22: Task 2: Unstable Simulation RunIn summary, the purpose of Task 2 is to onstrut a ontrol system with dynamisadequately simple to be amenable to introspetion, but also adequately omplex tointrodue the possibility of learning/implementing unstable ontrollers. We see inthis task, that the restritions imposed on weights from the the dynami stability155



analysis are neessary to keep the neuro-ontrol system stable during reinforementlearning.6.4 Case Study: Distillation Column Control TaskThe primary objetive of this ase study is to illustrate the true advantage of thestable reinforement learning algorithm. Let us briey review the motivation of thealgorithm as we disuss how this ase study demonstrates the e�etiveness of a neu-ral network based, learning ontroller with stability guarantees. Reall the importantdistintion between the atual physial system being ontrolled (the physial plant)and the mathematial model of the plant used to onstrut a ontroller. The mathe-matial model will have di�erent dynamis than the plant, beause the model is LTI(linear, time-invariant) and beause the model is limited in the auray with whihit an reprodue the dynamis of the true physial plant. Controllers designed forthe LTI model may not perform well, and worse, may be unstable when applied onthe physial plant. This is the fundamental diÆulty that robust ontrol is aimedat solving. However, also reall that robust ontrol sari�es some performane as atrade-o� for guaranteeing stability on the physial plant. The stable reinforementlearning ontroller of this dissertation seeks to regain some of the lost performanewhile still maintaining stability.In ontrol appliations, we again emphasize the distintion between the true phys-ial plant being ontrolled and the mathematial model of the plant used to design aontroller. Reall that an LTI mathematial model is onstruted to approximate theplant; then a stable ontroller is designed for the model. Beause there is a di�erenebetween the physial plant and the mathematial model, the ontroller will operate d-i�erently on eah system. If the di�erene is slight, then the ontroller should provideexellent traking performane for both the model and the physial plant. However,if the di�erene between plant and model is not negligible, then the ontroller, whih156



is designed for and hene operates well on the model, may provide poor performanewhen implemented on the physial plant. In addition to the performane issue, theontroller may provide unstable ontrol on the physial plant.The tools of robust ontrol were developed to solve these model/plant di�ereneproblems. Robust ontrol introdues unertainty into the plant model so that themathematial model approximates not only the physial plant, but a whole lass ofpossible physial plants. By speifying values for the unertainty parameters, themodel approximates some spei� physial plant partiular to those parameters. Ifenough unertainty is built into the model, then there will neessarily be some spei�set of parameters whih exatly implements the dynamis of the true physial plant.It is not important that we ompute these exat parameters (in fat, it is impossible),it is only important that this set of parameters exists for our mathematial model.The seond step in robust ontrol is to design a ontroller whih provides the bestpossible ontrol performane for the entire set of possible parameterized plants. Thatis, the ontroller is designed to work well with all possible physial plants that an bespei�ed by the model. Furthermore, robust ontrol also guarantees the stability ofthe ontroller when implemented on any physial plant that an be realized by someset of unertainty parameters from the model.Figure 6.23 illustrates the di�erene between plant model and physial plant.Imagine that we an depit a plant as a point in plant-spae; the physial plantoupies one partiular point in plant-spae. The plant model, without unertainty,oupies another point in plant-spae. Beause the model is LTI and beause ourapproximation has limited auray, the model point and the plant point are typiallydi�erent. In robust ontrol we add unertainty to the plant model. Now the modelspei�es not a partiular point in plant-spae, but an entire region in plant-spae.Eah partiular set of values for the model unertainty parameters spei�es one pointin this model region. This region is depited as the irle around the plant point in157



Figure 6.23; it is the set of all possible realizable plants from the mathematial model.If the unertainty is large enough (the irle is wide enough), then the true physialplant is a member of the set of realizable plants { the mathematial model overs thephysial plant.
Plant
Model

Physical
Plant

Uncertainty 
RegionFigure 6.23: Mathematial Model vs Physial PlantRobust ontrol ahieves its stability guarantees at a ost. Neessarily, the modelunertainty must be large enough to be ertain that the physial plant is overed bythe model. Often the model is overly onservative in that it spei�es plants with moreunstable ontrol dynamis than exist in the real physial plant. As a result of beingoverly onservative, the robust ontroller must sari�e a degree of aggressiveness;this ontroller must lose some of its traking performane in order to ensure stability.The stable reinforement learning algorithm regains some of this lost performanewhile still retaining the stability guarantees.The distillation ontrol olumn will bring all these issues to the forefront. As thisase study is a bit lengthy and omplex, we break the analysis down into the followingsteps. First, we disuss the dynamis of the distillation olumn proess and show why158



it is a diÆult ontrol problem. We then present a deoupling ontroller, a typialapproah to solving this ontrol problem, and show why the deoupling ontroller failsto solve this ontrol problem; namely, the di�erenes between the LTI model and thephysial plant make the deoupling ontroller ine�etive. A robust ontroller is thendesigned and we see how the robust ontroller addresses the short omings of thedeoupling ontroller. Finally, we apply the stable reinforement learning ontrolleron top of the robust ontroller; the reinforement learner is able to regain some of thelost performane margin sari�ed in the robust ontrol design.6.4.1 Plant DynamisFigure 6.24 is Skogestad's depition of the distillation olumn [Skogestad andPostlethwaite, 1996℄. Without onerning ourselves with the rather involved hem-istry, we summarize the dynamis of the distillation olumn. The two output vari-ables, y1 and y2, are the onentrations of hemial A and hemial B, respetively.We ontrol these onentrations by adjusting two ow parameters: u1 = L ow andu2 = V ow. The referene inputs, r1 and r2, and the outputs are saled so thatr1; r2; y1; y2 2 [0; 1℄.Again, we model the distillation olumn proess with the blok diagram in Fig-ure 6.25. Sine the distillation olumn has two outputs and two ontrol variables, weuse a 2x2 matrix to apture the dynamis of the plant, G. Skogestad has sampled areal distillation olumn to arrive at the following LTI model:
G(s) = 0� 87:875s+1 �86:475s+1108:275s+1 �109:675s+1 1A (6.10)

Y (s) = G(s)U(s) (6.11)
159



y1

y2

A

B

L

V

r1

r2

Figure 6.24: Distillation Column Proess
-

r
Controller

K
Plant

G
+

e u y

Figure 6.25: Distillation Column Proess: Blok DiagramSine we implement the neuro-ontroller using a digital system, we approximate Sko-gestad's ontinuous-time plant given above with the following disrete-time, statespae system: x(k + 1) = Ax(k) +Bu(k) (6.12)y(k) = Cx(k) +Du(k) (6.13)where 160



A = � 0:99867 00 0:99867 � B = � �1:01315 0:99700�1:24855 1:26471 �C = � �0:11547 00 �0:11547 � D = � 0 00 0 � (6.14)See [Skogestad and Postlethwaite, 1996; Phillips and Harbor, 1996℄ for details on on-verting from ontinuous-time plants to disrete-time plants. The sampling interval,k, is one seond. In order to see why this is a diÆult ontrol problem, Skogestadomputes the singular value deomposition of the plant, G. We an ignore the 175s+1term in the denominator and ompute the SVD of only the numerator of G:
Gnum = 0� 87:8 �86:4108:2 �109:6 1A (6.15)

Gnum = � 0:625 �0:7810:781 0:625 �� 197:2 00 1:39 �� 0:707 �0:708�0:708 �0:707 � (6.16)From the SVD, Skogestad points out that inputs aligned in opposite diretions ([0:707,�0:708℄T ) produe a large response in the outputs (indiated by singular value of197.2). Conversely, inputs aligned in the same diretion ([�0:708, �0:707℄T ) produea minimal response in the output (singular value = 1.39). The distillation olumnplant is highly sensitive to hanges in individual inputs, but relatively insensitive tohanges in both inputs. Control engineers all this plant ill-onditioned meaning theratio of the largest and smallest singular values is muh larger than unity. Thus, thisplant is a rather hallenging ontrol problem.Here again we return to the distintion between the plant model and the phys-ial plant. The system, G, given by Equation 6.10 is a model of a physial plant.Skogestad olleted data on the steady-state behavior of a real distillation olumnand then onstruted G as an LTI model to approximates the physial plant. There161



are two primary reasons why the model and the physial plant will di�er. First,the model must be LTI to apply the robust ontrol design tools; the physial plantalmost ertainly ontains some non-LTI dynamis. Seond, beause a �nite amountof data has been olleted from the physial plant, our model only approximates thephysial plant; Skogestad selets the type of LTI model and the model parametersfor a statistial best-�t with the given plant data. But, the model will never be anexat �t for the physial plant.In order to apply the robust ontrol design tools, we must inorporate unertaintyinto the plant model so that the model overs the dynamis of the physial plant.Skogestad, who has the original data set available, selets the type and amount ofunertainty appropriate for this model. Multipliative unertainty is inorporated toeah input ontrol path, u1 and u2, in the amount of � 20% gain. Figure 6.26 showsthe system with 20% gain unertainty on eah input.
-

r +
e

Column
DistillationDecoupling 

Controller

20%

20%

u y

Figure 6.26: Distillation Column Model with Input Gain UnertaintyKeep in mind that we will never know the true dynamis of the physial plant.We an, however, be ertain that the dynamis of the physial plant an be exatlymathed by hoosing a possibly time-varying funtion whih inreases/dereases theinput path by a maximum of 20%. The size of the unertainty, � 20% on the inputpath, is typial for a ontrol problem like the distillation olumn.At this point, we would design a ontroller using the LTI model with unertainty.Then we implement the ontroller on the real distillation olumn to test its e�etive-162



ness on the physial plant. However, we do not have the distillation olumn available(nor did Skogestad) and thus we annot test our ontroller on the real system. In-stead, we onstrut a seond model of the system to represent the real system. Tosimulate our physial distillation olumn, we use the original model G and then am-plify input u1 by 20% while dereasing input u2 by 20%. Notie this falls withinthe bounds of the unertainty and thus should be overed by any ontroller designwhih aounts for the unertainty in the original LTI model. In summary, we designontrollers on the original LTI model G and then test the ontrollers on the simulatedphysial plant given by Gju1 ! 1:2u1; u2 ! 0:8u2.We present three ontrollers for the distillation olumn task. The �rst two on-trollers, given by Skogestad, are a deoupling ontroller and a robust ontroller. Thedi�erene between the LTI model and the [simulated℄ physial plant demonstrates theproblems with onventional ontrol tehniques. Skogestad's robust ontroller solvesmany of the problems with the deoupling ontroller. It is apparent that Skogestadseleted this ontrol problem spei�ally to motivate the approah of robust ontroldesign. The third ontroller we present is learned with our stable reinforement learn-ing sheme. Here we show that the learned ontroller o�ers the same advantages asthe robust design and is able to ahieve slightly improved traking performane.6.4.2 Deoupling ControllerNow that we have shed light on the plant G and its hallenging dynamis, we presentSkogestad's deoupling ontroller [Skogestad and Postlethwaite, 1996℄. The deou-pling ontroller uses advaned tehniques representative of urrent approahes toontrol design. The ontroller deouples the two inputs in order to overome theill-onditioned nature of the plant. Simply, the deoupling ontroller will invert thedynamis of the plant in attempt to have input u1 a�et only output y1 and inputu2 a�et only output y2. The deoupling ontroller is essentially the inverse matrix163



G�1. The details of the deoupling ontroller are given as:Kdeup(s) = 0:7s G�1(s) = 0:7(1 + 75s)s � 0:3994 �0:31490:3943 �0:3200 � (6.17)We implement Skogestad's deoupling ontroller and plot its dynami responsewhen applied to the LTI model. Figure 6.27 shows the plant response to a stephange in one of the inputs. As seen in the diagram, the output y1, shown in red,quikly rises to trak the step hange in the input u1 = 0! 1, shown in blue. Outputy2 (yan), has been \deoupled" from input u1 and thus remains onstant at y2 = 0.The deoupling ontroller appears to serve this diÆult ontrol task well.

0 10 20 30 40 50 60 70 80 90 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 6.27: Step Response: LTI Model with Deoupling ControllerNotie that the deoupling ontroller perfetly inverts the LTI model of the plant164



{ not the physial plant. The dynamis of the physial plant are unknown and thuswe annot design the deoupling ontroller to exatly invert the physial plant. Asshown in Figure 6.27, we expet the performane of the deoupling ontroller to beexellent on the LTI model. The hope is that the physial plant has dynamis similarenough to the LTI model that the ontroller will perform well on the physial plantalso.Figure 6.28 depits the step response of the deoupling ontroller on the simulatedphysial plant. Although the deoupling ontroller performs well on the plant model,the traking performane of the deoupling ontroller on the physial plant is ratherpoor. Output y1 rises to a lofty height of 6.5 before deaying bak to its desired valueof 1.0. Even worse, output y2 rokets up past 7.0 before dropping bak to 0; the\deoupling ontroller" is learly not deoupling anything in the physial plant.The poor performane of the deoupling ontroller on the real plant is a result ofthe deoupling ontroller being highly tuned to the dynamis of the LTI model; itexploits the model's dynamis in order to ahieve maximal performane. Even thoughthe dynamis of the physial plant are very lose (20% unertainty on the inputs is nota substantial unertainty), the deoupling ontroller's performane on the simulatedphysial plant is quite di�erent. The plant's ill-onditioned nature omes bak tostrike us here; it is fundamentally a diÆult ontrol problem and the unertainty willrender \optimal designs" like the deoupling ontroller non-robust.6.4.3 Robust ControllerTo address the problems enountered when the deoupling ontroller is implementedon the physial plant, Skogestad designs a robust ontroller [Skogestad and Postleth-waite, 1996℄. Here we dupliate Skogestad's work in designing a robust ontrollerusing the Matlab �-synthesis toolbox [Balas et al., 1996; Skogestad and Postleth-waite, 1996℄. The resulting robust ontroller is an eighth order (8 internal states)165



0 10 20 30 40 50 60 70 80 90 100
−1

0

1

2

3

4

5

6

7

8

Figure 6.28: Step Response: Physial Plant with Deoupling Controllerontroller that is too omplex to proess analytially. We implement the robust on-troller and see that good performane is ahieved for the LTI model (Figure 6.29)and the simulated physial plant (Figure 6.30).It is important to note that the robust ontroller does not math the perfor-mane of the deoupling ontroller on the LTI model. One again, this is beausethe deoupling ontroller exploits dynamis in the plant model to ahieve this extraperformane. The robust ontroller is \prohibited" from exploiting these dynamisby the unertainty built into the model. Thus, the robust ontroller will not performas well as a ontroller optimally designed for one partiular plant (suh as the LTImodel). However, the robust ontroller will perform fairly well for a general lass of166



0 10 20 30 40 50 60 70 80 90 100
−0.2

0

0.2

0.4

0.6

0.8

1

Figure 6.29: Step Response: LTI Model with Robust Controllerplants whih possess dynamis similar to the LTI model. In summary, we sari�e amargin of performane for the robustness of a robust ontroller.One of the ritiisms of robust ontrol is that the performane sari�e might belarger than neessary. A degree of onservativeness is built into the robustness designproess in order to ahieve the stability guarantees. The stable reinforement learningontroller of the next subsetion attempts to regain some of this lost performane.6.4.4 Stable Reinforement Learning ControllerNext, we apply the stable reinforement learning ontroller with the goal of regainingsome of the performane lost in the robust ontrol design. We add a neuro-ontrollerto the existing robust ontroller to disover the non-LTI dynamis whih exist in the167



0 10 20 30 40 50 60 70 80 90 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 6.30: Step Response: Physial Plant with Robust Controllerphysial plant but not the LTI model. The neuro-ontroller learns, via reinforementlearning, while interating with the simulated physial plant. In e�et, the reinfore-ment learner disovers more information about the dynamis of the physial plantand exploits this extra information not available to the robust ontroller.In the previous ase studies, the state information of the system is small. Task1 had just one state variable (x the position) while Task 2 had three state variables(position/veloity in the plant and a state variable for the ontroller). Furthermore,the dynamis of these �rst two ase studies were simple enough that the neuro-ontroller ould learn good ontrol funtions without using all the state information;only the traking error was required (whih is aptured in the position state variable168



mentioned above). For the distillation olumn, the state of the system is quite large.To apture the full state of the system at any point in time we require the following:� the two referene inputs: r1 and r2� the internal state of the robust ontroller: 8 states� the internal state of the plant: x1 and x2There are a total of twelve state variables. To train on the full state informationrequires a ator net with 13 inputs (one extra input for the bias term) and a riti netwith 14 inputs (two extra inputs for the \ations" of the ator net). These networksneed an extraordinary amount of memory and training time to sueed in their neuro-ontrol role. This issue is addressed in Chapter 7. Consequently, we selet a smallsubset of these states for use in our network. To the ator net, we use the two trakingerrors (e1; e2 { whih, again are essentially dupliates of the onentrations x1; x2) asthe two inputs to the ator neural network. The ator network has two output unitsfor the ontrol signals û1 and û2. We selet four hidden units for the ator network asthis proved to be the most e�etive at learning the required ontrol funtion quikly.The riti net is a table look-up. It is a four dimensional table with inputs ofthe state (e1; e2) and the ation (û1; û2). The resolution is ten for eah dimensionresulting in 104 \entries" in the table. The ator-riti network is trained for 500,000samples (representing 500,000 seonds of elapsed simulation time) during whih oneof the two referene inputs (r1; r2) is ipped f0! 1; 1! 0g every 2,000 seonds. Thelearning rates are � = 0:01; � = 0:001 for the riti and ator networks, respetively.We perform two training runs. The �rst training run ontains no robust stabilityonstraints on the neuro-ontroller. Reinforement learning is onduted withoutregard for bounding boxes and dynami stability analysis. As a result, the atornetwork implements several unstable ontrollers during the non-robust training run.An example of suh a ontroller is shown in Figure 6.31. We ondut a �-analysis169



stati stability test on these partiular ator network weight values and �nd � = 1:2.Reall, � > 1 implies unstable behavior. This ompares with the � = 0:22 ahievedfor the �nal weight values obtained during the stable training run disussed below.

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

1.5

2

Figure 6.31: Perturbed Distillation Column with Unstable Neuro-ontrollerIn the seond training run, we use the full stable reinforement learning algorithm.Using �-analysis for our dynami stability test, we transform the distillation olumninto the Simulink diagram in Figure 6.32. By using the dynami stability theorem, weguarantee that the neuro-ontroller learned via reinforement learning will never pro-due an unstable ontrol situation. After training is omplete, the network improvesthe traking performane as shown in Figure 6.33. Compare this result to the robustontroller alone in Figure 6.30. Although the two graphs seem similar, the addition170



of the neuro-ontroller improves the mean square traking error of 0.286 with therobust ontroller to 0.243. This is learly a distint gain in traking performane ofapproximately 15%.
32

1 K

eyeV

K

dW

K

dV

K

WB

K

WA

K

W

K

VB

K

VA

K

V

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Robust Controller

Mux

Mux1
0.5

−1

0.5

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Distillation Column

1

32

1

Figure 6.32: Simulink Diagram for Distillation ColumnIn the following table, we summarize the traking performane of various on-trollers by measuring the sum squared traking error.Sum Squared Traking ErrorPlant Model Real PlantDeoupling Controller 1:90x10�2 6:46x10�1Robust Controller 2:57x10�1 2:86x10�1Neuro-Controller Not Appliable 2:43x10�1In summary, the deoupling ontroller performs quite well on the plant model,but its performane on the physial plant is unaeptable. We would expet similarresults from \optimal ontrol" methods suh as H2 optimal design and H1 optimaldesign [Skogestad and Postlethwaite, 1996℄. The robust ontroller does not perform171



0 10 20 30 40 50 60 70 80 90 100
−0.2

0

0.2

0.4

0.6

0.8

1

Figure 6.33: Perturbed Distillation Column with Neuro-ontrollernearly as well as the highly optimized deoupling ontroller on the LTI model. How-ever, when applied to the physial plant, the robust ontroller halves the trakingerror of the deoupling ontroller. Even more impressive than the redution in trak-ing error is the signi�antly better step response of the robust ontroller. (CompareFigure 6.28 and Figure 6.30, be wary of the hanged y-axis in Figure 6.28). Finally,we add the neuro-ontroller. By applying the stable reinforement learning algorith-m, the system retains stability and we are able to improve the traking performaneover the robust ontroller by 15%. It should be noted that we enounter onsider-able diÆulty in ahieving this performane gain; muh of the diÆulty is attributedto the massive learning experiene and sensitive dependene on learning algorithmparameters. These problems are explored in the onluding hapter (see Chapter 7).172



6.5 Case Study: HVAC Control TaskThe HVAC (Heating, Ventilation, and Air Conditioning) problem is a diÆult ontrolproblem reeiving muh attention in reent and past researh. The present methodsfor ontrol are satisfatory in most ases, but there is signi�ant room for improvemen-t, both in terms of human omfort and partiularly energy savings. HVAC systemsare highly nonlinear with widely varying dynamis at di�erent operating points. It isdiÆult, if not impossible, to onstrut LTI models of the system whih exhibit dy-namis similar to the physial plant dynamis. Suh systems also inur highly variablegains at di�erent operating points. The di�erent omponents of an HVAC system,(heating oils, fans, dampers, et) are highly interative and annot be modeled asisolated units. HVAC systems depend heavily on unpreditable sheduling; hangesin weather onditions and unpreditable human ativities ontribute to the diÆultyof the HVAC problem. Traditional adaptive ontrol tehniques are often ine�etive,beause these tehniques make assumptions about the underlying dynamis of thesystem and the form of the system.There has been some suess with the introdution of neural networks into the H-VAC ontrol sheme sine the networks exel at disovering the unmodeled, nonlineardynamis. There has also been some initial suess using reinforement learning algo-rithms to further tune the ontrol proess. This researh suggests that neuro-ontrolis well-suited for the HVAC ontrol problem [Anderson et al., 1996℄.The researh for this dissertation is onurrent with a three year National Si-ene Foundation grant to study the appliation of robust ontrol and reinforementlearning to the HVAC ontrol problem [Anderson et al., 1998℄. In this HVAC study,we are onstruting an atual physial heating oil as a laboratory for neuro-ontroltesting. This is among the �rst attempts at implementing neuro-ontrol shemes onreal physial HVAC hardware. At the time of this writing, the heating oil onstru-tion is still in progress and is not available for testing. Future experiments with the173



heating oil hardware are disussed in Chapter 7. Figure 6.34 depits hardware ofthe heating oil experimental laboratory when it will be ompleted in the future.
Outside

Air

Return
Air

Damper

Damper Coil Fan

Water Flow

Meter

Controller

Computer

Thermostat

Boiler

Valve

Figure 6.34: HVAC Hardware LaboratoryIn lieu of hardware experiments, we onstrut a nonlinear software model of thesystem. We adopt a heating oil model from Underwood and Crawford and then alterthe parameters to �t our hardware [Underwood and Crawford, 1991℄. The nonlinearmodel exhibits many of the HVAC diÆulties disussed above and is therefore suitablefor testing and omparing di�erent ontrol shemes inluding those whih are neuralnetwork based and those whih are designed aording to robust ontrol priniples.Thus, this ase study is tested with the nonlinear software model and not on thephysial HVAC system.6.5.1 HVAC ModelsIn this subsetion, we present the detailed nonlinear software model used for theexperiments for this ase study. The heating oil (plant) has three internal statevariables, three external state variables, and one input variable.The three external state variables are the temperature of the air at the intakedamper, Tai, the temperature of the water at the input oil, Twi, and the ow rate174



of the air moving through the dut, Fa. The two temperatures are determined byambient environmental onditions and the air ow rate is onstant and determined bythe fan and the duts. None of these three state variables hange due to our ontrolsheme, hene we all them external state variables.The single plant input variable is the valve setting on the water oil. By hangingthe valve setting, we an inrease or derease the ow rate of the water in the heatingoil. Indiretly, we also a�et the output air temperature, beause the ow rate of thewater determines how muh thermodynami energy an be delivered from the boilerto the heating oil in the dut. The valve setting, an input to the plant, is the outputfrom the ontrollers.The three internal state variables for the system hange as a result of the valvesetting. The ow rate of water, Fw, is obviously diretly a�eted by the valve setting.In turn, this also a�ets the temperature of the water leaving the oil, Two, andultimately the temperature of the air leaving the oil, Tao. Tao is the state variablethat we desire to ontrol. Our ontrol performane is determined by how losely theoutput air temperature traks the referene signal, whih, in the HVAC ase, is thedesired thermostat setting or the set point.The disrete-time, dynami, nonlinear, HVAC model is spei�ed by the followingupdate equations:Fw = 6:72x10�10u3 � 2:30x10�6u2 + 2:18x10�3u; (6.18)Two = Two + 0:649FwTwi � 0:649FwTwo� 0:012Twi � 0:012Two + 0:023Tai + 0:104FwTai� 0:052FwTwi � 0:052FwTwo + 0:028FaTai� 0:014FaTwi � 0:014FaTwo; (6.19)
175



Tao = Tao + 0:197FaTai � 0:197FaTao+ 0:016Twi + 0:016Two � 0:032Tai+ 0:077FaTwi + 0:077FwTwo � 0:015FwTai+ 0:022FaTwi + 0:022FaTwo � 0:045FaTai+ 0:206Tai(k�1) � 0:206Tai; (6.20)
where u is the valve setting and Tai(k�1) refers to the air input temperature on theprevious time step.To onstrut traditional and robust ontrollers for the system, we must also derivean LTI model. Due primarily to the omplex dynamis of HVAC systems, a singleLTI model is not adequate for approximating the dynamis of the nonlinear system.Consequently, we limit ourselves to onstruting an LTI model that is reasonablyaurate for only a limited operating range (around a set point temperature withstati environmental variables). We use a Taylor Series expansion about the desiredoperating point to onstrut the LTI model of the system. Reall, we use the LTImodel for designing ontrollers and then use the nonlinear model (instead of thehardware) for testing the stability and performane of the ontrollers. The followingparameters speify the operating point for the Taylor Series expansion:u = 972:9 FW = 0:2785 (6.21)Two = 55:45 Twi = 78:0 (6.22)Tao = 45:0 Tai = 12:0 (6.23)The resulting linear model is spei�ed by:Fw = 0:2785� (3:863x10�4(u� 972:9)); (6.24)Two = 93:5445(Fw � 0:2785) + 0:792016(Two � 55:45) + 55:45; (6.25)176



Tao = 0:8208(Tao � 45:0) + 45:0 + 0:0553(Two � 55:45)+ 7:9887(Fw � 0:2785): (6.26)6.5.2 PI ControlAs PI ontrol is a dominant trend in the HVAC industry, we onstrut a PI ontroller(proportional plus integral) using state-of-the-art tuning laws [Cok et al., 1997℄. Thetraking performane of the PI ontroller when implemented on the nonlinear modelis shown in the top time-plot of Figure 6.35a. The ontrol performane is quite goodas the the PI ontroller has been �nely tuned to suit this partiular nonlinear model.The PI ontroller we used is given by:
u = 8<: 670 if u < 670Kpe+ R Kide if 670 < u < 14001440 if 1400 < u (6.27)where Kp = 135 and Ki = 13. As indiated by the equations above, the ontrollerhas hard limits at 670 and 1400 to reet the maximum valve opening and minimumvalve opening, respetively.6.5.3 Neuro-ontrolIn onstruting a reinforement learning ontroller for the heating oil, we must de-ide whih state variables to inlude as input signals to the neuro-ontroller. ThePI ontroller reeives only the traking error, e (whih is essentially the same as theinternal state variable Tao). There are other state variables governing the dynamis ofthe plant; there is extra information in these state variables that ould be exploitedby a ontroller to provide better ontrol performane. We must deide whih statevariables to use as inputs to the neuro-ontroller. By inluding more state variables,we provide extra information to the ontroller; this information may or may not beuseful for improved ontrol performane. However, additional ontrol inputs require177



0 50 100 150 200 250 300 350 400 450 500
35

40

45

50
HVAC: Nominal PI Controller

T
em

p 
(F

)

0 50 100 150 200 250 300 350 400 450 500
38

40

42

44

46

48
HVAC: Nominal PI Controller + Neuro−controller

T
em

p 
(F

)

0 50 100 150 200 250 300 350 400 450 500
−40

−20

0

20

40
Neuro−control Signal

Figure 6.35: HVAC Step Responsea larger neural network and hene additional training time. We must make a dif-�ult and omplex deision about whih subset of state variables provide the bestombination of ontrol performane and learning speed.We onstrut two di�erent neuro-ontrollers. In the �rst agent, we use minimalstate information of the plant and system; spei�ally, we submit only the trakingerror as input to the ator network. In e�et, this agent an only learn to improvethe ontrol by adjusting the P (proportional) omponent of the existing nominal PIontroller. The seond agent operates on the traking error and the three internal
178



sum squared traking errorPI Controller 5:26x10�1Neuro-Controller 1 5:28x10�1Neuro-Controller 2 5:18x10�1Table 6.1: Traking Performanestate variables of the nonlinear model: Fw, Tao, and Two 5.To arrive at the ideal size neural network (number of hidden layers) we test severaldi�erent on�gurations and �nd the following arhitetures to be the best in termsof learning and ontrol performane. Spei�ally, ten hidden units are used in theator net for eah neural network. We inrease the number of learning trails to twomillion with small learning rates. The �rst neuro-ontroller, with only the trakingerror and bias as inputs, uses a 10x10 table look-up for the riti net. The seondneuro-ontroller, with a total of four inputs, uses a four dimensional table with aresolution of 10 in eah dimension (10x10x10x10).The sum squared traking error of eah of the ontrollers is shown in Table 6.5.3.The �rst neuro-ontroller, with only the traking error as input, is not able to improvethe ontrol performane over the nominal PI ontroller alone. The seond neuro-ontroller, with the full state information of the plant, is able to improve ontrolperformane over the nominal PI ontroller by a slim 1.5%.Figure 6.35 shows the step response of the seond neuro-ontroller (with full stateinformation); it is virtually idential to the step response of the nominal PI ontrollerin Figure 6.35. This neuro-ontroller learns to produe no output ontrol signal formost ases. Only during a step transition in the referene input, the neuro-ontrolleroutputs a very small ontrol signal to be added to the PI ontrol signal. The neuro-5For these experiments we hold the ambient, external state variables onstant179



ontroller output is shown in Figure 6.35.There are several important aspets of this ase study worthy of brief disussion.First, the nominal PI ontroller provides fairly good traking performane already.PI ontrollers have been used in ontrol appliations for muh of the reent past; on-sequently, there are many exellent \tuning laws" available to ahieve relatively goodontrol performane. Again, due to system dynamis, we annot ahieve \perfet"ontrol de�ned as a zero traking error. Beause the PI ontroller is near optimal,there is little room for the reinforement learning neuro-ontroller.Seond, the �rst neuro-ontroller with only the traking error as input does notimprove ontrol performane over the PI ontroller alone. We should expet this sinethe neuro-ontroller is essentially attempting to �nd a better proportional omponentfor the PI ontroller; by ating only on the traking error, the neuro-ontroller isaugmenting the proportional term in the PI ontroller. We expet the PI tuning lawsto identify the nearly optimal proportional term already. Hene, there really is noexpetation for ontrol performane improvement by the �rst neuro-ontroller atingon the proportional term alone.Third, this ase senario is somewhat of an apples and oranges omparison. Asin the distillation olumn ase study, we should augment a robust ontroller withour stable reinforement learning agent. Instead, here we attempt to augment thePI ontroller. Although this PI ontroller does appear to implement stable ontrol,we are not mathematially guaranteed of the ontroller's stability properties as isthe ase with a nominal robust ontroller. This ase study niely illustrates thisfundamentally di�erent approah to ontrol. The PI ontroller is tuned for optimalperformane at the expense of stability guarantees. Typially, the ontrol designerwill then \bak o�" the aggressiveness of the PI ontroller; this usually results in astable ontrol sheme but we are still not guaranteed of this result. In robust ontrol,we start with a mathematial guarantee of stability and then attempt to �nd the best180



ontroller. The stable reinforement learning algorithm is an attempt to improveontrol performane over an already robust ontroller, not a non-robust ontrollerlike this PI ontroller.As a fourth point, we note that the seond neuro-ontroller applied to the heatingoil uses additional state information that is not available to the PI ontroller. Byexploiting this extra information, the neuro-ontroller may be able to implementbetter ontrol performane. However, the addition of more state variables to a neuro-ontroller might not always be the best solution; it may be the ase that a betterperforming ontroller an be found by using fewer state variables. The reason forthis ounter-intuitive relationship is that the added state information inreases theomplexity of the feedbak loop whih, in turn, allows more possibilities for unstableontrol. This may limit the size of neural network weights in order to guaranteeontrol. Essentially, by using fewer state variables we may have less instability todeal with and hene have greater exibility in the neuro-ontroller. This issue isrevisited in the onluding remarks of Chapter 7.As a onluding remark on this ase study, we might ask ourselves the question, ifthe PI ontroller provides exellent ontrol performane, then why are we interested inapplying our robust neuro-ontrol sheme to this task? The primary reason involvesthe di�erene between the real physial plant and the plant model. The physial plantwill have di�erent (and unknown) dynamis from the plant model. We still \tune" aPI ontroller for the physial plant, but we expet the performane of this ontrollerto be substantially less than the performane of the PI ontroller on the plant model.Essentially, there is likely to be more room for improved ontrol performane whenthe physial plant is involved. Our researh group will test this hypothesis when theheating oil laboratory onstrution is omplete. The other ruial distintion, whihis mentioned above, is that the PI ontroller has no mathematial guarantee of stablebehavior. 181



Chapter 7Conluding Remarks
7.1 Summary of DissertationThe primary objetive of this dissertation is a theoretial result in whih we ombinereinforement learning and robust ontrol to implement a learning neuro-ontrollerguaranteed to provide stable ontrol. We disuss how robust ontrol overomes sta-bility and performane problems in optimal ontrol whih arise due to di�erenes inplant models and physial plants. However, robust ontrol is often overly onservativeand thus sari�es some performane. Neuro-ontrollers are frequently able to ahievebetter ontrol than robust designs, beause they have nonlinear omponents and areadaptable on-line. However, neuro-ontrol is not pratial for real implementation,beause the diÆult dynami analysis is intratable and stability annot be assured.We develop a stati stability test to determine whether a neural network ontroller,with a spei� �xed set of weights, implements a stable ontrol system. While a fewprevious researh e�orts have ahieved similar results to the stati stability test, wealso develop a dynami stability test in whih the neuro-ontroller is stable even whilethe neural network weights are hanging during the learning proess. We also provethe orretness of both the stati and dynami stability tests.A seondary objetive of this dissertation is to demonstrate that the theoretialresults onerning neuro-ontrol stability are pratial to implement in real ontrolsituations; the implementation of our stable neuro-ontroller does not violate any of182



the assumptions in the proofs of stati and dynami stability. The dynami stabilitytheorem leads diretly to the stable reinforement learning algorithm. Our algorithmis essentially a repetition of two phases. In the stability phase, we use �-analysisor IQC-analysis to ompute the largest amount of weight unertainty the neuro-ontroller an tolerate without being unstable. We then use the weight unertaintyin the reinforement learning phase as a restrited region in whih to hange theneural network weights.A non-trivial aspet of our seond objetive is to develop a suitable learning a-gent arhiteture. In this development, we rationalize our hoie of the reinforementlearning algorithm, beause it is well suited to the type of information available inthe ontrol environment. It performs the trial-and-error approah to disovering bet-ter ontrollers, and it naturally optimizes our performane riteria over time. Wealso design a high-level arhiteture based upon the ator-riti design in early rein-forement learning. This dual network approah allows the ontrol agent to operateboth like a reinforement learner and also a ontroller. We address neuro-dynamidiÆulties peuliar to our ontrol situation; we solve these problems by seleting alow-level arhiteture with a two-layer, feed forward, neural network as the ator, anda disrete, loal, table look-up network as the riti.We apply our agent and stable reinforement learning algorithm to four ase s-tudies. The �rst two ase studies, a �rst-order task, and a seond-order task, arerelatively simple ontrol problems. However, their simpliity permits a detailed ex-amination of how the stable reinforement learning algorithm operates. We thenapply the agent to a hallenging distillation olumn ontrol task. In this task we�rst see how robust ontrol greatly improves upon the standard optimal ontrol teh-niques. We then apply the stable reinforement learning agent to the same task andimprove the traking performane by 15% over the robust ontroller alone while stillmaintaining stability. We also apply our agent to an HVAC model. We use this ase183



study as an example of where our stable learning agent might not perform betterthan other tehniques whih have no stability guarantees.In spite of the suess we demonstrate here, the stable, reinforement learningontroller is not without some drawbaks. First, more realisti ontrol tasks withlarger state spaes require orrespondingly larger neural networks inside the ontroller.This inreases the omplexity of the neuro-ontroller and also inreases the amountof training time required of the networks. For the simulated HVAC and distillationolumn tasks, the training requires signi�ant time on high speed omputers. Inreal life, the training time on a physial system ould be prohibitively expensive asthe system must be driven through all of its dynamis multiple times. Seond, therobust neuro-ontroller may not provide ontrol performane whih is better thanother \easier" design methods. This is likely to be the ase in situations where thephysial plant and plant model losely math eah other or ases in whih di�erenesbetween the model and plant do not greatly a�et the dynamis. The distillationolumn is spei�ally hosen as an example, beause small di�erenes between theplant and the model result in huge di�erenes in dynami responses; this is the idealsituation for our appliation. These problems and others are addressed in more detailin the remainder of this hapter. We disuss possible ways to overome some ofthese problems and to more fully understand the limitations of the neuro-ontrollerby introduing diretions in future work.7.2 Future Work with � and IQCIn this dissertation, we use �-analysis and IQC-analysis as tools to ompute thestability of a system ontaining a neural network whih is reast as an LTI blok andan unertainty blok. Essentially, we use � and IQC as a litmus tests for stability {either the system is stable or it is not stable. In addition to the binary indiation(stable/not stable) we reeive a little more information in the ase of �-analysis. This184



stability analysis tool produes a number whih gives us an approximate idea of howstable or unstable the system is 1. It is ritial to note that no additional informationis produed as a result of � or IQC. A very promising diretion of future researh is toinvestigate both �-analysis and IQC-analysis to see if additional stability informationis available to assist in seleting a neuro-ontroller. In this setion we look at a fewof these onepts.We examine a lass of issues whih we refer to as neural network balane issues.Consider the standard two-layer, feed forward neural network that we employ as theator (ontroller). It is ritial to realize that there is not a one-to-one mappingbetween neural networks and output funtions. Two networks of exatly the samedimensions an have di�erent weight values and still produe exatly the same outputfuntion. Similarly, networks an have a di�erent number of hidden units and alsostill produe the same output funtion. In some irumstanes the neural networkfuntions are approximately idential; in other ases, the output funtions are exatlyequivalent. We use the term neural network balane to refer to the fat that we anshu�e, or re-balane, the weights in a neural network to ahieve the same outputfuntion.Given the fat that we an ahieve the same neural network output funtion withdi�erent neural networks of both di�erent sizes and the same size, we need to examinepossible motivations for seleting one neural network over another. From a ontrolstandpoint, the only ritial aspet of the neural network is its output funtion. Twodi�erent networks whih ompute the same output funtion are equivalent from theontrol perspetive; there is no reason to hoose one network over another. However,from a stability standpoint there might be substantial di�erenes in the stabilityproperties of two neural networks produing the same output funtion. The network1With � = 1 we are just barely unstable. The smaller � is below 1, the more stable the system.The more � is greater than 1, the more unstable the system.185



whih is more stable is the more desirable hoie.We have onduted a preliminary experiment along these lines. Consider thetwo-layer, feed forward, tanh hidden layer, neural network labelled as Network A inFigure 7.1. Network A has one input, one hidden unit, and one output; W1x1 = w isthe single input weight and V1x1 = v is the single output weight. We onvert NetworkA into an LTI blok with unertainty and then plae the onverted network into asmall feedbak ontrol system. We ompute the stability of the feedbak system by�nding the � value for the system.
w

w

w

v

Network A

Network B
v/2

v/2

Figure 7.1: Balaning NetworksWe onstrut a seond neural network, Network B, also shown in Figure 7.1. Thisnetwork is idential to Network A exept that it has two hidden units instead ofone. The input weight for both hidden units is w. This is the same input weight asused in Network A. Thus all three hidden units (one hidden unit in Network A andtwo hidden units in Network B) all implement the same funtion, or feature, at thehidden layer. The two output weights for Network B are both set to v2 . It is not hardto see that Network A and Network B produe exatly the same output funtion;186



network B simply uses two hidden units instead of Network A's single hidden unit.We have taken the hidden unit in Network A and split it to form Network B's twohidden units. We then onvert Network B into LTI plus unertainty and ompute its� number. It turns out that the � value for both networks is idential. In fat, werepeat this experiment by forming additional networks with �ve and ten hidden unitswith output weights of v5 and v10 respetively. These networks also produe the same� value. All these networks are equivalent both in terms of their output funtionsand in there stability properties.The results of the above mini-experiment are not surprising; all the \re-balaning"was performed within the LTI blok and had no e�et on the unertainty. We do nothave to know muh about �-analysis or IQC analysis to be able to predit thatsplitting the output weights will have no e�et on the stability of a neural networkin the feedbak system. However, a more diÆult question is to ask what happensto the stability analysis when re-balaning is done at the input layer. There areat least two immediate variants of this ase. We ould have two neural networkswith the same number of hidden units but di�erent input/output weight values. Theseond ase involves networks with di�erent numbers of hidden units (and di�erentinput/output weight values). In both these ases, we ould formulate neural networksthat produe idential or nearly idential output funtions but might possess widelyvarying � values when inorporated as part of a feedbak system.These are key issues ertainly worthy of investigation. If we ould disover a re-lationship between stability and network weight balaning, then we ould selet net-works with fewer (or more) hidden layers in an attempt to produe neuro-ontrollerswith higher stability margins. We might also disover a neural network weight re-balaning algorithm to systematially adjust the network weights in an attempt tokeep the same output funtion but inrease the stability margin.A separate but related issue of weight balaning is omputing a �-gradient. The187



bak propagation algorithm used to train the weights in the neural network performsa gradient desent searh through the weight spae. The gradient is provided by thevalue funtion in the riti network. This gradient determines the diretion of move-ment through the weight spae. There must ertainly also exist a stability gradientin the weight spae. There will be diretions of weight updates whih inrease thestability of the system and diretions of weight updates whih derease the stabili-ty of the neuro-ontrol system. By ombining the two gradients, we an train theneural network in a diretion that both improves ontrol performane (value funtiongradient) and maintains stability (stability gradient).For the ator network we selet the two-layer, feed forward neural network. Thisnetwork is both ontinuous and has hidden units whih extend globally over theinput spae. We opted for this network arhiteture in the ator net, beause theseontinuous/global properties are desirable for both omputing good ontrol funtionsand beause there are amenable to the stability analysis. However, other neuralnetwork arhitetures are also possible. Though they are likely to introdue a set ofextra ompliations, these other network arhitetures might have di�erent stabilityproperties. Spei�ally, we believe it might be advantageous to use loal, ontinuousunits for the network suh as those in a radial basis funtion network with gaussianunits. Beause the units do not extend aross large regions of the input spae, stabilityompliations might be loalized to some parts of the inputs spae; other \safer" andmore stable regions might be able to experiene additional training without adverselya�eting the stability of the overall system. Certainly this issue is worthy of furtherinvestigation.Clearly the relationship between the neural network funtion, the neural networkstruture, and the omputation of � (and IQC) opens a veritable Pandora's Box ofunanswered questions. There is ample opportunity to extend our researh in thisdiretion. These questions ould develop relationships and theory in new areas of188



neuro-ontrol.7.3 Future Work with Neural Network Arhite-tureWhile the primary goal of this dissertation is the establishment of the stati stabilitytheorem and the dynami stability theorem, the seondary objetive is to demonstratethat these two theorems are appliable in pratial ontrol situations. Chapter 5outlines the design of a learning agent whih is able to ahieve this latter objetive.During the agent's development, we enountered a number of tehnial problems forwhih we were able to �nd a solution. While these solutions overame our diÆulties,perhaps these were not the best solutions. We return to address a few of thesediÆulties and point out other, yet unexplored, alternatives for the design of thestable reinforement learning agent.A number of these alternatives an be ategorized under the heading of \issueswith neural network size seletion". For eah spei� ontrol problem, we selet anappropriate size for the ator network (and hene for the riti network). Here, weuse network size to refer to both the number of hidden units and the number ofinput inputs. First we address those size issues onerning only the number of hiddenunits. There are valid task-spei� reasons to inrease the number of hidden unitsand valid neural network related reasons to derease the number of hidden units.The primary reason to inrease the number of hidden units in the ator networkis to inorporate more funtion approximation resoures in the network. To someextent, the omplexity of the ontrol funtion that we desire to learn with the atornetwork ditates how many hidden tanh units are required within the hidden layer. Amore ompliated ontrol funtion will require more hidden units to ahieve the samelevel of approximation auray. There are also valid reasons to keep the number ofhidden units small. Empirial evidene indiates that a network with more hidden189



units requires more training time to onverge. These issues ertainly are not new tothis dissertation but they do play a key role in seleting a good neuro-ontroller. Anumber of good referenes indiate ative researh in this area of neural networks.See [Vidyasagar, 1997; Vapnik, 1995; Vapnik, 1998℄ for a review of urrent researhin network size seletion, funtion approximation, and training time.In addition to the network size issues disussed above, we have additional hoiesto make onerning neural network design in ontrol situations. These additionalhoies stem from the large number of system state variables in many ontrol systems.At any moment in time, eah ontrol system is ompletely identi�ed by the stateinformation in the system. This state information inludes state variables of the plant,state variables of the nominal ontroller, referene input signals, external disturbaneinput signals, and possibly other soures of state information. The total number ofstate variables in a partiular system an grow to be quite large. The distillationolumn proess has a total of 12 state variables. (Atually, there were 22 initiallyuntil we redued the robust ontroller from 18th order to 8th order using the sysbalMatlab ommand).The goal of the ator network (ontroller) is to use the state information to pro-due a ontrol signal that is both stable and results in good traking performane.Minimally, we use the urrent traking error as an input to the neuro-ontroller; thisis the ase with the example tasks in the �rst two ase studies and one of the networksin the HVAC task. However, the other state variables in the system likely ontaininformation that an be used to make better ontrol deisions. We ould inludea subset of the state variables as additional inputs to the ator network. However,all state variables are not reated equal. From the neuro-ontroller's perspetive ofmaking sound ontrol deisions, some state variables ontain more information thanothers. Neural networks designers fae a hoie of whih of these state variables touse in the neural network. One possibility is to use all state variables. This has the190



advantage of ensuring the network has all available information; but, this approahis saddled with the major drawbak of inreased training time. Those state variablesthat do not possess ontrol-deision information will at as noise in the input trainingdata. This is espeially true if only a few of the state variables ontain a majority ofthe ontrol information. Not only does the network have to �lter through the noisyinput hannels to disover those rih in ontrol information, but the network willalso be unneessarily larger in order to aommodate the extra inputs. The otherapproah is to hoose a subset of the state variables for input to the ator network.The hallenge is to �nd those state variables ontaining the information most relevantto making improved ontrol deisions.7.4 Future Work with HVACOur results in applying stable neuro-ontrol to HVAC are preliminary. As disussed inSetion 6.5, we are in the proess of onstruting a physial HVAC plant. At the timeof this dissertation work, only the HVAC plant model is available for testing. ThePI ontroller designed for this model already ahieves exellent performane. Thus,the neuro-ontroller is unable to improve upon this performane signi�antly. Whenonstrution of the physial plant is omplete, we an then develop a better HVACheating oil model by performing empirial step-response studies on the physialplant. Then an LTI model an be developed from these studies. At that point, we anapply modern optimal ontrol design tehniques as well as robust ontrol tehniquesto the plant model. Upon testing them on the physial plant, we will be able toasertain whether their performane is aeptable and whether a neuro-ontroller,trained on the physial plant, is able to further improve ontrol performane.
191



Appendix AStability Analysis Tools
A.1 �-analysisThe ommands here indiate how we used the � toolbox. Further details are availablein the ode listings in Appendix B.[a; b; ; d℄ = dlinmod(0task1 mu10; 0:01); (A.1)sys = pk(a; b; ; d); (A.2)dlinmod is the ommand whih atually onverts the diagram into an LFT systemwhere 'task1 mu1' is the name of the diagram �le and 0:01 is the sampling period ofthe disrete-time plant. pk is a Matlab ommand whih plaes the LFT into a moreonvenient format; the LFT is stored in a variable alled sys.Next we will perform �-analysis on the LFT system. The following Matlab om-mands ompute � for the system:om = logspae(�2; 2; 100); (A.3)blk = [1 1℄; (A.4)sysf = frsp(sys; blk; 0:01); (A.5)bnds = mu(sysf; blk); (A.6)192



where om is the frequeny range that we will ompute � over. blk is the format ofthe struted unertainty; in this ase the unertainty is a 1x1 blok beause we haveonly one hidden unit in the neural network. frsp omputes the frequeny response ofthe system and stores it in a vetor sysf. Finally mu is the ommand whih omputes� for this frequeny response [Balas et al., 1996℄.A.2 IQC-analysisIQC-analysis is straight forward as all the work is done in onstruting the Simulinkdiagram. One the Simulink diagram is omplete, simply run iq gui with the diagramname supplied as an argument. The IQC ommand reads the Simulink diagram fromthe disk; hanges made to the open �le will not be inorporated unless those hangesare �rst saved.

193



Appendix BSoftware Listing
This appendix ontains most of the ode used to generate the results obtained forthis dissertation. All ode is written in the Matlab programming language for om-patability with the � and IQC toolboxes.

runit.mThis ommand simulates the distillation olumn task with the nominal ontrolleronly.funtion [x,y,u,e℄ = runit(r,AK,BK,CK,DK)%[x,y,u,e℄ = runit(r,AK,BK,CK,DK)% r is a fixed referene input[kk,sr℄ = size(r);[k1,k1℄ = size(AK);A = [0.99867, 0; 0, 0.99867℄;B = [-1.01315, 0.99700; -1.24855, 1.26471℄;194



C = [-0.11547, 0; 0, -0.11547℄;D = [0, 0; 0, 0℄;e = 0;x = zeros(2,sr);k = zeros(k1,sr);y(:,1) = C * x(:,1);start = 300;
for i = 1:sr-1err = r(:,i) - y(:,i);k(:,i+1) = AK*k(:,i) + BK*err;u(:,i) = CK*k(:,i) + DK*err;u(1,i) = u(1,i) * 1.2;u(2,i) = u(2,i) * 0.8;x(:,i+1) = A*x(:,i) + B*u(:,i);y(:,i+1) = C*x(:,i) + D*u(:,i);err = r(:,i) - y(:,i);if ( i > start )e = e + sum(abs(err));end;end;u(:,sr) = u(:,sr-1); 195



err = r(:,sr) - y(:,sr);e = e + sum(abs(err));

196



runitnn.mThis ommand simulates the distillation olumn task with the neuro-ontroller andthe nominal ontroller.funtion [x,y,u,e℄ = runitnn(W,V,r,AK,BK,CK,DK)%[x,y,u,e℄ = runit(W,V,r,AK,BK,CK,DK)% r is a fixed referene input[kk,sr℄ = size(r);[k1,k1℄ = size(AK);A = [0.99867, 0; 0, 0.99867℄;B = [-1.01315, 0.99700; -1.24855, 1.26471℄;C = [-0.11547, 0; 0, -0.11547℄;D = [0, 0; 0, 0℄;e = 0;x = zeros(2,sr);k = zeros(k1,sr);y(:,1) = C * x(:,1);start = 300;for i = 1:sr-1err = r(:,i) - y(:,i);k(:,i+1) = AK*k(:,i) + BK*err;u(:,i) = CK*k(:,i) + DK*err; 197



(1,1) = 1;(2,1) = err(1);(3,1) = err(2);[un, v℄ = feedf(,W,V);u(:,i) = u(:,i) + un;u(1,i) = u(1,i) * 1.2;u(2,i) = u(2,i) * 0.8;x(:,i+1) = A*x(:,i) + B*u(:,i);y(:,i+1) = C*x(:,i) + D*u(:,i);err = r(:,i) - y(:,i);if ( i > start )e = e + sum(abs(err));end;end;u(:,sr) = u(:,sr-1);err = r(:,sr) - y(:,sr);e = e + sum(abs(err));

198



both.mThis ommand trains the neuro-ontroller (ator net and riti net) without the sta-bility onstraints.funtion [Q,W,V℄ = both(Q,q,W,V,N,a1,a2,AK,BK,CK,DK)%[Q,W,V℄ = both(Q,q,W,V,N,a1,a2,AK,BK,CK,DKA = [0.99867, 0; 0, 0.99867℄;B = [-1.01315, 0.99700; -1.24855, 1.26471℄;C = [-0.11547, 0; 0, -0.11547℄;D = [0, 0; 0, 0℄;sum_err = 0;t = 0;r = [0; 0℄;x = [0; 0℄;y = [0; 0℄;sk = length(AK);k = zeros(sk,1);for i = 1:N%hange referene signalrold = r;if ( mod(i,2000) == 1 )if ( rand < 0.5 )r(1,1) = 1 - r(1,1);else 199



r(2,1) = 1 - r(2,1);end;end;err = r-y;%sum_err = sum_err + sum(abs(err));%ompute uk = AK*k + BK*err;u = CK*k + DK*err;%ompute un(1,1) = 1;(2,1) = err(1);(3,1) = err(2);[un, v℄ = feedf(,W,V);%random partif (rand < 0.1 ) urand = randn(2,1) .* 0.1;else urand = [0; 0℄; end;%urand = 0;un = un + urand;u = un;u(1,1) = u(1,1) * 1.2;u(2,1) = u(2,1) * 0.8;
200



%remember old values for use in TD bakpropif ( t > 0 )qvalold = qval;ativold = ativ;end%ompute Qb(1,1) = err(1);b(2,1) = err(2);b(3,1) = un(1);b(4,1) = un(2);[qval,ativ℄ = ompute(Q,q,b);%TD bakpropif ( t > 0 & sum(abs(rold - r)) == 0 )tar = 0.95 * qval + sum(abs(err));Q = learnQ(tar,qvalold,ativold,Q,a1);end%ompute minimum ationyp = delta2(Q,q,b,3,4);[W,V℄ = bakprop(,v,un,yp,a2,W,V);%update statet = t + 0.1;x = A*x + B*u;y = C*x + D*u; 201



fprintf([int2str(i) '.'℄);if ( mod(i,20) == 0 ) fprintf('\n'); end;end; %outer for

202



muwv.mThis ommand trains the neuro-ontroller (ator net and riti net) with the stabilityonstraints ativated.funtion [Q,W,V,Wmax,Wmin,Wt,Vmax,Vmin,Vt℄ = muwv(Q,q,W,V,N,a1,a2,muit,trae)%[Q,W,V,Wmax,Wmin,Wt,Vmax,Vmin,Vt℄ = muwv(Q,q,W,V,N,a1,a2,muit,trae)
A = [1.0 0.05; -0.05 0.9℄;B = [0; 1.0℄;Kp = 0.01; Ki = 0.001; %0.05;sum_err = 0;t = 0;r = (rand-0.5)*2; urand = 0;x = [0; 0℄;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Before we learn, make sure [W,V℄ are in mu bounds%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%maxmu = statmu(W,V);if ( maxmu > 1.0 )disp 'Warning: mu exeeds 1 for input matries W,V'disp 'Learning Halted!'return;end; 203



if ( trae )[h,n℄ = size(W);Wt = zeros(h,n,N);Vt = zeros(1,h,N);elseWt = 0;Vt = 0;end;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Outer Loop iterates over dW and dV -- used mu%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%for kk = 1:muit[dW,dV℄ = dynamu(W,V);dW = W.*0 + 1; dV = V.*0 + 1;Wmax = W + dW,W, Wmin = W - dW,Vmax = V + dV, V, Vmin = V - dV,j = 0;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Inner loop trains either till ompletion of iterations or until% we hit the mu-speified boundary%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%while ( j < N & gtm(W,Wmin) & gtm(Wmax,W) & gtm(V,Vmin) & gtm(Vmax,V))j = j + 1; 204



if ( trae )Wt(:,:,j) = W;Vt(:,:,j) = V;end;%hange referene signalrold = r;if ( rand < 0.01 ) r = (rand-0.5) * 2.0; end;err = (r-x(1));%ompute upisum_err = sum_err + err;upi = Kp * err + Ki * sum_err;%ompute un(1,1) = err;[un, v℄ = feedf(,W,V);%random partif (rand < 0.1 ) urand = randn * 0.05;else urand = 0; end;un = un + urand;u = upi + un;%remember old values for use in TD bakpropif ( t > 0 ) yold = y; aold = a; end205



%ompute Qb(1,1) = err; b(2,1) = un;[y,a℄ = ompute(Q,q,b);%TD bakpropif ( t > 0 & rold == r )tar = 0.9 * y + abs(err);Q = learnQ(tar,yold,aold,Q,a1);end%ompute minimum ationyp = delta(Q,q,b,2);Wgood = W;Vgood = V;[W,V℄ = bakprop(,v,un,yp,a2,W,V);%update statet = t + 0.01; x = A*x + B*u;fprintf([int2str(j) '.'℄);if ( mod(j,20) == 0 ) fprintf('\n'); end;end; %outer forW = Wgood;V = Vgood; 206



end;

207



setsig.mThis ommand initializes a sigmoid neural network.funtion [W,V℄ = setSIG(Nin,Nhid,Nout);%[W,V℄ = setSIG(Nin,Nhid,Nout);%remember to add 1 at input and hidden for biasW = (rand(Nhid,Nin)-0.5);V = (rand(Nout,Nhid)-0.5) .* 0.1;

208



setma.mThis ommand initializes a CMAC neural network.funtion [Q,q℄ = setCMAC(n,t,mins,sizes)%[Q,q℄ = setCMAC(n,t,mins,sizes)%%Initializes a 4D CMAC network with t tilings of nxn grids% mins (4,1) sized vetor of minimums per dimension% sizes (4,1) sized vetor of sizes per dimension%DIM = 2;%DIM = 3;DIM = 4;%DIM = 6;%Q = zeros(n,n,n,n,n,n,t);Q = zeros(n,n,n,n,t);%Q = zeros(n,n,n,t);%Q = zeros(n,n,t);q = zeros(n,DIM,t);for k = 1:DIMinr(k) = sizes(k) / (n);off(k) = inr(k) / t;end;for i = 1:tfor j = 1:nfor k = 1:DIM 209



q(j,k,i) = (j-1) * inr(k) + (i-1) * off(k) + mins(k);end;end;end;

210



bakprop.mThis ommand implements the bakpropagation learning algorithm for sigmoid net-works.funtion [W, V℄ = bakprop(x,h,y,yp,alpha,W,V);%[W, V℄ = bakprop(x,h,y,yp,alpha,W,V);% Inputs: x input vetor (n,1)% h hidden tanh (h,1)% y output vetor (o,1)% yp output target (o,1)% alpha learning rate% W input weights (h,n)% V output weights (o,h)% Outputs W, V newd2 = yp - y;dV = alpha .* d2 * h';d1 = (1 - h.*h) .* (V' * d2);dW = alpha .* d1 * x';V = V + dV;W = W + dW;

211



feedf.mThis ommand performs the feedforward operation on a sigmoid neural network.funtion [y, h℄ = feedf(x,W,V)%[y, h℄ = feedf(x,W,V)% Inputs: x is input vetor (n,1)% W is input side weights (h,n)% V is output side weights (o,h)% Outputs: y is output vetor (o,1)% h is tanh hidden layer (h,1)% Note: h is required for bak prop trainingh = W * x;h = tanh(h);y = V * h;

212



ativate.mThis ommand omputes the ativation for a CMAC network with partiular inputs.funtion a = ativate(q,x);%a = ativate(q,x);%%x is the (2,1) input vetor%q is the CMAC resolution vetor%a is the (t,2) ativation vetor[n,pp,t℄ = size(q);%DIM = 2;%DIM = 3;DIM = 4;%DIM = 6;for i = 1:t%find x dimension by searhing bakwardfor k = 1:DIMj = n;while (j > 1) & ( x(k) < q(j,k,i) )j = j - 1;end;a(i,k) = j;end;end;
213



ompute.mThis ommand omputes the output of a CMAC neural network.funtion [y,a℄ = ompute(Q,q,x)%[y,a℄ = ompute(Q,q,x)[n,pp,t℄ = size(q);a = ativate(q,x);y = 0;for i = 1:t% y = y + Q( a(i,1), a(i,2), a(i,3), a(i,4), a(i,5), a(i,6), i);y = y + Q( a(i,1), a(i,2), a(i,3), a(i,4), i);% y = y + Q( a(i,1), a(i,2), a(i,3), i);% y = y + Q( a(i,1), a(i,2), i);end;

214



learnq.mThis ommand trains the CMAC network using the TD-error.funtion Q = learnq(tar,ur,ativ,Q,alpha)%Q = learnq(tar,ur,ativ,Q,alpha)%[t1,n,t℄ = size(Q);%[t1,t2,n,t℄ = size(Q);[t1,t2,t3,n,t℄ = size(Q);%[t1,t2,t3,t4,t5,n,t℄ = size(Q);diff = (tar - ur) * alpha / t;for i = 1:tx1 = ativ(i,1);x2 = ativ(i,2);x3 = ativ(i,3);x4 = ativ(i,4);% x5 = ativ(i,5);% x6 = ativ(i,6);% Q(x1,x2,x3,x4,x5,x6,i) = Q(x1,x2,x3,x4,x5,x6,i) + diff;Q(x1,x2,x3,x4,i) = Q(x1,x2,x3,x4,i) + diff;% Q(x1,x2,x3,i) = Q(x1,x2,x3,i) + diff;% Q(x1,x2,i) = Q(x1,x2,i) + diff;end;
215



delta.mThis ommand omputes the double gradient of the CMAC network.funtion d = delta(Q,q,x,k)RES = 20;[n,dim,t℄ = size(q);minn = q(1,k,1);maxx = q(n,k,1) + q(n,k,1) - q(n-1,k,1);inr = ( maxx - minn ) / 20;mina = x(k) - inr;maxa = x(k) + inr;if ( mina < minn )mina = minn;end;if ( maxa > maxx )maxa = maxx;end;us = linspae(mina,maxa,RES);for i = 1:RESx(k) = us(i);v(i) = ompute(Q,q,x);end;[mv, mp℄ = min(v); 216



d = us(mp);

217



diag�t.mThis ommand omputes diagonalization matries required for the � Simulink dia-grams.funtion [A,B,T℄ = diagFit(m,n)%[A,B,T℄ = diagFit(m,n)% or%[A,B,T℄ = diagFit(X)%% m,n is the dimension of a matrix X% let r = m*n% T is the r by r diagonal matrix that has eah% entry of X in it (aross first, then down)% example: X = | 3 7 | T = | 3 0 0 0 |% m=2 | 4 -1 | | 0 7 0 0 |% n=2 | 0 0 4 0 |% | 0 0 0 -1 |%% diagFit omputesmatries A and B suh that A*T*B = X.% Produes test matrix T = diag(1..r) for testing.
if (nargin < 2)[x,n℄ = size(m);lear m;m = x;lear x;end; 218



r = m * n;A = zeros(m,r);B = zeros(r,n);for i = 1:rka = floor( (i-1)/n ) + 1;kb = mod(i-1,n) + 1;A(ka,i) = 1;B(i,kb) = 1;end;T = diag(1:r);

219



statmu.mThis ommand omputes the stati stability test.funtion [maxmu, bnds℄ = statmu(W,V)%[maxmu, bnds℄ = ompmu(W,V)%Computes stati mu%Remember to hange variables like% T sampling rate (0.01)% om logspae (-2,2,100)% filename task1_mu
nhid = length(V);blk = [nhid, 0℄;om = logspae(-2,2,100);set_param('task1_mu/W','K',mat2str(W));set_param('task1_mu/V','K',mat2str(V));set_param('task1_mu/eyeV','K',mat2str(eye(nhid)));disp 'Computing stati mu';[a,b,,d℄ = dlinmod('task1_mu',0.01);sys = pk(a,b,,d);sysf = frsp(sys,om,0.01);bnds = mu(sysf,blk,'s');maxmu = max(bnds(:,1));

220



dynamu.mThis ommand omputes the dynamis stability test by omputing the allowableneural network weight unertainty.funtion [dW,dV℄ = dynamu(W,V)%[dW,dV℄ = dynamu(W,V)%Remember to hange variables like% T sampling rate (0.01)% om logspae (-2,2,100)% filename task1_mu[h,n℄ = size(W);[jj,h℄ = size(V);mW = n * h;mV = h * jj;dW = eye(mW);dV = eye(mV);sumW = sum(sum(abs(W)));sumV = sum(sum(abs(V)));sumT = sumW + sumV;for i = 1:hfor j = 1:nk = (i-1)*n + j;dW(k,k) = abs(W(i,j) / sumT);dV(i,i) = abs(V(i) / sumT); 221



end;end;iW = dW;iV = dV;minf = 1;maxf = 1;blk = [h, 0℄;blk = [blk; ones(mW + mV,2)℄;%blk(:,1) = blk(:,1) .* -1;om = logspae(-2,2,100);[WA,WB℄ = diagfit(W);[VA,VB℄ = diagfit(V);%set parameters in simulink model 'task1_mu3'set_param('task1_mu3/W','K',mat2str(W));set_param('task1_mu3/V','K',mat2str(V));set_param('task1_mu3/WA','K',mat2str(WA));set_param('task1_mu3/WB','K',mat2str(WB));set_param('task1_mu3/VA','K',mat2str(VA));set_param('task1_mu3/VB','K',mat2str(VB));set_param('task1_mu3/eyeV','K',mat2str(eye(h)));set_param('task1_mu3/dW','K',mat2str(dW));set_param('task1_mu3/dV','K',mat2str(dV));
222



%Compute initial muset_param('task1_mu3/dW','K',mat2str(dW));set_param('task1_mu3/dV','K',mat2str(dV));[a,b,,d℄ = dlinmod('task1_mu3',0.01);sys = pk(a,b,,d);sysf = frsp(sys,om,0.01);disp 'Computing mu';bnds = mu(sysf,blk,'s');maxmu = max(bnds(:,1));s = sprintf('mu = %f for sale fator %f',maxmu,minf);disp(s);if ( maxmu < 1 )while ( maxmu < 1 )temp = maxmu;minf = maxf;maxf = maxf * 2;dW = iW .* maxf;dV = iV .* maxf;set_param('task1_mu3/dW','K',mat2str(dW));set_param('task1_mu3/dV','K',mat2str(dV));[a,b,,d℄ = dlinmod('task1_mu3',0.01);sys = pk(a,b,,d);sysf = frsp(sys,om,0.01);disp 'Computing mu';bnds = mu(sysf,blk,'s');maxmu = max(bnds(:,1)); 223



s = sprintf('mu = %f for sale fator %f',maxmu,maxf);disp(s);end;maxmu = temp;elsewhile ( maxmu > 1 )if (minf < 0.01)disp 'Warning: dynamu annot find dW,dV with mu < 1'disp 'Halt Learning'dW = iW .* 0;dV = iV .* 0;returnend;maxf = minf;minf = minf * 0.5;dW = iW .* minf;dV = iV .* minf;set_param('task1_mu3/dW','K',mat2str(dW));set_param('task1_mu3/dV','K',mat2str(dV));[a,b,,d℄ = dlinmod('task1_mu3',0.01);sys = pk(a,b,,d);sysf = frsp(sys,om,0.01);disp 'Computing mu';bnds = mu(sysf,blk,'s');maxmu = max(bnds(:,1));s = sprintf('mu = %f for sale fator %f',maxmu,minf);disp(s); 224



end;end;while ( maxmu < 0.95 | maxmu > 1 )if ( maxmu < 1 )safe = minf;minf = (maxf-safe)/2 + safe;elsemaxf = minf;minf = (maxf-safe)/2 + safe;end;if (minf < 0.01)disp 'Warning: dynamu annot find dW,dV with mu < 1'disp 'Halt Learning'dW = iW .* 0;dV = iV .* 0;returnend;dW = iW .* minf;dV = iV .* minf;set_param('task1_mu3/dW','K',mat2str(dW));set_param('task1_mu3/dV','K',mat2str(dV));[a,b,,d℄ = dlinmod('task1_mu3',0.01);sys = pk(a,b,,d);sysf = frsp(sys,om,0.01); 225



disp 'Computing mu';bnds = mu(sysf,blk,'s');maxmu = max(bnds(:,1));s = sprintf('mu = %f for sale fator %f',maxmu,minf);disp(s);end;dW = WA * dW * WB;dV = VA * dV * VB;

226



REFERENCES
Aggarwal, J. K. and Vidyasagar, M. (1977). Nonlinear Systems Stability Analysis.Dowden, Huthinson, and Ross In.Anderson, C., Hittle, D., Katz, A., and Krethmar, R. (1996). Reinforementlearning ombined with pi ontrol for the ontrol of a heating oil. Journal ofArti�ial Intelligene in Engineering.Anderson, C., Hittle, D., and Young, P. (1998). National siene foundation grantproposal: CMS-980474.Anderson, C. W. (1992). Neural Networks for Control, hapter Challenging ControlProblems. Bradford.Anderson, C. W. (1993). Q-learning with hidden-unit restarting. In Advanes inNeural Information Proessing Systems 5: NIPS'93, pages 81{88.Astrom, K. J. and Wittenmark, B. (1973). On self-tuning regulators. Automatia,9:185{189.Balas, G. J., Doyle, J. C., Glover, K., Pakard, A., and Smith, R. (1996). �-Analysis and Synthesis Toolbox. The MathWorks In., 24 Prime Park WayNatik, MA 01760-1500, 1 edition.Barto, A. G. (1992). Neural Networks for Control, hapter Connetionist Learningfor Control. Bradford.Barto, A. G., Bradtke, S. J., and Singh, S. P. (1996). Learting to at using real-timedynami programming. Arti�ial Intelligene: Speial Issue on ComputationalResearh on Interation and Ageny, 72(1):81{138.Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983). Neuronlike elements thatan solve diÆult learning ontrol problems. IEEE Transations on Systems,Man, and Cybernetis, 13:835{846.Bass, E. and Lee, K. Y. (1994). Robust ontrol of nonlinear systems using norm-bounded neural networks. IEEE International Conferene on Neural Networks{ Conferene Proeedings, 4:2524{2529.Bellman, R. E. (1957). Dynami Programming. Prineton University Press.227



Cok, K. D., Moor, B. D., Minten, W., Brempt, W. V., and Verrelst, H. (1997). Atutorial on PID-ontrol. Tehnial Report ESAT-SIST/TR 1997-08, KatholiekeUniversiteit Leuven.Crites, R. H. and Barto, A. G. (1996). Improving elevator performane usingreinforement learning. In Advanes in Neural Information Proessing Systems8: NIPS'96.Desoer, C. A. and Vidyasagar, M. (1975). Feedbak Systems: Input-Output Prop-erties. Aademi Press In.Doyle, J. C., Franis, B. A., and Tannenbaum, A. R. (1992). Feedbak ControlTheory. Mamillan Publishing Company.Franklin, J. A. and Selfridge, O. G. (1992). Neural Networks for Control, hapterSome New Diretions for Adaptive Control Theory in Robotis. Bradford.Gahihet, P., Nemirovski, A., Laub, A. J., and Chilali, M. (1995). LMI ControlToolbox. MathWorks In.Gleik, J. (1987). Chaos: Making a New Siene. Penguin Books.Hassoun, M. H. (1995). Fundamentals of Arti�ial Neural Networks. The MITPress, Cambridge, MA.Haykin, S. (1994). Neural Networks: A Comprehensive Foundation. MamillanCollege Publishing In.Hertz, J., Krogh, A., and Palmer, R. G. (1991). Introdution to the Theory ofNeural Computation. Addison-Wesley Publishing Company.Jordan, M. I. (1988). Sequential dependenies and systems with exess degrees offreedom. Tehnial Report UM-CS-88-027, University of Massahusetts.Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1996). Reinforementlearning: A survey. Journal of Arti�ial Intelligene Researh, 4.Kalkkuhl, J., Hunt, K. J., Zbikowski, R., and Dzielinski, A. (1997). Appliationsof Neural Adaptive Control Tehnology. World Sienti�.Kawato, M. (1992). Computational Shemes and Neural Network Models for For-mation and Control of Multijoint Arm Trajetory, hapter Connetionist Learn-ing for Control. Bradford.Kohonen, T. (1997). Self-Organizing Maps. Springer-Verlag.Krethmar, R. M. and Anderson, C. W. (1997). Comparison of mas and radialbasis funtions for loal funtion approximation in reinforement learning. InICNN'97: Proeedings of the International Conferene on Neural Networks.ICNN.Krethmar, R. M. and Anderson, C. W. (1999). Using temporal neighborhood-s to adapt funtion approximator in reinforement learning. In IWANN'99:International Workshop on Arti�ial Neural Networks. IWANN.228



Levin, A. U. and Narendra, K. S. (1993). Control of nonlinear dynamial systemsusing neural networks: Controllability and stabilization. IEEE Transations onNeural Networks, 4(2):192{206.Megretski, A., KAO, C.-Y., Jonsson, U., and Rantzer, A. (1999). A Guide toIQC�: Software for Robustness Analysis. MIT / Lund Institute of Tehnology,http://www.mit.edu/people/ameg/home.html.Megretski, A. and Rantzer, A. (1997a). System analysis via integral quadrationstraints. IEEE Transations on Automati Control, 42(6):819{830.Megretski, A. and Rantzer, A. (1997b). System analysis via integral quadrationstraints: Part II. Tehnial Report ISRN LUTFD2/TFRT{7559{SE, LundInstitute of Tehnology.Miller, W. T., Glanz, F. H., and Kraft, L. G. (1990). Cma: An assoiative neuralnetwork alternative to bakpropagation. Proeedings of the IEEE, 78:1561{1567.Moore, A. W. (1995). The parti-game algorithm for variable resolution reinfore-ment learning in multi-demensional state spaes. Mahine Learning, 21.Narendra, K. S. and Parthasarathy, K. (1990). Identi�ation and ontrol of dynam-ial systems using neural networks. IEEE Transations on Neural Networks,1(1):4{27.Pakard, A. and Doyle, J. (1993). The omplex strutured singular value. Auto-matia, 29(1):71{109.Parks, P. C. (1966). Lyapunov redesign of model referene adaptive ontrol sys-tems. IEEE Transations on Automati Control, 11:362{367.Pavlov, P. I. (1927). Conditioned Reexes. Oxford University Press.Phillips, C. L. and Harbor, R. D. (1996). Feedbak Control Systems. Prentie Hall,3 edition.Royas, R. (1996). Neural Networks: A Systemati Introdution. Springer.Rugh, W. J. (1996). Linear System Theory. Prentie-Hall In., 2 edition.Rumelhart, D., Hinton, G., and Williams, R. (1986a). Parallel Distributed Proess-ing, volume 1, hapter Learning internal representations by error propagation.Bradford Books.Rumelhart, D., Hinton, G., and Williams, R. (1986b). Parallel Distributed Pro-essing. Bradford Books, The MIT Press, Cambridge, MA.Samuel, A. L. (1959). Some studies in mahine learning using the game of hekers.IBM Journal on Researh and Development, 3.Sanner, R. M. and Slotine, J.-J. E. (1992). Gaussian networks for diret adaptiveontrol. IEEE Transations on Neural Networks, 3(6):837{863.Singh, S. and Bertsekas, D. (1996). Reinforement learning for dynami hannelalloation in ellular telephone systems. In Advanes in Neural InformationProessing Systems 8: NIPS'96. 229



Skinner, B. F. (1938). The Behavior of Organisms. Appleton-Century.Skogestad, S. and Postlethwaite, I. (1996). Multivariable Feedbak Control. JohnWiley and Sons.Sutton, R. S. (1996). Generalization in reinforement learning: Suessful exam-ples using sparse oarse oding. In Advanes in Neural Information ProessingSystems 8.Sutton, R. S. and Barto, A. G. (1998). Reinforement Learning: An Introdution.The MIT Press.Suykens, J. and Bersini, H. (1996). Neural ontrol theory: an overview. JournalA, 37(3):4{10.Suykens, J. and Moor, B. D. (1997). NLq theory: a neural ontrol framework withglobal assymptoti stability riteria. Neural Networks, 10(4).Suykens, J., Moor, B. D., and Vandewalle, J. (1993a). Neural network models aslinear systems with bounded unertainty appliable to robust ontroller design.In Proeedings of the International Symposium on Nonlinear Theory and itsAppliation (Nolta'93).Suykens, J., Moor, B. D., and Vandewalle, J. (1993b). Stabilizing neural ontroller-s: A ase study for swinging up a double inverted pendulum. In Proeedingsof the International Symposium on Nonlinear Theory and its Appliation (Nol-ta'93).Suykens, J. A. K., Moor, B. D., and Vandewalle, J. (1997). Robust nlq neural on-trol theory. In Proeedings of the International Conferene on Neural Networks(ICNN '97).Suykens, J. A. K., Moor, B. L. R. D., and Vandewalle, J. (1995). Nonlinear sys-tem identi�ation using neural state spae models, appliable to robust ontroldesign. International Journal of Control, 62(1):129{152.Suykens, J. A. K., Vandewalle, J. P., and DeMoor, B. L. (1996). Arti�ial NeuralNetworks for Modelling and Control of Non-Linear Systems. Kluwer AademiPublishers.Tesauro, G. J. (1994). Td-gammon, a self-teahing bakgammon program, ahievesmaster level play. Neural Computation, 6(2).Thorndike, E. L. (1911). Animal Intelligene. Hafner.Underwood, D. M. and Crawford, R. R. (1991). Dynami nonlinear modeling ofa hot-water-to-air heat exhanger for ontrol appliations. ASHRAE Transa-tions, 97(1):149{155.Vapnik, V. N. (1995). The Nature of Statistial Learning Theory. Springer-Verlag.Vapnik, V. N. (1998). Statistial Learning Theory. John Wiley and Sons, In.Verrelst, H., Aker, K. V., Suykens, J., Moor, B. D., and Vandewalle, J. (1997). N-Lq neural ontrol theory: Case study for a ball and beam system. In Proeedingsof the European Control Conferene (ECC'97).230



Vidyasagar, M. (1978). Nonlinear Systems Analysis. Prentie-Hall, In., 1 edition.Vidyasagar, M. (1997). A Theory of Learning and Generalization: With Applia-tions to Neural Networks and Control Systems. Springer-Verlag.Watkins, C. J. (1989). Learning from delayed rewards. PhD thesis, CambridgeUniversity.Werbos, P. (1974). Beyond regression: New tools for predition and analysis in thebehavioral sienes. PhD thesis, Harvard University.Werbos, P. (1992). Neural Networks for Control, hapter Overview of Designs andCapabilites. Bradford.Witten, I. H. (1977). An adaptive optimal ontroller for disrete-time markovenvironments. Information and Control, 34:286{295.Young, P. M. (1996). Controller design with real parametri unertainty. Interna-tional Journal of Control, 65(3):469{509.Young, P. M. and Dahleh, M. A. (1995). Robust `p stability and performane.Systems and Control Letters, 26:305{312.Zames, G. (1966). On the input-output stability of nonlinear time-varying feedbaksystems, parts i and ii. Transations on Automati Control, 11:228{238 and465{476.Zhou, K. and Doyle, J. C. (1998). Essentials of Robust Control. Prentie Hall.

231


