
DISSERTATION

PHYSICS OF ENVIRONMENTAL FLOWS INTERACTING WITH OBSTACLES

Submitted by

Jian Zhou

Department of Civil and Environmental Engineering

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Fall 2017

Doctoral Committee:

Advisor: Subhas K. Venayagamoorthy

Pierre Y. Julien

Brian P. Bledsoe

Hiroshi Sakurai



Copyright by Jian Zhou 2017

All Rights Reserved



ABSTRACT

PHYSICS OF ENVIRONMENTAL FLOWS INTERACTING WITH OBSTACLES

The effects of natural and man-made obstacles on their surrounding environmental flows such

as rivers, lakes, estuaries, oceans and the atmosphere has been the subject of numerous studies

for many decades. The flow-obstacle interaction can lead to the generation of turbulence which

determines local flow dynamics and even large-scale circulations. The characteristic chaotic and

enhanced mixing properties of turbulence in conjunction with other environmental conditions such

as the clustering of multiple obstacles and density variations raise a number of interesting problems

pertaining to both fundamental fluid dynamics and practical engineering applications. Insights into

these processes is of fundamental importance for many applications, such as determining the fate

of deep water-masses formed in the abyssal ocean, optimizing the productivity and environmental

impact of marine farms, predicting the amount of power that a group of turbines can generate,

estimating carbon dioxide exchange between the forests and the atmosphere or modeling flood

routing in vegetated rivers.

The main aim of this dissertation is to use high-resolution numerical simulations to study en-

vironmental flows of different forcing mechanisms interacting with obstacles of different geome-

tries. The objectives are multi-fold: (i) To gain insights into the three-dimensional hydrodynamics

of constant-density flows interacting with a finite canopy; (ii) To develop an unambiguous geo-

metrical framework for characterizing canopy planar geometry; (iii) To explore the fundamental

differences in the flow dynamics between porous canopies and their solid counterpart; and (iv) To

investigate the effect of ambient density stratification on flow-obstacle interactions.

The first part of this dissertation focuses on the mean three-dimensional hydrodynamics in the

vicinity of a suspended cylindrical canopy patch with a bulk diameter of D. The patch was made

of Nc constituent solid circular cylinders with h in height and d in diameter, and was suspended
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in deep water (H/h ≫ 1 where H is the total flow depth). After the validation against published

experimental data, large eddy simulations (LES) were conducted to study the effects of patch

density (0.16 ≤ φ = Nc(d/D)2 ≤ 1, by varying Nc) and patch aspect ratio (0.25 ≤ AR =

h/D ≤ 1, by varying h) on the near-field flow properties. It was observed qualitatively and

quantitatively that an increase in either φ or AR decreases bleeding velocity along the streamwise

direction but increases bleeding velocities along the lateral and vertical directions, respectively.

A close examination at the flow inside the patch reveals that despite the similar dependence of

vertical bleeding on φ and AR, the underlying physics are different. However, in contrast to

the bleeding velocity, a flow-rate budget shows that the proportion of the vertical bleeding flow

leaving the patch with respect to the total flow entering the patch (i.e. relative vertical bleeding)

decreases with increasing AR. Finally, the interlinks between patch geometry, flow bleeding and

flow diversion are identified: the patch influences the flow diversion not only directly by its real

geometrical dimensions, but also indirectly by modifying flow bleeding which enlarges the size of

the near-wake. While loss of flow penetrating the patch increases monotonically with increasing φ,

its partition into flow diversion around and beneath the patch shows a non-monotonic dependence,

highlighting the fundamental differences in the flow dynamics between porous patches and their

solid counterpart.

Next, the propagation of full-depth lock-exchange bottom gravity currents over a submerged

array of circular cylinders is investigated using laboratory experiments and LES. Firstly, to inves-

tigate the front velocity of gravity currents across the whole range of array density φ, the array is

densified from a flat-bed (φ = 0) towards a solid-slab (φ = 1) under a particular submergence ratio

H/h, where H is the flow depth and h is the array height. The time-averaged front velocity in the

slumping phase of the gravity current is found to first decrease and then increase with increasing

φ. Next, a new geometrical framework consisting of a streamwise array density µx = d/sx and a

spanwise array density µy = d/sy is proposed to account for organized but nonequidistant arrays

(µx 6= µy), where sx and sy are the streamwise and spanwise cylinder spacings, respectively, and

d is the cylinder diameter. It is argued that this two-dimensional parameter space can provide a
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more quantitative and unambiguous description of the current-array interaction compared with the

array density given by φ =
(

π
4

)

µxµy. Both in-line and staggered arrays are investigated. Four

dynamically different flow regimes are identified: (i) through-flow propagating in the array inte-

rior subject to individual cylinder wakes (µx: small for in-line array and arbitrary for staggered

array; µy: small); (ii) over-flow propagating on the top of the array subject to vertical convective

instability (µx: large; µy: large); (iii) plunging-flow climbing sparse close-to-impermeable rows

of cylinders with minor streamwise intrusion (µx: small; µy: large); and (iv) skimming-flow chan-

nelized by an in-line array into several sub-currents with strong wake sheltering (µx: large; µy:

small).

Finally, the flow dynamics of intrusive gravity currents past a bottom-mounted obstacle in a

continuously stratified ambient was numerically investigated, highlighting the effect of ambient

stratification which is not considered in the previous sections. The propagation dynamics of a

classic intrusive gravity current was first simulated in order to validate the numerical model with

previous laboratory experiments. A bottom-mounted obstacle with a varying non-dimensional

height of D̃ = D/H , where D is the obstacle height and H is the total flow depth, was then added

to the problem in order to study the downstream flow pattern of the intrusive gravity current. For

short obstacles, the intrusion re-established itself downstream without much distortion. However,

for tall obstacles, the downstream flow was found to be a joint effect of horizontal advection,

overshoot-springback phenomenon, and associated Kelvin-Helmholtz instabilities. Analysis of

the numerical results show that the relationship between the downstream propagation speed and

the obstacle height can be subdivided into three regimes: a retarding regime (D̃ ≈ 0 ∼ 0.3), an

impounding regime (D̃ ≈ 0.3 ∼ 0.6), and a choking regime (D̃ ≈ 0.6 ∼ 1.0).

Overall, at a fundamental level, this dissertation aims to contribute to an improved understand-

ing of the physics associated with environmental flows interacting with obstacles. Moreover, the

results from this research are expected to facilitate better parameterizations of this important class

of flows.
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Chapter 1

Introduction

1.1 Motivation

Turbulence is ubiquitous in environmental flows such as in rivers, lakes, estuaries, oceans and

the atmosphere, and it is characterized by chaotic and (supposedly) random motions, with the

basic notion that it enhances mixing and transport of both momentum and mass (Pope 2000).

The interaction of various natural and man-made obstacles encountered in the real world with the

surrounding environmental flows can lead to the generation of turbulence which determines local

or even global flow patterns. Some examples include:

• Dense water formed in semi-enclosed seas often has to flow through narrow straits or down

continental slopes before it reaches the open ocean (figure 1.1a). Subsequently, such oceanic

overflows separate from the slope at their level of neutral buoyancy (Chassignet et al. 2012),

the subsequent interaction with downstream topographic features such as sills, canyons,

banks, seamounts, ridges, underwater volcanos and mountain ranges affects the properties

and final fate of the deep water-masses in the abyssal ocean, and thus the localized mixing

as well as the large-scale meridional overturning circulation (MOC).

• The hydrodynamic effects of submerged or suspended canopies, including aquatic vegeta-

tion patches, offshore aquacultural cages, rafts and long lines (figure 1.1b), have important

implications for the fluxes of nutrients and wastes that determine productivity and environ-

mental impacts of the canopy (Plew 2011). For example, nutrient depletion in suspended

shellfish culture may limit growth. Under-farm flow accelerations leading to increased bed

shear stresses are likely to influence the deposition and resuspension of waste products from

shellfish culture. Furthermore, the near-field disposal of wastes tends to affect the far-field

water quality (Venayagamoorthy et al. 2011).
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(a) (b)

(c) (d)

Figure 1.1: Examples of natural and man-made obstacles encountered in environmental flows. (a) Oceanic

overflow descending a continental slope; (b) Aquacultural structures suspended in oceanic currents; (c)
Haboob advancing over bottom roughness; (d) Seabreeze flowing through urban buildings.

• Gravity currents occur when there are horizontal variations in density in a fluid under the

action of gravitational field, such as thermally-driven exchanges, turbidity currents, snow

avalanches, haboobs, pyroclastic flows and seabreazes (figure 1.1c, d). A good understand-

ing of their interaction with various types of obstacles (e.g. aquatic and terrestrial canopies)

is critical for predicting their propagation dynamics as well as establishing effective preven-

tative measures to mitigate their destructive impacts.

Our current understanding of environmental flows interacting with obstacles have been de-

veloped for two limiting conditions: (i) flows impinging on a single isolated obstacle, such as a

sphere, a cylinder or a bluff body of any shape (e.g. Williamson 1996; Zdravkovich 1997); and

(ii) flows impinging on a uniformly distributed array of elements where the array size is large

compared with the characteristic large scales of the flow (e.g. Nepf 2012; Ozan et al. 2015). The

intermediate condition, where turbulent flows interact with a finite group of obstacles, has received
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much less attention and thus remains to be better understood. However, this class of flows is prob-

ably the most common in both natural and engineering settings. Examples of such flows include

atmospheric boundary layers over a forest patch, groups of wind turbines, groups of outstanding

buildings in cities, marine turbines in tidal channels, river flows over patchy vegetated beds and

marine currents impinging on offshore structures. For these flows, the estimation of drag forces

that the flow exerts on the group and the knowledge of the structure of the turbulent wake occur-

ring behind the obstacles are extremely important for the purpose of, e.g., predicting the amount

of power that a group of turbines (wind or marine) can generate (Vennell 2010, 2011), estimating

carbon dioxide exchange between the forests and the atmosphere (Irvine et al. 1997; Cassiani et al.

2008; Huang et al. 2011) or modelling flood routing in rivers with a patchy vegetation cover (Nepf

2012, and references therein).

Unlike natural canopies, arrays of obstacles with human intervention such as urban canopies,

crop canopies, forest plantations, and engineering retarding facilities, are more often nonuniformly

distributed with the spacing between obstacles varying significantly in different directions. How-

ever, most existing studies are limited to environmental flows interacting with uniformly distributed

arrays (Tanino & Nepf 2008b; Cenedese et al. 2016). The conventional geometrical characteriza-

tion consisting of horizontally-averaged bulk parameters, e.g. the array density φ (or equivalently,

the solid volume fraction), was employed in all these studies. Therefore, the universality of the

consensus that a certain value of φ can uniquely determine the state of the canopy flows is ques-

tionable and needs to be reexamined.

Furthermore, canopies from different systems with different scales exhibit a wide range of

array density φ. For rooted aquatic vegetation, φ ranges from 0.001 for marsh grasses to 0.45 for

mangroves. The range of φ for terrestrial forests has not been specifically reported in the literature,

but is also expected to vary significantly between different circumstances. In industrial settings,

however, there is an even wider range of φ. For example, the packing density of buildings may

reach its minimum (φ ≈ 0) in the open country and its maximum (φ ≈ 1) in a dense urban

center. Other dense porous media may be encountered by environmental flows include sediment
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beds, coral reefs and reservoir rocks (Ghisalberti 2009). To date, a very limited range of φ has

been investigated, with the highest being around 0.36, showing a big gap of data in the range of

0.36 < φ < 1 where φ = 1 indicates the limiting case of a solid obstruction. The associated flow

transitions within this range that regulate the dynamics of the incoming flows has not yet been

adequately explored.

Fundamental difference in the forcing mechanism exists between constant-density flows and

density-driven gravity currents. While there is a vast amount of literature on constant-density flows

interacting with obstacles, the study of gravity currents is relatively scarce mainly due to the addi-

tional complexity associated with the density variations in different directions. On one hand, under

a homogeneous ambient, gravity current forms spontaneously due to the hydrostatic pressure force

which originates from horizontal density gradient (e.g. Shin et al. 2004). On the other hand, natu-

ral fluid bodies such as the atmosphere, the oceans and lakes are characteristically stably stratified,

i.e. their mean (potential) density decreases as one goes upwards. Gravity currents may propagate

into a fluid where the ambient itself is stably stratified (e.g. Maxworthy et al. 2002). The effect of

these two types of density gradients, either horizontal or vertical, on the flow-obstacle interactions

with respect to that in constant-density flows is a subject of ongoing research. Therefore, combin-

ing the above motivations, a holistic picture of environmental flows interacting with obstacles is

made possible if the influences of obstacle grouping and density variation are both considered. It

is with this holistic mindset that the current research seeks to better understand obstacle’s effect in

environmental flows.

1.2 Objectives

In this dissertation, large-eddy simulations (LES) will be used to study the fundamental physics

of environmental flows (constant-density or density-driven) interacting with obstacles (single or

multiple). The numerical model will be extensively validated with available experimental and

direct numerical simulations (DNS) data. The main objectives of this research are as follows:
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1. To gain insights into the three-dimensional hydrodynamics of constant-density flows

interacting with a finite canopy. The first major contribution of this dissertation is a quan-

titative evaluation of the flow-bleeding dynamics as presented in chapter 4. This objective

is motivated by the need of a systematic understanding of the hydrodynamics of a finite

porous patch as a function of its element density and geometrical dimensions. The funda-

mental interlinks between patch geometry, flow bleeding from the patch and flow diversion

around/beneath the patch are suggested for the first time, which have important implications

for nutrient uptake and waste disposal in aquacultural structures, and turbulent exchanges

between aquatic/terrestrial canopy patches with the surrounding environmental flows.

2. To develop an unambiguous geometrical framework for characterizing canopy planar

geometry. Herein lies the crux of this dissertation: a two-dimensional parameter space,

which features a directional decomposition of the array planar geometry when being im-

pinged by both constant-density and gravity current flows, is developed in chapter 5. Taking

the case of bottom-boundary gravity currents over a submerged canopy as an example, this

new framework emphasizes, at a fundamental level, the breakdown of the conventional hor-

izontally averaged φ-parameterization for canopies whose constituent elements are nonuni-

formly distributed.

3. To explore the fundamental differences in the flow dynamics between porous canopies

and their solid counterpart. This objective is motivated by the need for a physical ex-

planation of the observed non-monotonic dependence of flow dynamics on canopy density,

which will be presented for constant-density flows in chapter 4 and density-driven currents

in chapter 5, respectively. To date, no such in-depth research has been conducted to examine

the consensus that the effect of a dense canopy on the surrounding environmental flows will

approach asymptotically towards the solid-limit with zero porosity.

4. To investigate the effect of ambient stratification on flow-obstacle interactions. In chap-

ter 6, the focus is density-driven intrusions interacting with an isolated bottom-mounted
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obstacle, with particular emphasis on the effect of ambient stratification. Orthogonal to the

parametric study in objective 3 where we vary the canopy planar geometry, the obstacle

height will be varied. This objective is motivated by the need to predict the properties and

fate of deep water-masses under the impact of ocean bottom topographies.

1.3 Dissertation Layout

The chapters of this dissertation each include brief discussions of background material so that

the chapters may be read as stand-alone works. As such, some concepts and definitions found in

the literature review and elsewhere will be repeated in later chapters. The layout of the dissertation

is as follows:

• Chapter 2 presents a review of classical literature pertaining to the study of environmental

flows interacting with obstacles. Starting from the different types of flow forcings, the sce-

narios of flow interacting with an isolated obstacle, infinite arrays, finite arrays and partial-

depth arrays will be discussed.

• Chapter 3 presents the governing equations and the numerical methodology employed in this

dissertation.

• Chapter 4 addresses objectives 1 and 3, discussing the near-field hydrodynamics of a sus-

pended cylindrical canopy patch. No density variations are included in this chapter.

• Chapter 5 addresses objectives 2 and 3, discussing the propagation dynamics of bottom

gravity currents encountering a submerged array.

• Chapter 6 addresses objective 4, focusing on the effect of ambient stratification on gravity

current-obstacle interactions.

• Finally, chapter 7 briefly summarizes the main findings/relevant contributions of this disser-

tation, and suggests some directions of future work.
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Chapter 2

Literature Review

2.1 Flow Forcings

2.1.1 Constant-density Flow

The incoming uniform constant-density flows can be driven by the potential forcing which is

associated with hydrostatic pressure or bed slope. The fluid density is temporally and spatially

constant. It is commonly seen in aquatic and atmospheric flows in regions where the effect of

stratification is negligible. The pressure gradient is a physical quantity that describes which di-

rection and at what rate the pressure changes the most rapidly around a particular location. The

resulting pressure-gradient force, which is always directed from the region of higher-pressure to

the region of lower-pressure, can cause an acceleration according to Newton’s second law of mo-

tion, if there is no additional force to balance it. When a fluid is in an equilibrium state (i.e. there

are no net forces), the system is referred to as being in hydrostatic equilibrium, usually balanced

by the frictional force.

2.1.2 Gravity Current

2.1.2.1 Definition of Gravity Current

A gravity current appears when fluid of one density ρc propagates into another fluid of a dif-

ferent density ρa. The fluid motion is predominantly horizontal, in contrast to a buoyant plume. A

gravity current is formed when we open the door of a heated house and cold air from outside flows

over the floor into the less dense warm air inside. A gravity current is formed when people pour

honey on a pancake and let it spread out on its own. Gravity currents originate in many natural

and industrial circumstances and are present in the atmosphere, lakes and oceans as winds, cold

or warm streams or currents, polluted discharges, etc. The start of quantitative study of gravity

currents is attributed to von Karman (1940), but the related dam-break problem was solved by
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Figure 2.1: Schematic of the typical cross-sectional structure of a bottom-boundary gravity current.

Saint-Venant about a century earlier. To date, the study of gravity currents has generated a large

body of work, including some partial review papers (Griffiths 1986; Felix 2002; Huppert 2006;

Meiburg & Kneller 2010) and the monographs of Simpson (1997) and Ungarish (2009). Figure

2.1 shows a typical cross section of a gravity current. It shows a characteristic complex head

structure, followed by a trailing region where the mean flow properties are relatively constant with

horizontal position.

2.1.2.2 Classification of Gravity Current

The basic configurations for various types of gravity currents are sketched in figure 2.2. In

a homogeneous ambient (i.e. ρa = constant), the gravity current propagates on a well-defined

lower (i.e. channel bottom) or upper boundary (i.e. the free surface). A bottom gravity current

forms if ρc > ρa and a surface gravity current forms if ρc < ρa. The gravity current is driven by

the gravity body forces, but in a rather subtle way. The fluids under consideration are in almost

hydrostatic balance, ∂p
∂z

≈ −ρg, where p and ρ are the pressure and the density, respectively. The

difference in ρ between the fluids gives rise to pressure difference in the horizontal direction, which

is then balanced by the dynamic reaction (i.e. a non-trivial velocity field with a major horizontal

component).

The case of stratified ambient is the most interesting, difficult, and as expected, the least inves-

tigated problem. The stratification can be either sharp, i.e. a jump between two relatively thick
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(a) (b)

(c) (d)

Figure 2.2: Classification of gravity current. (a) bottom current of more dense fluid, ρc > ρa; (b) top

(surface) current of less dense fluid, ρc < ρa; (c) intrusion in a sharply (layered) stratified ambient; (d)

intrusion in a continuously-stratified ambient, ρc = ρa(z = 0). Picture is from Ungarish (2009).

layers of homogeneous fluid, or a continuous (typically linear) smooth transition (Simpson 1997).

In such systems, an intrusive gravity current (or for brevity, an intrusion) propagates horizontally

inside the stratified ambient, typically like an isolated wedge which does not touch the horizontal

boundaries. The guiding surface, z = 0 say, is the plane of neutral buoyancy for the intruding

fluid:

ρc = ρa(z = 0). (2.1)

Many results developed for the boundary gravity current can be applied to intrusions, but the dif-

ference in flow dynamics can also be significant. The intrusions displaces the isopycnals and thus

modifies the prescribed ambient density. Moreover, gravity currents and intrusions in a stratified

ambient create, interact, and ultimately combine with internal gravity waves (White & Helfrich

2008).
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(a)

(b)

(c)

Figure 2.3: Gravity currents produced by lock-release in a homogeneous ambient. The flow is started by

removing the gate vertically. The dense fluid ρ2 > ρ1 occupies the depth H in a full-depth release (a) and

a depth D < H in a partial-depth release (b). The temporal evolution of the current propagation after a

full-depth release is shown in (c) (Shin et al. 2004).

2.1.2.3 Laboratory Generation Methods

Gravity currents are usually generated in the laboratory and numerical simulations by two

major configurations. The first type is the constant-flux release where a continuous, constant flux

of dense fluid is introduced into the ambient fluid (e.g. Hogg et al. 2005). The more common lock-

exchange configuration (i.e. constant-volume release) where fluids of different densities initially

at rest are separated by a vertical barrier - the lock gate - in a tank (e.g. Shin et al. 2004). In figure

2.3, when the gate is removed, differences in the hydrostatic pressure cause the denser fluid to flow

in one direction along the bottom boundary of the tank, while the lighter fluid flows in the opposite

direction along the top boundary of the tank.

2.1.2.4 Gravity Current’s Propagation in a Homogeneous Ambient

The propagation of boundary gravity currents in a homogeneous ambient fluid is the most

commonly studied case (figure 2.2a, b). They can be produced with very small density differences

(e.g. of a few percent), yet they can still travel for very long distances. The need to predict the

arrival time of a gravity current’s front and the maximum spreading distance has motivated the
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development of relatively simple models (Allen 1985) all the way to detailed simulations (Lee &

Wilhelmson 1997a,b; Härtel et al. 2000; Necker et al. 2002, 2005; Ozgokmen et al. 2004; Cantero

et al. 2007; Ooi et al. 2009; Nogueira et al. 2014). The first theoretical attempt to describe the

spreading rate of a gravity current using potential flow theory was made in a deep water by von

Karman (1940). For a Boussinesq full-depth current with density ρ2 in an ambient fluid of density

ρ1 (figure 2.3a, c), the dimensionless speed is expressed as a Froude number

Fr =
Uf√
g′H

, (2.2)

where Uf is the current speed, H is the channel depth and g′ = g (ρ2 − ρ1) /ρ2 is the reduced

gravity. The energy-conserving theory of Benjamin (1968) predicts Fr = 0.5. Keulegan (1958)

found that the speed of the current was independent of the ratio of the channel width and depth,

and measured a small increase in Fr with Reynolds number Re = UfH/ν, from Fr = 0.42 at

Re = 600 to Fr = 0.48 at Re = 150000.

Following experimental observations, Huppert & Simpson (1980) described the spreading of

a gravity current in three phases: an initial slumping phase where the current moves at nearly

constant speed Uf , followed by an inertial phase in which the current moves under the balance

of buoyancy and inertial forces, and finally a viscous phase where viscous effects dominate and

balance buoyancy. Power law expressions for the self-similar evolution of the front have been

obtained for the inertial phase where the front speed decays like Uf ∼ t−1/3 and the viscous phase

where Uf ∼ t−4/5 (Hoult 1972; Rottman & Simpson 1983; Bonnecaze & Lister 1993; Cantero

et al. 2007; Ooi et al. 2009; Ungarish 2009).

2.1.2.5 Gravity Current’s Propagation in a Stratified Ambient

An intrusive gravity current (IGC, sometimes referred to as an intrusion) forms when a fluid

is released into a non-homogeneous ambient and travels at its level of neutral buoyancy (figure

2.2c, d). The current, however, may still propagate along the boundary if it is lighter (surface

gravity current) or denser (bottom-boundary gravity current, BBGC) than the stratified ambient.
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Figure 2.4: Schematic of lock-release configuration with a linearly stratified ambient. ρl indicates the lock-

fluid density, while ρT and ρB are the ambient-fluid densities at the top and bottom boundaries, respectively.

After the gate removal, an intrusion forms and propagates at its level of neutral buoyancy.

Bottom-boundary gravity currents beneath a two-layer ambient were examined by Rottman &

Simpson (1983), and the first experiments and simulations of a gravity current traveling along a

rigid bottom under a continuously stratified fluid were performed by Maxworthy et al. (2002). The

latter found that the front speed of a full-depth BBGC is given by

Uf = FrNH, (2.3)

where Fr is the Froude number appropriate for gravity currents in a stratified ambient, N is the

buoyancy frequency given by N =
√

(g/ρ0) (−dρ/dz), and H is the total fluid depth. For the

limiting case of ρl = ρB (see figure 2.4 for definitions of symbols), they empirically suggested that

Fr = Fr0 ≈ 0.266, which lies in close agreement with the analytical prediction of Fr0 = 0.25 by

Ungarish & Huppert (2002) and Ungarish (2006). Their results also showed good agreement with

those from the numerical simulations of Birman et al. (2007).

By contrast, the arbitrary-depth intrusions are less understood (Holyer & Huppert 1980; Britter

& Simpson 1981; Lowe et al. 2002; Sutherland et al. 2004; Monaghan 2007; Maurer et al. 2010;

Holdsworth & Sutherland 2013). By allowing the interface ahead of an intrusion to be vertically

displaced, the Benjamin (1968) theory was adapted to predict the propagation speed of intrusions

in a two-layer fluid (Flynn & Linden 2006). This speed was predicted on heuristic grounds by

Cheong et al. (2006), who estimated the speed by relating the available potential energy of the

system before the lock fluid was released to the consequent kinetic energy of the intrusion.
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(a) (b)

(c) (d)

Figure 2.5: Temporal evolution of a mid-depth intrusion (in the sequence of a ∼ d). Horizontal lines

indicate the isopycnals. Picture is from Munroe et al. (2009).

Numerous experiments have been performed that examine the speed and structure of intrusions

propagating at mid-depth in uniformly stratified ambient (figure 2.5), these resulting either from

a full-depth lock-release (e.g. Sutherland & Nault 2007) or from a localized mixed patch (e.g.

Sutherland et al. 2007). However, only few studies have examined the asymmetric circumstance

of intrusions propagating at arbitrary depth in a uniformly stratified fluid. Bolster et al. (2008)

extended the Cheong et al. (2006) result by fitting a quadratic to the mid-depth, top and bottom

propagating intrusion speeds, that were predicted by equation (2.3). Thus they heuristically pre-

dicted that the speed of an intrusion propagating at depth hN where the intrusion density matches

the ambient density is given by equation (2.3) with a modified Froude number

Fr = Fr0

√

3

(

hN

H
− 1

2

)2

+
1

4
, (2.4)

where Fr0 is the Froude number in the case where ρl = ρB. Excellent agreement between equation

(2.4) with both experimental and numerical simulations has been found.

The presence of ambient stratification allows for a richer set of behaviors than in unstratified

gravity currents because the advance of the gravity current forces isopycnal perturbations in the

ambient fluid, which may radiate as internal gravity waves (Wu 1969; Schooley & Hughes 1972;

Manins 1976; Manins 1976; de Rooij et al. 1999, Maxworthy et al. 2002, Flynn & Sutherland

2004; Cheong et al. 2006; White & Helfrich 2008; Munroe et al. 2009; Maurer & Linden 2014).

There can be strong interactions between the intrusion and the waves reflected from the back of

the lock. In some cases these interactions are sufficient to stop the intrusion propagating. These
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reflected waves are the analogue of the finite-amplitude bore generated by reflections from the end

wall in a lock-release gravity current. In that case the bore overtakes the current and is responsible

for the transition from the constant-velocity phase to the similarity phase.

2.2 Flow Interacting with an Isolated Obstacle

2.2.1 Wake Structure of an Infinitely Long Obstacle

Even the simplest scenario of flow impinging on an infinitely-long isolated obstacle possesses

almost the entire complexity of shearing process, such as flow separation, free shear layer and its

rolling up, vortex interactions, various shear instabilities, transition to three-dimensional flow and

to turbulence, and unsteady turbulent separated flow (Wu et al. 2006). In the case of circular cylin-

der wake alone, there have been hundreds of papers, in part due to its engineering significance,

and in part due to the tempting simplicity in setting up such an arrangement in an experimental

and computational laboratory. It causes fluctuating drag and lateral force to the body and is a

major source of flow-induced structural vibration and noise. After over a century of effort since

Strouhal (1878) observed that the frequency of vortex shedding is proportional to U/D with the

proportionality constant now being known as the Strouhal number, St = fD/U (U is the in-

coming velocity and D is the cylinder diameter), and von Karman (1912) constructed the vortex

street model and estimated the drag, “the problem of bluff body flow remains almost entirely in

the empirical, descriptive realm of knowledge" (Roshko 1993). The great complexity and impor-

tance in applications of bluff-body flows are well demonstrated by the comprehensive two-volume

monograph of Zdravkovich (1997, 2003).

The various instabilities and flow regimes associated with the wake of an isolated circular

cylinder can be discussed using the plot of the base suction coefficient (−Cpb) versus the Reynolds

number (Re). The −Cpb is defined as negative of the pressure coefficient at the downstream end of

the cylinder:

− Cpb = −pb − p∞
1

2
ρU2

, (2.5)
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Figure 2.6: Plot of base suction coefficients (−Cpb) versus Reynolds numbers, as a basis for the discussion

of various flow regimes of cylinder wake. Picture is from Williamson (1996).

(a) (b) (c)

Figure 2.7: Visualization of three regimes of cylinder wake with different Re: (a) Steady separation regime

at Re = 26 (Van Dyke 1982). (b) Periodic laminar regime at Re = 140 (Van Dyke 1982). (c) DNS of mode

B three-dimensional instabilities at Re = 250 (Thompson et al. 1996).

which reflects the sensitivity of the flow pattern to Re more adequately than that of the drag coef-

ficient CD. The physical events divided by the critical Re marked as A, B, ..., J in figure 2.6 are

briefly outlined below (Roshko 1993; Williamson 1996; Zdravkovich 1997; Noack 1999).

Regime up to A: Laminar steady regime (0 < Re < 49)

The so-called viscously dominated “creeping flow" regime is found to operate in the range 0 <

Re < 4. Creeping flow is firmly attached to the surface of the cylinder all around the circumfer-
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ence. The tail of steady and symmetric laminar shear layers does not form a visible wake in this

non-separation regime, i.e. no recirculation region exists. Then, separation initiates at Re = 4. In

the steady separation regime (4 < Re < 49), a distinct, symmetric, and closed near-wake (recircu-

lation region) is formed (figure 2.7a), whose length grows as Re increases. The free shear layers

meet at the end of the near-wake at the confluence point. The flow is globally stable with respect

to all three-dimensional disturbances.

Regime A-B: Periodic laminar regime (49 < Re < 140− 194)

At the first critical Reynolds number Recr1 ≈ 49, the flow becomes linearly unstable with respect

to two-dimensional disturbances and experiences a supercritical Hopf bifurcation. A sinusoidal

oscillation of free shear layers commences at the confluence point and propagates towards the

cylinder, whose amplitude increases with Re. The spontaneous onset of oscillation (Re ≈ 49) is

very sensitive to disturbances and cannot be reliably measured experimentally. The final product is

the rolling up of the shear layers and consequently a staggered array of laminar eddies, i.e. the von

Karman vortex street (figure 2.7b). The trailing, entrapped, attached vortices periodically become

unstable and detached. The oscillating wake induces a lift force on the cylinder with a frequency

denoted by St.

Regime B-C: 3D wake-transition regime (190 < Re < 260)

The cylinder wake becomes intrinsically three-dimensional (not associated with end-effect) due

to two bifurcations at Recr2 = 190 and Recr3 = 260 (Barkley & Henderson 1996; Hender-

son & Barkley 1996). At Recr2 the flow is linearly unstable with respect to a spanwise wave-

length of λs/D = 4, called “mode A" instability, leading to a slightly subcritical onset of three-

dimensionality. Then for Re = 230 − 260 there is a gradual energy transfer from the mode A

shedding to a “mode B" shedding in which finer-scale streamwise vortices of λs/D ≈ 1 appear

(figure 2.7c) due to a supercritical bifurcation at Recr3.

Regime beyond C: transitional and turbulent regime (Re > 260)

As Re increases from 260, the flow starts the transition process to turbulence. The transition first

occurs in the wake, where fine-scale three-dimensional structures are more and more disordered.
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This causes a reduction of the base suction. Then, in regime D-E the free shear layer transition

starts at about Re ≈ 1300 due to the Kelvin-Helmholtz instability, where −Cpb reach a maximum.

Around point E (Re ≈ 3× 105), the previously laminar boundary layers at one side of the cylinder

starts the transition to turbulence. The transition does not occur simultaneously at the other side,

implying an asymmetric state with nonzero mean lift. At higher Re the boundary layers at both

sides are both turbulent, causing a drastic drop of −Cpb down to 0.2 (“drag crisis"). However,

the flow is not completely random. Roshko (1961) has discovered the reappearance of periodic

turbulent vortex shedding in the H-J regime.

2.2.2 Three-dimensional End Effect

Flow around obstacles with a free end, either bottom-mounted or surface-suspended, is encoun-

tered in various engineering applications, such as buildings, cooling towers, fuel and gas storage

tanks, chimney stacks, car mirrors, antennas, fastener heads, floating vegetations, and vortex gen-

erators (Zdravkovich 2003). Compared with its two-dimensional infinitely-long counterpart, the

wake of a bluff body with a free end is complex and strongly three-dimensional, as described

in several recent studies that have examined the near-wake vortex structures and von Karman

vortex shedding (e.g. Wang et al. 2006, 2012; Wang & Zhou 2009; Krajnovic 2011; Sumner

2013; Sumner et al. 2015). Key parameters influencing the flow field are the Reynolds number,

Red = U∞d/ν, cylinder aspect ratio AR = h/d, and the relative thickness of the boundary layer

on the ground plane, δ/h (if bottom mounted), where d is the cylinder width or ortdiameter, h is

the cylinder height and δ is the boundary layer thickness.

The general mean flow structures around a bottom-mounted circular cylinder are shown in

figure 2.8 and consist of four different mean vortex systems (Sumner et al. 2004): a tip vortex

system, a von Karman vortex or spanwise vortex system (similar to that described for a two-

dimensional cylinder in §2.2.1), a base vortex system and a horseshoe vortex system. The tip

region is characterized by separated flow and downwash over the free-end which culminates in

complex three-dimensional flow structures from the tip trailing edge. Generally, the mean flow
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Figure 2.8: Schematic of the flow field for finite circular cylinders greater than the critical aspect ratio,

ARcrit, based on the work by Sumner et al. (2004).
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pattern in this range is characterized by a pair of counter rotating vortices which induce downwash

into the cylinder wake. A horseshoe vortex system forms at the base due to separation and roll-up

of boundary layer vorticity in front of the cylinder, the legs of which wrap around the base of the

structure. The base flow also often features a pair of counter-rotating vortices, opposite in direction

to the tip vortices, in the recirculation region that induce upwash into the near wake. The base and

tip vortices interact with the midspan von Karman vortex system to partially or completely alter

the flow field around the body. The influence of the horseshoe vortex on the near wake structure

has been found to be considerably milder than the influence of the other vortex systems (Bourgeois

et al. 2011) and is generally overlooked in near-wake studies.

The cylinder aspect ratio, AR = h/d, is the primary geometric characteristic which influences

the flow around a cylinder with free ends. The critical aspect ratio, ARcrit is defined as the point

below which tip vortices dominate the flow and suppress the alternate von Karman vortex shedding.

As reviewed by Sumner (2013), most studies of the free-end flow field and its recirculation zone

have been performed for relatively small cylinder aspect ratios, within the range of AR 6 2.5 (e.g.

Roh & Park 2003; Hain et al. 2008; Garcia-Villalba et al. 2014). These aspect ratios are below

ARcrit where the familiar antisymmetric Karman vortex shedding is no longer observed. For the

higher-aspect ratio cylinders, AR > 2.5, and particularly for cylinders above ARcrit, there are fewer

studies of the finite-cylinder and free-end flow field in the literature (e.g. AR = 7 in Sparrow &

Samie 1981; AR = 6 and 10 in Afgan et al. 2007; AR = 5 in Palau-Salvador et al. 2010; AR = 6

in Krajnovic 2011; AR = 3 ∼ 9 in Rostamy et al. 2012 and Sumner et al. 2015).

2.2.3 Gravity Current over an Isolated Obstacle

As shown in figure 2.9, when a BBGC encounters an isolated bottom-mounted obstacle, a pro-

portion of the flow may continue over the obstacle while the remaining flow may be reflected back

as a hydraulic jump (HJ). The gravity current head is splashed upwards and then reattaches to

the bottom boundary. The plunging of a high-velocity jet-like flow results in an intensified mix-

ing vortex (IMV) directly downstream of the obstacle. Eventually a similar current re-establishes
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(a) (b)

(c) (d)

Figure 2.9: Temporal evolution of gravity currents interacting with a bottom-mounted obstacle (in the

sequence of a ∼ d). Picture is from Tokyay et al. (2011b).

downstream of the obstacle. Lane-Serff et al. (1995) theoretically predicted the proportion of the

over-passing flux, the speed of the reflected jump, and the depth of the reflected flow. Gonzalez-

Juez & Meiburg (2009) extended the shallow-water theory to predict the height and front speed of

the downstream re-established current as functions of the upstream Froude number and the ratio

of obstacle height to current height. La Rocca et al. (2013) used Lattice Boltzmann simulations

to simulate the interaction of 3D gravity currents with an emerging cylinder. Tokyay & Constanti-

nescu (2015) investigated the flow induced by a compositional gravity current propagating over a

fixed non-erodible triangular bottom-mounted obstacle using 3-D large eddy simulations. Several

studies have investigated the time-varying forces on obstacles that result from the impact of gravity

currents. The magnitude of the drag increases monotonically with time in an exponential fashion

towards a maximum when the current impinges on the obstacle, and goes through a transient phase

and eventually reaches a quasi-steady value (Gonzalez-Juez & Meiburg 2009; Gonzalez-Juez et al.

2009, 2010). Recently there is also a growing interest in studying sediment-driven turbidity cur-

rents over three-dimensional bottom topography for sedimentation-control purpose (Nasr-Azadani

& Meiburg 2014a,b).

2.3 Flow Interacting with an Infinite Array of Obstacles

Infinite arrays of solid bodies fixed relative to an oncoming flow are found in a number of

physical situations including fixed bed reactors, porous media, aerosol filtration, building clusters

20



Figure 2.10: Plan view of a section of a random cylinder array with φ = 0.27. Picture is from Tanino &

Nepf (2008b).

in urban environments, and plant canopies. If the array size is large compared with the character-

istic scales of the flow, only the flow behavior within the array is of interest (e.g. figure 2.10).

2.3.1 Array Density

Generally, the planar array geometry is defined by the scale of individual obstacles and the

number of these elements per area. If the array elements have a characteristic diameter or width,

d, and the average center-to-center spacing between elements is s, then the frontal area per array

volume is

a =
d

s2
. (2.6)

In terrestrial canopy literature, this is called the leaf area index (e.g. Kaimal & Finnigan 1994). The

array density can also be described by the solid volume fraction occupied by the array elements, φ

(i.e. array density). If the individual elements approximate a circular cylinder, according to (Nepf

2012):

φ =
(π

4

)

ad, (2.7)

where the coefficient of π/4 accounts for the curvature of circular cylinder.
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2.3.2 Constant-density Flow Interacting with an Infinite Array of Obstacles

The existing literature on flow within arrays of obstacles center on aquatic canopies. The

reason is that, unlike terrestrial canopies, aquatic canopies can occupy all or a large fraction of

the flow depth such that the dynamic impact of the canopy is felt over the entire flow domain,

i.e. emergent canopies (Nepf 2012). The dominant turbulent lengthscale within a canopy is shifted

downward from analogous conditions without vegetation. In an open channel (with no vegetation),

eddies scale with the water depth, H . In a channel with vegetation, the integral lengthscale of the

turbulence, l, is set by the smaller of the stem diameter, d, or the averaged distance to the nearest

neighboring stem, sn, regardless of the water depth (Tanino & Nepf 2008b). The production of

turbulence induced by the stem wakes drains energy from the mean flow (expressed in terms of

canopy drag) and feeds it into the turbulent kinetic energy (Pope 2000).

With a cylinder array, flow is forced to move around each element so that the velocity field is

spatially heterogeneous. A double-averaging method is used to remove the element-scale spatial

heterogeneity, in additional to the more common temporal averaging (Gray & Lee 1977; Raupach

& Shaw 1982, and references therein). The instantaneous velocity and pressure fields are first

decomposed into a time average (overbar) and deviations from the time average (single prime). The

time-averaged quantities are further decomposed into a spatial mean (angle bracket) and deviations

from the spatial mean (double prime). For steady, uniform flow within an emergent canopy, the

streamwise momentum equation will generally simplify to a balance between potential forcing

(associated with hydrostatic pressure or bed slope) and canopy drag (Nepf 2012):

g

(

∂H

∂x
+ sinθ

)

= −1

2

CDa

1− φ
〈u〉|〈u〉| = −〈u〉|〈u〉|

Lc

(2.8)

where g is the gravitational acceleration, θ is the bed slope, CD is the canopy drag coefficient,

and Lc is the canopy drag lengthscale defined as Lc =
2 (1− φ)

CDa
(Belcher et al. 2003), which

represents the lengthscale over which the mean and turbulent flow components adjust to canopy

drag. For sparse canopies (i.e. small φ), Lc is commonly approximated by (CDa)
−1

. The canopy
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u(z) for hI1

u(z) for hI2

Figure 2.11: Thermally-driven gravity currents in an emergent aquatic canopy. L is the propagated distance

of the surface current, and hI is the intrusion depth of the solar radiation into the canopy. hI1 < hI2. Picture

is from Zhang & Nepf (2009).

drag coefficient, CD, is affected by the canopy density, a, and the element Reynolds number Red.

A review of the dependence of CD on a and Red can be found in Tanino & Nepf (2008a).

2.3.3 Gravity Current Interacting with an Infinite Array of Obstacles

The study of gravity currents propagating into a porous medium, such as a channel containing

an array of obstacles, is of practical importance for many geophysical and environmental appli-

cations. The literature on gravity currents propagating through arrays of emerged obstacles (typ-

ically circular cylinders) is limited. Shading by aquatic vegetation can cause differential heating

(Chimney et al. 2006). For example, dense vegetative stands can reduce incident light by 50% to

over 90% (Wetzel 2001). On the other hand, rooted vegetation provides a significant amount of

drag, such that we expect rooted plants to both promote, through differential shading, and inhibit,

through drag, the thermally driven exchange flow (figure 2.11).

The literature on the propagation dynamics of gravity currents within an array of emergent

obstacles (typically circular cylinders) is limited. The classic lock exchange has negligible dissipa-

tion and is inertia dominated. It exhibits a predominantly horizontal interface that curves sharply
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toward the free surface and the bed at the leading edges of the surface current and undercurrent,

respectively (Benjamin 1968). In contrast, exchange flows through sand are drag dominated, and

the interface is inclined to the horizontal plane, rotating about its midpoint (Keulegan 1954). Fig-

ure 2.12 illustrates these two limits. Hatcher et al. (2000) used a one-layer theoretical model and

developed similarity solutions for the propagation of gravity currents through an array of obstacles

that exert a drag force proportional to |u|2 on the current. They also provide a brief comparison of

their similarity solution predictions with their experimental observations for constant-volume cur-

rents that propagate through an array of obstacles. Oldham & Sturman (2001), who parameterized

vegetative drag using permeability, predicted and observed a reduction in steady, buoyancy-driven,

down-slope flow in both the laboratory and field. Tanino et al. (2005) applied quadratic and lin-

ear drag laws to describe exchange flows occurring entirely within the canopy. They showed that

for sparse vegetation the flow has the same interfacial shape as a classic gravity current, but is

diminished in magnitude. For dense vegetation, the interface becomes linear. Jamali et al. (2008)

and Zhang & Nepf (2008, 2009) considered the more natural case of exchange between a model

canopy and an adjacent region of unobstructed water. The velocity of the intrusion entering the

canopy as well as the total discharge between the open water and the canopy were strongly de-

pendent on the canopy drag. Ozan et al. (2015) used LES to study the evolution of lock-exchange

gravity currents propagating in a channel containing an array of obstacles. They observed that

low-Reynolds-number currents transition to a drag-dominated regime in which the resistance is

linearly proportional to the flow speed and, consequently, the front velocity, Uf , is proportional to

t−1/2, where t is the time measured starting at the gate release time. By contrast, high-Reynolds-

number currents, transition first to a quadratic drag-dominated regime in which the front speed

is given by Uf ∼ t−0.25, before undergoing a subsequent transition to the aforementioned linear

drag regime in which Uf ∼ t−1/2. More recently, Testik & Yilmaz (2015) and Testik & Ungarish

(2016) investigated the anatomy and propagation dynamics of constant-flux bottom gravity cur-

rents within an array of emergent obstacles. All these variations of the propagation characteristics
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(a)

(b)

Figure 2.12: Comparison of the interface profile in the inertia-dominated (a) and drag-dominated (b)
regimes when a gravity current encounters an emergent canopy. Picture is from Tanino et al. (2005).

of the obstructed currents from their unobstructed counterparts were caused by the presence of

cylinder-induced drag force, which dominated over the resisting inertia and viscous forces.

2.4 Flow Interacting with a Finite Array of obstacles

Our current understanding of environmental flows interacting with solid obstacles have been

developed for two limiting conditions: (i) flows impinging on single isolated obstacles, such as

a sphere, a cylinder or a bluff body of any shape (§2.2); and (ii) flows impinging on a uniformly

distributed array of elements where the array size is large compared with the characteristic large

scales of the flow (§2.3). The intermediate condition, where turbulent flows interact with a small

number of obstacles in an isolated group, has received less attention.

2.4.1 Collective Wake Structure

Most of the research on flow past groups of bodies has focused on the offshore industry where

cylinders are most commonly used as constituent bodies - for instance as structural members. In

the context of offshore risers, there are a number of experimental studies of the force on square

groups, e.g., Ball & Hall (1980) investigated larger square arrays of cylinders of up to 9 × 9

for different angles, but only related this to the total group drag without characterizing the flow

field. The number of bodies which forms the group is denoted by Nc as illustrated in figure 2.13.

Some numerical studies have examined flow past groups of bodies, usually comprising a small

number (Nc < 10), with attention usually paid to the structure of the flow. Chang et al. (2008)

25



applied Howe’s decomposition method to look at how the flow signature from one cylinder affects

downstream cylinders. A few theoretical studies have considered localized fixed arrays of bodies

within a uniform flow, with most of the research limited to inviscid descriptions (e.g. Hunt &

Eames 2002; Eames et al. 2004).

As the number of bodies (Nc) within the array increases, the group begins to resemble a porous

medium. The current literature pertaining to this class of flows is mainly focused on the case of

arrays of cylinders whose height exceeds the depth of the impinging flow (e.g. Ball et al. 1996;

Nicolle & Eames 2011; Chen et al. 2012; Zong & Nepf 2012, Chang & Constantinescu 2015).

In all of these studies, the mean flow around the patch can be considered to be predominantly

two-dimensional (2-D) as the vorticity in the wake of the cylinders and the array extends along

one dominant direction, i.e. along the vertical axis. Within this context, Chen et al. (2012) and

Zong & Nepf (2012) have investigated flow properties of circular patches of cylinders piercing

the free surface of open channel flows. The number of cylinders and the size of the patches were

varied extensively and their effects on the flows around and within the patch were investigated

by means of visualization techniques and velocity measurements. The results reported from these

studies show that the wake behind a porous obstruction varies strongly with the density of the

obstruction. As shown in figure 2.14, downstream of the patch there is a steady wake region where

longitudinal velocities were approximately uniform along x. This region is then followed by a

recovery region where longitudinal velocities begin to increase with increasing x. The extent of

each region increases with decreasing array density and their development is associated with the

strength of the shear layers forming along the sides of the array. Further downstream, provided the

patch is dense enough, the two shear layers merge and a flow structure resembling a von Karman

vortex street can eventually be recovered.

Specifically, for a circular array of circular cylinders, compared with the general definition of

array density in equation (2.7), it is more common to define the array density by the number of

obstacles within the finite patch, Nc, and the separation of lengthscale between the array and its

constituent elements, d/D:
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Figure 2.13: A schematic of a finite array of cylinders in a uniform flow showing the body- and array-scale

vortices. The array with a bulk diameter of D consists of Nc individual cylinders with a diameter of d.

φ = Nc

(

d

D

)2

. (2.9)

2.4.2 The Three-regime Description

The most noteworthy results pertaining to the problem of flow interacting with a finite array

of obstacles should be attributed to the two-dimensional DNS study by Nicolle & Eames (2011).

They observed that, depending on the array density, three distinct regimes can be identified:

• At low φ (φ < 0.05), the flow interactions are weak within the array and force characteristics

on each cylinder are similar to an isolated body. The wake of the group is composed of

the identifiable individual wakes of the bodies making up the array. These rapidly dissipate

through an annihilation process, as they are advected downstream, leading to a rapid decrease

in the maximum vorticity.

• At moderate φ (0.05 < φ < 0.15), a stable wake forms behind the array, which is stabilised

by a bleed flow. The flow is locally steady and the lift force is negligible. Vorticity annihi-

lation occurs between the cylinders. The maximum vorticity decays slowly with distance by

the diffusive thickening of the attached shear layers. The shear layers become unstable some

distance downstream and roll up to generate a vortex street (figure 2.14).
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Figure 2.14: Top view of a circular patch of emergent vegetation, shown by dark gray circle of diameter

D. Injections of dye at the outer edges of patch (thick gray lines) reveal the evolution of the wake. Velocity

exiting the patch (Ue = u(x = D)) is diminished relative to upstream velocity (U∞). The velocity decreases

further to the steady wake region (U1). The flow within the wake delays the onset of von Karman vortex

street to the end of the steady wake, x = L1 +D. The wake contains two scales of turbulence: stem-scale

turbulence (shown with small thin semicircles), which peaks within the patch, and patch-scale turbulence

(black circles with arrows), which peaks at x = Lw +D. Picture is from Chen et al. (2012).

• At high φ (φ > 0.15), the array begins to behave in a similar way to a solid cylinder. The

signatures of the individual cylinders within the array are annihilated by wake interactions.

The downstream flow consists of a vortex street where the maximum magnitude of vorticity

decays slowly downstream.

2.5 Flow Interacting with a Partial-depth Array of Obstacles

The emergent arrays discussed in the previous sections occupy the full depth of the water

column (H/h 6 1). Another important category is the partial-depth arrays where there is a gap be-

tween the array and the vertical boundaries (H/h > 1). As shown in figure 2.15, submerged arrays

are bottom mounted and extend upward from the bed (e.g. groups of wind turbines; rooted veg-

etations), while suspended (floating) arrays extend downward from the free surface (e.g. floating

vegetations; offshore aquaculture structures). Nevertheless, the interaction between environmental
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Figure 2.15: Classification of obstacle arrays depending on their vertical sizes and positions. The velocity

profiles are shown on the right.

flows and these partial-depth arrays has received much less attention, partly due to the additional

complexity arsing from the drag continuity at the array-ambient interface.

2.5.1 Constant-density Flow Interacting with a Partial-depth Array of Ob-

stacles

2.5.1.1 Submerged Infinite Array

Besides the array density, φ, the velocity within a submerged canopy has a range of behavior

depending on the relative depth of submergence, defined as the ratio of flow depth, H , to array

height, h. The flow within the canopy is driven by the turbulent stress at the top of the canopy as

well as by the gradients of pressure and gravitational potential (bed slope). The relative importance

of these driving forces varies with the depth of submergence (Nepf & Vivoni 2000):

turbulent stress

pressure gradient
∼ H

h
− 1. (2.10)
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Three classes of canopy flow can be defined from equation (2.10): deeply submerged or unconfined

(H/h > 10), shallow submergence (H/h < 5), and emergent (H/h = 1). A great deal is known

about unconfined canopy flow based on work in terrestrial canopies (e.g. Raupach et al. 1996;

Finnigan 2000; Belcher et al. 2012). When unconfined, the flow within a canopy is driven by the

turbulent stress at the top of the canopy, i.e., by the vertical turbulent transport of momentum from

the overflow, with negligible contribution from pressure gradients. In this sense, the terrestrial

canopy model can be applied to aquatic canopies that are deeply submerged. However, because of

the limitation of light penetration, most submerged aquatic canopies occur in the range of shallow

submergence, H/h < 5 (e.g. Duarte 1991), for which both turbulent stress and potential gradients

are important in driving flow in the canopy. For emergent conditions (H/h = 1), flow is driven by

the potential gradients, as described in the previous sections.

For partial-depth arrays, a nondimensional measure of the array density is the frontal area per

bed area, λf , known as the roughness density (Wooding et al. 1973). For canopy height h, and

z = 0 at the bed,

λf =

∫ h

z=0

adz = ah, (2.11)

with the right-most expression valid for vertically uniform a (defined in equation 2.6). For a

submerged canopy, there are two limits of behavior, depending on the relative importance of the

bed drag and the canopy drag. If the canopy drag is small compared with the bed drag, then

the velocity follows a turbulent boundary-layer profile, with the vegetation contributing to the

bed roughness (sparse canopy, figure 2.16a). If the canopy drag is large compared to the bed

drag, the discontinuity in drag that occurs at the top of the canopy z = h generates a region

of shear resembling a free shear layer with an inflection point near the top of the canopy (dense

canopy, figure 2.16b, c). From scaling arguments, Belcher et al. (2003) predicted that the transition

between the sparse and dense regimes occurs at the roughness density λf = ah = 0.1. Numerical

simulations by Coceal & Belcher (2004) suggest that the transition occurs at λf = 0.15. On

the basis of measured velocity profiles in aquatic systems (Nepf et al. 2007), the profile exhibits

a boundary-layer form with no inflection point if CDah < 0.04, while a pronounced inflection
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(a) Sparse: ah ≪ 0.1 (b) Transitional: ah ≈ 0.1 (c) Dense: ah ≫ 0.1

Figure 2.16: Vertical profiles of longitudinal velocity and dominant turbulence scales are shown for (a) a

sparse canopy (ah ≪ 0.1), (b) a transitional canopy (ah ≈ 0.1), and (c) a dense canopy (ah ≫ 0.1). For

ah > 0.1, a region of strong shear at the top of the canopy generates canopy-scale turbulence. Element-scale

(stem-scale) turbulence is generated within the canopy. Picture is from Nepf (2012).

point appears at the top of the canopy for CDah > 0.1. Because CD ≈ 1 in most of the studies

considered, the above limits are consistent among each other.

In a free shear layer, the vortices grow continually downstream, predominantly through vortex

pairing (Winant & Browand 1974). In canopy shear layers, however, the vortices reach a fixed scale

and a fixed penetration into the canopy (δe in figure 2.16b, c) at a short distance from the canopy’s

leading edge (Ghisalberti & Nepf 2004). The fixed vortex and shear-layer scale is reached when

the shear production that feeds energy into the canopy-scale vortices is balanced by dissipation by

canopy drag. This energy balance predicts the following length scale, which has been verified by

laboratory observations (Nepf et al. 2007):

δe =
0.23± 0.6

CDa
, (2.12)

which only applies to dense canopies with CDah > 0.1. This penetration lengthscale segregates

the canopy into: (i) a lower “longitudinal exchange zone" (z < h− δz) where the fluid exchanges

with surrounding water predominantly through longitudinal advection; and (ii) an upper “vertical

exchange zone" (h − δe < z < h) where the fluid exchanges with surrounding water through

vertical exchange. The extent of each zone is set by the submergence ratio, H/h, and by the canopy

morphology, density, and flexibility. Nepf & Vivoni (2000) showed that the vertical exchange zone
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deepens between submergence ratio H/h = 1 ∼ 2. However, for H/h = 2 ∼ 5, the mixing layer

penetration, δe, is set by the drag coefficient and canopy density.

Other studies relevant to flow interacting with partial-depth arrays include: turbulence structure

near a submerged canopy (e.g. Poggi et al. 2004; Chen et al. 2013), flexible canopies resembling

vegetation (e.g. Ghisalberti & Nepf 2006; Lei & Nepf 2016), flow adjacent to a lateral porous layer

(e.g. White & Nepf 2007; Rominger & Nepf 2011), and effect of canopy height heterogeneity (e.g.

Hamed et al. 2017).

2.5.1.2 Suspended Infinite Array

Common examples of suspended canopies include the cages, rafts and long lines used in aqua-

culture, and the forests of certain kelp such as Macrocytis that have most of the biomass near the

surface and low density understories (e.g. Jackson 1998; Rosman et al. 2007). The ambient flow is

of high importance to aquaculture. It controls the accumulation of waste in the vicinity of the farms

(Hartstein & Stevens 2005) and therefore the environmental impact. If artificial feeding is not uti-

lized, it also controls the availability of nutrients for the tissue growth of the organisms (Aure et al.

2007; Newell & Richardson 2014). The hydrodynamics of the ambient flow are dependent on the

local conditions such as the tidal range (O’Donncha et al. 2013), the density stratification (Plew

et al. 2006), and the partial blockage induced by the aquaculture structures (Plew et al. 2005).

Field observations have shown that suspended canopies cause flow disturbances such as reduced

velocities within the canopy, and increased flow beneath the canopy (Blanco et al. 1996; Boyd &

Heasman 1998; Plew et al. 2005).

Suspended canopies have received little attention in comparison to the more familiar emergent

and submerged varieties. At first glance, suspended canopies appear to be an inverted submerged

canopy and may be expected to behave in a similar manner. The key difference is the boundary

condition: the submerged canopy has a solid boundary at the bottom of the canopy and a free

surface at the top of the flow above the canopy; the suspended canopy has the free surface at the

top of the canopy while the free-stream flow beneath the canopy is bounded by the solid boundary.

Thus, while bottom friction has little effect on velocity profiles in submerged or emergent canopies,
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except in highly porous canopies (Nepf et al. 1997; Ghisalberti & Nepf 2004; Lightbody & Nepf

2006), bottom friction may have a significant influence on velocities beneath and within suspended

canopies (Plew 2011).

2.5.1.3 Partial-depth Finite Array

The most complex scenario, flow impinging on a finite group of obstacles that occupy a portion

of the flow depth, has received the least attention. The flow is highly three-dimensional since the

porosity of the patch promotes bleeding along all directions. However, this class of flows is prob-

ably the most common in both natural and engineering settings. Examples of such flows include

atmospheric boundary layers over a forest patch, groups of wind turbines, groups of outstanding

buildings in cities, marine turbines in tidal channels, river flows over patchy vegetated beds and

marine currents impinging on offshore structures. For these flows, the estimation of drag forces

that the flow exerts on the group and the knowledge of the structure of the turbulent wake occur-

ring behind the obstacles are extremely important for the purpose of, e.g., predicting the amount

of power that a group of turbines (wind or marine) can generate (Vennell 2010, 2011), estimating

carbon dioxide exchange between the forests and the atmosphere (Irvine et al. 1997; Cassiani et al.

2008; Huang et al. 2011) or modelling flood routing in rivers with a patchy vegetation cover (Nepf

2012, and references therein).

To date, only three studies have been conducted on flow interactions with a partial-depth finite

array:

• Plew et al. (2005) used field observations to investigate the effect of a suspended canopy

patch (2450m × 650m × 8m) on waves, currents and stratification. The submergence ratio

H/h varies between 1.25 and 1.5 depending on the tide. They conceptually proposed the

hydrodynamics around and behind the patch (figure 2.17).

• Taddei et al. (2016) investigated the drag and wake properties of a bottom-mounted cylin-

drical canopy patch (0.1m × 0.1m × 0.1m) submerged in a turbulent boundary layer. The
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Figure 2.17: Elevation and plan views of a suspended mussel farm indicating various hydrodynamic pro-

cesses. The (a) floats and (b) vertical dropper loops form a porous barrier to the (c) flow, which generates

(d) an accelerating undercurrent. The shear between the undercurrent and the fluid within the farm-proper

generates (e) a mixing layer that augments (f ) the turbulence due to the droppers. The undercurrent most

likely forms a recirculating zone downstream of (g) the farm. The motion of the droppers will also be af-

fected by (h) waves, which in turn are attenuated. In the plan view, the farm can been seen as a number of

distinct blocks. These will not necessarily be aligned with the background flow. Flow adjusts (i) upstream

and (j) downstream of the farm. The flow is reduced within the farm itself and there is likely a vortex wake

(j) downstream.

submergence ratio is H/h = 6. It was observed that bleeding along the vertical/horizontal

direction increases/decreases with increasing φ.

• Tseung et al. (2016) investigated the hydrodynamics of a finite canopy patch (1.08m ×

0.54m × 0.38m) suspended at the free surface. The submergence ratio is H/h = 3.8. They

found similar flow bleeding dynamics as that in Taddei et al. (2016).

2.5.2 Gravity Current Interacting with a Partial-depth Array of Obstacles

A series of LES investigations by Tokyay et al. (2012, 2011b, 2014) have investigated the

propagation of gravity currents over a periodic array of submerged obstacles. The array in these
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Figure 2.18: Instantaneous non-dimensional density field for a gravity current propagating through and

over a (a) sparse and (b) dense array of circular cylinders representing bottom roughness. Picture is from

Cenedese et al. (2016).

studies is sparse such that the gravity current reattaches to the channel bed after encountering

each obstacle. Simulation results show that, similar to an obstructed gravity current, it reaches a

constant-speed slumping phase, and then transitions to a drag-dominated phase in which the front

speed decays with time.

When the array becomes dense enough to behave like a porous medium, Cenedese et al. (2016)

experimentally found that enhancement of the dilution of the gravity current by a submerged array

can occur due to two different mechanisms. For a sparse array, the vast majority of the gravity

current propagates within the array, and the individual cylinder wakes are the main contributor to

the current dilution (figure 2.18a). In contrast, for a dense array, the gravity current rides on top of

the array and the dilution is enhanced by the vertical convective instability arising from the unstable

stratification between the dense current and the ambient lighter fluid within the array (figure 2.18b).

The propagation of a surface current beneath a floating (suspended) array of obstacles has been

studied experimentally by Zhang & Nepf (2011) and numerically by Ozan et al. (2016), which

have led to similar results with the studies of bottom currents over a submerged array. A constant-

speed slumping phase followed by subsequent self-similar propagation phases are again observed.

However, the time-averaged front velocity of the current in the slumping phase, U f , decreases with

increasing array density in all these studies.
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Chapter 3

Numerical Methodology

3.1 Governing Equations

Any motion including fluid flow can be described by the principles of the momentum, mass

and energy conservation. In this section, the governing equations are presented for an unsteady,

three-dimensional, irrotational, incompressible and stratified flow.

3.1.1 Momentum Equations

The fluid flow is controlled by Newton’s second law of motion, relating the imposed force

with mass and acceleration. For a three-dimensional, irrotational system with the Boussinesq

approximation, the momentum equations (often referred to as the Navier-Stokes equations) are

given by

ρ
Dui

Dt
= ρ

∂ui

∂t
+ ρ

∂

∂xj

(uiuj) = − ∂p

∂xi

+ ρν
∂2ui

∂xj∂xj

− ρgδi3, (3.1)

where t is the time, g is the gravitational acceleration, ν is the molecular (kinematic) viscosity

(assumed as a constant), and δij is the Kronecker delta, equal to unity for i = j and zero for i 6= j.

The Einstein summation convention is used with i, j = 1, 2, 3 where x3 represents the vertical

coordinate.

The fluid density can be decomposed into a constant density (ρ0), local mean value (ρ) and

fluctuation (ρ′) give by

ρ = ρ0 + ρ+ ρ′. (3.2)

By inserting the decomposed density in equation (3.1) and rearranging, the momentum equations

can be recast as
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(

1 +
ρ′

ρ0 + ρ

)(

Dui

Dt

)

=−
(

1

ρ0 + ρ

)

∂p

∂xi

+

(

1 +
ρ′

ρ0 + ρ

)

ν
∂2ui

∂xj∂xj

−
(

ρ0 + ρ+ ρ′

ρ0 + ρ

)

gδi3.

(3.3)

In stratified water bodies, the ratio ρ′/ (ρ0 + ρ) ≪ 1 and can be neglected in the acceleration

(inertial) and viscosity terms, but should be retained in the gravity term as it is the primary con-

tributor to buoyancy. This assumption is known as the Boussinesq approximation. Moreover, as

ρ ≪ ρ0 then the mean density is negligible compared with the background density. In addition,

if ρr = ρ0 + ρ and pr = p0 + p are considered as the reference density and pressure, and the

hydrostatic relation holds, then the reference pressure and density are related as ∂pr/∂x3 = −ρrg.

This assumption helps in numerical simulations when starting from the rest, as the pressure field

is taken as the initial hydrostatic pressure field. However, for an irrotational, incompressible and

stratified fluid, the Navier-Stokes equation (equation 3.1) can be rewritten as

∂ui

∂t
+

∂

∂xj

(uiuj) = − 1

ρ0

∂p

∂xi

+ ν
∂2ui

∂xj∂xj

−
(

ρ

ρ0

)

gδi3. (3.4)

3.1.2 Continuity Equation

In fluid mechanics, mass is absolutely conserved and can be described by a mass conservation

equation. The continuity equation using an Eulerian point of view is given by

∂ρ

∂t
+

∂ρui

∂xi

= 0, (3.5)

or from a Lagrangian point of view is as

Dρ

Dt
+ ρ

∂ui

∂xi

= 0, (3.6)
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where D/Dt is the total or material derivative. For the flows under Boussinesq approximation,

ρ−1(Dρ)/(Dt) is negligible compared with ∂ui/∂xi, therefore the continuity equation reduces to

∂ui

∂xi

= 0, (3.7)

which implies that the flow field is divergence free.

3.1.3 Density Transport Equation

In unstratified flows, the density is constant and acts as a “passive" quantity in the momentum

equation, but in stratified flows the density field evolves with the flow and is coupled with the

momentum equation through the buoyancy term in the vertical momentum equation. This high-

lights the importance of considering the evolution of density transport as one of the flow governing

equations. The density transport is depicted through an advection-diffusion equation based on the

energy equation as

∂ρ

∂t
+

∂

∂xj

(ρuj) = κ
∂2ρ

∂xj∂xj

, (3.8)

where κ is the molecular diffusivity.

3.2 Turbulence Modelling

Turbulence is the chaotic, unstable motion of fluids that occurs when there are insufficient stabi-

lizing viscous forces. At high Reynolds numbers, the natural instabilities that occur within the flow

are not dampened and they manifest in the formation of eddies of various sizes. In general, there

are three main approaches for solving the governing equations numerically, namely: Direct Nu-

merical Simulation (DNS), Large-Eddy Simulation (LES) and Reynolds-averaged Navier-Stokes

Simulation (RANS). DNS resolves tha whole spatial and temporal scales of the flow without em-

ploying any “turbulent model", while LES uses a spatial filter to simulate large scales explicitly and

uses a turbulence model for small scales. RANS simulations just model the mean field of the flow
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by using turbulence closure schemes. Figure 3.1 compares the performance of these turbulence

schemes in simulating flow over a backward facing step.

Ideally, we would be able to simulate, with the equations of mass and momentum conservation,

the full spectrum of turbulent fluctuations using DNS. However, despite the increase in computa-

tional power, DNS is still restricted to simple flows with low-to-moderate Reynolds numbers and

regular geometries. These shortcomings have made DNS to be more of a valuable technique em-

ployed to understand the fundamental physics of turbulent flows rather than a tool for industrial

applications. On the other hand, the accuracy of the RANS model is always a matter of discus-

sion in turbulence modeling, therefore numerical models with better accuracy, but still feasible

for industrial applications are desired. Large-eddy simulations (LES) has gained attention in the

past few decades, and has become widely used as a powerful tool in research and industry with

reasonable computational cost and accuracy.

As a result, the large-eddy simulation model in FLOW-3D is chosen to study the flow problems

in this dissertation, which captures the unsteady and energy-containing motions of large eddies,

but still relies on a turbulence closure scheme to model the effect of small subgrid scales (Pope

2000). A spatial decomposition called “filtering” is applied to the governing equations, splitting

the velocity field into a filtered or mean value, 〈U〉, and a residual or subgrid scale value, 〈u′〉.

The LES filtered governing equations for unsteady, three-dimensional, stratified flows with the

Boussinesq approximation are given in tensor notation by

∂ 〈Ui〉
∂t

+
∂ 〈UiUj〉

∂xj

= − 1

ρ0

∂ 〈p〉
∂xi

+ ν
∂2 〈Ui〉
∂xj∂xj

− g
〈ρ〉
ρ0

δi3 −
∂τSGS

ij

∂xj

, (3.9)

subject to the filtered continuity equation

∂ 〈Ui〉
∂xi

= 0, (3.10)

and the filtered density transport equation
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Figure 3.1: Flow over a back-ward facing step (spanwise vorticity) obtained from : (a) Direct Numerical

Simulation (DNS), (b) Large-Eddy Simulation (LES) and (c) Reynolds-averaged Navier-Stokes Simulation

(RANS). Figure is from Wu, Homsy & Moin: Gallery of Turbulent Flows, Center for Turbulence Research.
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∂ 〈ρ〉
∂t

+
∂ 〈ρUj〉
∂xj

= κ
∂2 〈ρ〉
∂xj∂xj

−
∂χSGS

j

∂xj

, (3.11)

where 〈Ui〉 is the Cartesian components of the filtered velocity field, 〈p〉 is the filtered pressure, 〈ρ〉

is the filtered density, ρ0 is the reference density, and τSGS
ij and χSGS

j are the subgrid scale (SGS)

stress tensor and subgrid scalar flux vector, respectively, and are defined as

τSGS
ij = 〈UiUj〉 − 〈Ui〉 〈Uj〉 , (3.12)

χSGS
j = 〈ρUj〉 − 〈ρ〉 〈Uj〉 . (3.13)

The accuracy of LES models depends on the efficiency of the SGS closure model that is used

to define the subgrid scale motions. FLOW-3D employs the well-known but simple LES model

proposed by Smagorinsky (1963). This model uses a linear turbulent eddy viscosity, νt, to model

the SGS motions as

τSGS
ij = −2νt 〈Sij〉 , (3.14)

with the eddy viscosity defined as

νt = (CS∆)2 〈S〉 = (CS∆)2
√

2 〈Sij〉 〈Sij〉, (3.15)

where ∆ is usually taken as the grid size, CS is the Smagorinsky constant having a typical value

in the range of 0.1 - 0.2, and 〈S〉 is the characteristic rate of strain. The turbulent Schmidt number

Sct = νt/Γt, where νt and Γt are the turbulent viscosity and diffusivity respectively, is kept at

unity. This assumption is common in numerical studies of turbulent flows, and provides closure

for the SGS scalar flux, χSGS
j .

3.3 Volume-of-Fluid (VOF) technique

An interface between a gas and liquid is often referred to as a free surface. The reason for

the “free" designation arises from the large difference in the densities of the gas and liquid (e.g.
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δz

Fδz Surface element

Figure 3.2: Locating the free surface using the VOF technique. Left panel: one-dimensional free surface.

Right panel: two-dimensional free surface.

the ratio of density for water to air is about 1000). A low gas density means that its inertia can

generally be ignored compared to that of the liquid. In this sense the liquid moves independently,

or freely, with respect to the gas. The only influence of the gas is the pressure it exerts on the liquid

surface. In other words, the gas-liquid interface is not constrained, but free.

Several types of numerical approaches have been used to model free surfaces, e.g. the La-

grangian grid method (Hirt et al. 1974, 1970), the surface height method (Nichols & Hirt 1971)

and the marker-and-cell (MAC) method (Harlow & Welch 1965). FLOW-3D differs from other

computational fluid dynamics code in its treatment of flows fluid surfaces. In FLOW-3D, free

surfaces are modeled with the Volume-of-Fluid (VOF) technique that was first developed by a

group of scientists, including Flow Science’s founder, Dr. C. W. Hirt, at the Los Alamos National

Laboratory. The idea for this approach originated as a way to have the powerful volume-tracking

feature of the MAC method without its large memory and CPU costs. Within each grid cell (con-

trol volume) it is customary to retain only one value for each flow quantity (e.g. pressure, velocity,

temperature, etc.). For this reason, it makes little sense to retain more information for locating a

free surface. Following this reasoning, the use of a single quantity, the fluid volume fraction F in

each grid cell, is consistent with the resolution of the other flow quantities. The VOF method in

FLOW-3D possesses the three essential features needed to accurately model free surfaces:
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Figure 3.3: Comparison of VOF and Pseudo-VOF methods in modelling a jet of water issuing into air.

Left panel: correct jet shape predicted by VOF technique in FLOW-3D. Right panel: Incorrect jet shape

predicted by pseudo-VOF technique.

• A scheme to describe the shape and location of a surface. The fluid volume fraction function

F represents the volume of fluid per unit volume. Therefore, fluid exists where F = 1, and

void regions correspond to locations where F = 0. Any element having an F value lying

between 0 and 1 must contain a surface. For accuracy purposes, it is desirable to have a way

to locate a free surface within an element. In figure 3.2, we compute the exact location of

the one-dimensional free surface as lying above the bottom edge of the surface element by

a distance equal to F times the vertical size of the element, δz. For the two-dimensional

free surface, the local height of the surface in the column containing the surface element

gives the location of the surface in that element, while the other two heights can be used to

compute the local surface slope and curvature. In three-dimensional flows (not shown), the

same procedure is used although column heights must be evaluated for nine columns around

the surface element, thus a little more computation is needed.

• A means of applying boundary conditions at the surface. Most pseudo-VOF methods use a

fluid volume fraction to locate surfaces, but they then attempt to compute flow in both liquid

and gas regions instead of accounting for the gas by a boundary condition. This practice

produces an incorrect motion of the surface since it is assumed to move with the average

velocity of gas and liquid. By contrast, the VOF method of FLOW-3D computes the two

fluids as moving independently of one another except for a thin viscous boundary layer. In

figure 3.3, imagine a jet of water issuing at a constant velocity from a long silt into air. If we
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neglect gravity and keep the velocity of the jet low (say 0.1 m/s), we expect the jet to move

more or less unimpeded by the air, as predicted by the VOF method. However, pseudo-VOF

method produces a numerically induced growth at the tip of the jet.

• An algorithm to evolve the surface shape and location with time. Although the VOF tech-

nique can locate the free surfaces very well, the method is worthless unless an algorithm can

be devised for accurately computing the evolution of the F field. The time dependence of F

is governed by the equation:

∂F

∂t
+

∂

∂xj

(Fuj) = 0, (3.16)

This equation states that F moves with the fluid. In a Lagrangian mesh, equation (3.16) reduces

to the statement that F remains constant in each cell. In this case, F serves solely as a flag

identifying cells that contain fluid. In an Lagrangian-Eulerian mesh, the flux of F moving with the

fluid through a cell must be computed. The standard finite-difference approximations would lead

to a smearing of the F function and interfaces would lose their definition. Fortunately, the fact

that F is a step function with values of zero or one permits the use of a flux approximation that

preserves its discontinuous nature (refer to Hirt & Nichols 1981 for details).

3.4 FAVORTM Technique

3.4.1 Geometrical Representation

Geometry is constructed in FLOW-3D by assembling solid geometric objects to define the flow

region for a simulation. The flow geometry is then embedded in the computation grid by the pre-

processor using a technique called FAVORTM, an acronym for Fractional Area/Volume Obstacle

Representation. This method computes the open area functions on the cell faces (Ax,Ay,Az) along

with the open volume functions VF , and reconstructs the geometry based on these parameters. This

approach offers a simple and accurate way to represent complex surfaces in the domain without

requiring a body-fitted grid.
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Figure 3.4: Geometrical representation using FAVORTM. Left panel: object defined. Right panel: object

represented.

FAVORTM is a very powerful method for incorporating geometry effects into the governing

equations (see 3.4.2), but like all discrete methods, it is affected by the resolution of the computa-

tional grid. This is because the preprocessor generates area fractions for each cell face in the grid by

determining which corners of the face are inside of a defined geometry. If all four corners of a cell

face are inside the geometry, then the entire face is defined to be within the geometry. Similarly,

if all corners lie outside, then the entire face is assumed to be outside the geometry. When some

face corners are inside a geometry and some are outside, the intersection of the geometry with face

edges are computed. Area fractions (Ax,Ay,Az) are then computed from these intersection points

assuming straight-line connections between intersection points within the face. The straight-line

assumption introduces a small error in the fractional area when the geometry boundary is curved

inside the cell. The approximation is consistent with the other assumptions in the development of

the equations and improves as the grid resolution is refined. The implication of this construction

is that features that are smaller than the cell size are not resolved. More specifically, any piece of

a geometry that extends across a cell face but does not including a corner of that cell face is not

recognized by the area fraction generator. For instance, a small spherical object (say smaller than

a mesh cell) will not be recorded unless it covers at least one grid vertex, as illustrated by the circle
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Figure 3.5: Definition of area/volume fractions in the x-z plane. VF is the fractional volume open to flow,

and Ax, Ay, Az are the fractional areas open to flow.

in the lower right corner of the mesh shown in figure 3.4. The representation is improved as the

mesh resolution is increased.

3.4.2 FAVORTM-modified Governing Equations

The governing equations formulated with the area and volume porosity functions based on the

FAVORTM technique are the real equations that the FLOW-3D solver is dealing with. Specifically,

in figure 3.5, Ax, Ay and Az are respectively the fractional areas open to flow in the x, y and z

directions, and VF is the fractional volume open to flow. The modified governing equations with

the Boussinesq approximation (equations 3.4, 3.7, 3.8, and 3.16) are given by:

• Momentum equations

∂ui

∂t
+

(

1

VF

)

∂

∂xj

(uiujAj) = − 1

ρ0

∂p

∂xi

+ ν
∂2ui

∂xj∂xj

−
(

ρ

ρ0

)

gδi3, (3.17)

• Continuity equation

∂ (uiAi)

∂xi

= 0, (3.18)

• Density transport equation
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∂ρ

∂t
+

(

1

VF

)

∂

∂xj

(ρujAj) =

(

1

VF

)

κ
∂2ρAj

∂xj∂xj

, (3.19)

• Fluid fraction transport equation

∂F

∂t
+

(

1

VF

)

∂

∂xj

(FujAj) = 0. (3.20)

Generally, the area and volume fractions are time independent. However, these quantities may vary

with time when the moving obstacle model is employed.

3.5 Numerical Approximations

FLOW-3D numerically solves the equations described in the previous sections using finite-

difference (or finite-volume) approximations. Fluid velocities and pressures are located at stag-

gered mesh locations as shown for a typical cell in figure 3.6: velocities (u, v, w) and fractional

areas (Ax, Ay, Az) are located at the center of cell faces. Pressures (p), fluid fractions (F ), fractional

volumes (VF ), densities (ρ), internal energy (I), turbulence quantities for energy (q), dissipation

(D), and viscosity (ν) are at cell centers.

The finite-difference notation used corresponds to that used in the code where fractional index

values cannot be used. The convention is that all fractional indexes are decreased to the nearest

whole integer. For example, the u velocity at i + 1/2 which is located on the cell face between

cells (i, j, k) and (i+1, j, k) is denoted by un
i,j,k. A superscript n refers to the n-th time-step value.

3.5.1 Outline of Finite Difference Solution Method

The basic procedure for advancing a solution through one increment in time, δt, consists of

three steps:

1. Explicit approximations of the momentum equations (3.17) are used to compute the first

guess for new time-level velocities using the initial conditions or previous time-level values
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Figure 3.6: Location of variables in a mesh cell.

for all advective, pressure, and other accelerations. The density transport equation (3.19) is

coupled with the momentum equations (3.17) through the buoyancy term.

2. To satisfy the continuity equation (3.18) when the implicit option is used, the pressures are

iteratively adjusted in each cell and the velocity changes induced by each pressure change

are added to the velocities computed in Step (1). An iteration is needed because the change

in pressure needed in one cell will upset the balance in the six adjacent cells. In explicit

calculations, an iteration may still be performed within each cell to satisfy the equation-of-

state for compressible problems.

3. Finally, when there is a free-surface or fluid interface, it must be updated using equation

(3.20) to give the new fluid configuration. Turbulence quantities and wall temperatures are

also updated in this step.
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3.5.2 Momentum Equation Approximations

A generic form for the finite-difference approximation of equation (3.17) is:

un+1

i,j,k = un
i,j,k + δtn+1

[

−
pn+1

i+1,j,k − pn+1

i,j,k

(ρδx)ni+1/2,j,k

+Gx − FUX− FUY − FUZ + VISX

]

,

vn+1

i,j,k = vni,j,k + δtn+1

[

−
pn+1

i,j+1,k − pn+1

i,j,k

(ρδy)ni,j+1/2,k

+Gy − FVX− FVY − FVZ + VISY

]

,

wn+1

i,j,k = wn
i,j,k + δtn+1

[

−
pn+1

i,j,k+1
− pn+1

i,j,k

(ρδz)ni,j,k+1/2

+Gz − FWX− FWY − FWZ + VISZ

]

.

(3.21)

where, for example,

(ρδx)ni+1/2,j,k =
ρni,j,kδxi + ρni+1,j,kδxi+1

2
. (3.22)

The other right-hand-side terms have an obvious meaning, e.g. Gx is the gravitational acceleration,

FUX means the advective flux of u in the x-direction, and VISX is the x-component viscous

acceleration.

In FLOW-3D, there are three approximation schemes for the momentum equations, includ-

ing first-order method, second-order method, and second-order monotonicity preserving method.

A modified donor-cell approximation has been developed that retains its accuracy in a variable

mesh and reduces to a conservative difference expression when the mesh is uniform. This method

approximates advective fluxes in the non-conservative form, u∇u. The general form of this ap-

proximation for FUX is

FUX =
0.5

VFC
[(UAR− α|UAR|) ·DUDR+ (UAL + α|UAL|) ·DUDL] , (3.23)

where
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DUDL =
ui,j,k − ui−1,j,k

δxi

,

DUDR =
ui+1,j,k − ui,j,k

δxi+1

,

UAR = 0.5 (ui+1,j,kAFRi+1,j,k + ui,j,kAFRi,j,k) ,

UAL = 0.5 (ui,j,kAFRi,j,k + ui−1,j,kAFRi−1,j,k) ,

VFC =
δxiV Fi,j,k + δxi+1V Fi+1,j,k

δxi + δxi+1

,

(3.24)

In these equations, fractional areas and volumes appear with the following notations:

AFRi,j,k = fractional area Ax for flow in x−direction at i+ 1/2 cell− face,

VFi,j,k = fractional volume for flow at center of cell (i, j, k).

(3.25)

If the mesh is uniform, this approximation reduces to a spatially second-order accurate, centered-

difference approximation when α = 0. When α = 1, the first-order, donor-cell approximation

is recovered. In either case, the method reduces to the correct zeroth order expression in a vari-

able mesh. In a uniform mesh the advective flux approximations can be shown to reduce to a

conservative approximation form ∇uu. The basic idea underlying equation (3.23) is to weight the

upstream quantity being fluxed more than the downstream value. The weighting factors are (1+α)

and (1− α) for the upstream and downstream directions, respectively. This type of first-order ap-

proximation scheme is used for all advective flux terms appearing in equations (3.21). All other

acceleration terms in the momentum equations are approximated by standard centered differences.

3.5.2.1 First-order Method

The simplest FLOW-3D finite-difference approximation is first-order accurate in both space

and time increments. In this case the advective and viscous terms are all evaluated using old-time

level (n) values for velocities. Because the pressures at time level n + 1 are generally unknown

at the beginning of the cycle, these equations cannot be used directly to evaluate the n + 1 level

velocities but must be combined with the continuity equation. In the first step of a solution, the

pn+1 values in these equations are replaced by pn values to get a first guess for the new velocities. In
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an explicit approximation the pressure gradient in equations (3.21) is evaluated at time n, therefore

further adjustment to p does not influence the evaluation of un+1.

3.5.2.2 Second-order Method

Two optional second-order approximation schemes for the momentum equations can be re-

quested through the input data. The essence of the first scheme is a double pass through the

advection and viscous subroutines. In the first pass, the first-order method is used with the donor

cell parameter α = 1. These new velocities are then stored in the arrays for the previous time ve-

locities. The first-order calculations are then repeated, but this time the parameter is set to α = −1.

Finally, the results of the two calculations are averaged to give the desired second-order approx-

imation to the new time-level velocities. These approximations are second-order in time because

the first pass uses time-n velocities, while the second pass uses (first-order) approximations for

velocities at time n+1. The average then has level n+1/2, which is second-order in δt. Likewise,

using α = 1 in the first pass and α = −1 in the second results in an average α-value of zero, which

is second-order in δx, δy and δz if the mesh is uniform.

This algorithm is the least numerically diffusive of the three advection methods available in

FLOW-3D. However, it does not possess the transportive property, which in standard upstream

differencing schemes ensures that a flow disturbance only propagates downstream from its initial

location. In addition, this method is the most CPU intensive. Finally, this method may occasionally

generate a numerically unstable solution for flows with transient free-surfaces.

3.5.2.3 Second-order Monotonicity Preserving Method

The other higher-order advection algorithm in FLOW-3D is based on a second-order, monotonicity-

preserving upwind-difference method (van Leer 1977). It is as robust as the original first-order ad-

vection scheme. It requires slightly more CPU time than the first-order method, although in most

cases the difference is insignificant. This method may be applied in FLOW-3D to approximate

momentum advection, as well as density, energy and fluid fraction advection. The higher-order

discretization scheme is derived by using second-order polynomial approximations to the advected
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quantity in each of the coordinate directions. For a variable Q advected in the x-direction, the

value fluxed through a cell-face, Q∗, is computed as

Q∗ = Qi +
1

2
A (1− C) δxi, (3.26)

where Qi is the cell-centered value, C is the Courant number, δxi is the cell size, and A is a

second-order approximation to the first derivative of Q at the location

x0 =
1

6
(1− 2C) δxi, (3.27)

within the cell. Coefficient A can easily be computed from two neighboring first derivatives by lin-

ear interpolation, provided these derivatives are second-order accurate. The latter can be achieved

by computing the derivatives at the midpoints between Qi locations. For example,

dQ

dxi+1/2

= 2 · Qi+1 −Qi

δxi+1 + δxi

(3.28)

is a second-order accurate first derivative of Q at the point between Qi and Qi+1.

To ensure monotonicity, it is necessary to restrict the value of A. According to van Leer (1977),

the value of A is not allowed to exceed twice the minimum magnitude of the centered Q derivatives

used in its computation:

A ≤ 2 min

(

dQ

dxi

,
dQ

dxi+1

)

. (3.29)

Furthermore, if Qi is a local minimum or maximum value, i.e., if the two centered derivatives

appearing in equation (3.29) are of opposite sign, then A is set to zero and the donor-cell approxi-

mation is used.

3.5.3 Pressure Solution Algorithm

Equations (3.17) and (3.18) are coupled to each other, hence iteration solution procedures are

needed to solve them. They can be equivalently cast into the following discretized form using the
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global cell indices in the FORTRAN subroutines and functions:

u∗

ijk − un
ijk

δt
= − (FUX + FUY + FUZ)nijk −

1

ρ

pnipjk − pnijk
δx

− ν

[

u
∗/n
ipjk − 2u

∗/n
ijk + u

∗/n
imjk

δx2
+

u
∗/n
ijpk − 2u

∗/n
ijk + u

∗/n
ijmk

δy2
+

u
∗/n
ijkp − 2u

∗/n
ijk + u

∗/n
ijkm

δz2

]

+ FXn
ijk,

v∗ijk − vnijk
δt

= − (FVX + FVY + FVZ)nijk −
1

ρ

pnijpk − pnijk
δy

− ν

[

v
∗/n
ipjk − 2v

∗/n
ijk + v

∗/n
imjk

δx2
+

v
∗/n
ijpk − 2v

∗/n
ijk + v

∗/n
ijmk

δy2
+

v
∗/n
ijkp − 2v

∗/n
ijk + v

∗/n
ijkm

δz2

]

+ FYn
ijk,

w∗

ijk − wn
ijk

δt
= − (FWX+ FWY + FWZ)nijk −

1

ρ

pnijkp − pnijk
δz

− ν

[

w
∗/n
ipjk − 2w

∗/n
ijk + w

∗/n
imjk

δx2
+

w
∗/n
ijpk − 2w

∗/n
ijk + w

∗/n
ijmk

δy2
+

w
∗/n
ijkp − 2w

∗/n
ijk + w

∗/n
ijkm

δz2

]

+ FZn
ijk.

(3.30)
un+1

ijk − u∗

ijk

δt
= −1

ρ

p′ipjk − p′ijk
δx

,

vn+1

ijk − v∗ijk
δt

= −1

ρ

p′ijpk − p′ijk
δy

,

wn+1

ijk − w∗

ijk

δt
= −1

ρ

p′ijkp − p′ijk
δz

,

(3.31)

where i, j and k are cell indices in x, y and z directions respectively; imjk, ipjk, ijmk, ijpk,

ijkm and ijkp are the global indices of the cell to left, right, front, back, bottom and top of cell ijk,

respectively; FX, FY and FZ include all the force terms; the superscript ∗/n indicates the related

terms can be treated either implicitly or explicitly; p′ is equal to pn+1 − pn and represents pressure

change in the cell. Equations (3.30) are solved for velocities u∗, v∗ and w∗ which are called

intermediate velocities. Substituting equations (3.31) into equation (3.18) yields the following

equation for pressure change:

∇ · U∗ − δt

ρ
∇2p′ = 0, (3.32)

where U∗ is intermediate velocity vector with components defined by u∗, v∗ and w∗. Equation

(3.32) is then solved by the general minimum residual method (GMRES). It is an iterative method

designed to solve nonsymmetric linear systems due to its high accuracy, rapid convergence and
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parallel efficiency (Yao 2004). The method approximates the solution by the vector in a Krylov

subspace with minimal residual. The Arnoldi iteration is used to find this vector. Detailed infor-

mation can be found in Ashby et al. (1990).

3.5.4 Stability Considerations

Time steps must satisfy the following criteria:

• Fluid must not be permitted to flow across more than one computational cell in one time

step. This advective transport depends not only on the velocity but also on the fractional

area/volume open to flow. The basic stability condition is

δt < CON ·min

(

VF δxi

Axu
,
VF δyj
Ayv

,
VF δzk
Azw

)

, (3.33)

where the stability factor CON is typically set to 0.45 to account for “worst case" situations

suggested by a simplified stability analysis.

• The time step size stability condition is associated with the propagation of surface waves.

The actual condition is that surface waves should not propagate more than one cell in one

time step. For example, if z is the normal direction to the surface and Gz is the acceleration

in z direction, then

δt <

√
VF

√

2Gzδzk

[

Ax

δx2
i

max

(

1,
δxi

δzk

)

+
Ay

δy2j
max

(

1,
δyj
δzk

)]

. (3.34)

The max operator in the denominator signifies the distinction between shallow (=1) and deep

water (= δx/δz) wave speed. Similar limits must be imposed in the x and y directions for

each cell containing a free-surface.

• A linear analysis indicates that the time step must be further limited when a non-zero value

of dynamic viscosity is used. This condition is
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δt =
0.25

max

[

RM · µ
ρ

(

1

δx2
i

+
1

δy2j
+

1

δz2k

)] , (3.35)

where RM is the maximum multiplier used on µ for all types of diffusional processes. The

restriction physically means that no quantity should diffuse more than approximately one

mesh cell in one time step. For safety, an extra factor of 0.5 has been incorporated in the

right side of equation (3.35) because the limit is otherwise marginal.

• One more parameter controls the relative amounts of donor-cell and centered differencing

used for the momentum advection terms shown in equation 3.23. When α = 1 is used, the

above stability conditions are sufficient. Generally, one should always use a value for α such

that

δt ·max

( |u|
δxi

,
|v|
δyj

,
|w|
δzk

)

< α ≤ 1. (3.36)

For instance, if condition of (3.33) is satisfied, then we have have α > CON.
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Chapter 4

Constant-density Flow Interacting with a Suspended

Cylindrical Canopy Patch1

4.1 Introduction

Canopies are essentially porous obstructions consisting of distributed drag elements that cause

a partial blockage against the incoming flows. Circular cylinders are often used to model the con-

stituent obstacles due to shape similarity and well-known flow responses (Zdravkovich 1997). The

literature on flows past an infinite canopy is extensive (e.g. Nepf 2012, and references therein).

However, finite canopy patches with smaller length and width scales than the flow, albeit more

commonly seen in both natural and industry, have received much less attention. Typical exam-

ples include vegetation patches in river flows (Chen et al. 2012), arrays of wind turbines in the

atmospheric boundary layer (Kinzel et al. 2015) and aquaculture structures in ocean currents (Ve-

nayagamoorthy et al. 2011). Some examples are shown in figure 4.1.

Depending on their positioning in the water column, canopy patches are classified into emer-

gent patches occupying the whole flow depth and partial-depth patches (bottom-mounted or surface-

suspended). The key finding pertaining to emergent canopies is that directly downstream of the

patch there is a longitudinally-uniform steady wake region sandwiched by the shear layers at the

sides. The steady wake is stabilized by the streamwise bleeding flow through the patch whose

strength diminishes with increasing patch density, which has been well documented by a series of

studies (Nicolle & Eames 2011; Chen et al. 2012; Zong & Nepf 2012; Chang & Constantinescu

2015). The flow can be considered as predominantly two-dimensional with minor variation of

1The research presented in this chapter will be submitted in substantial part to Journal of Fluid Mechanics under

the title “Near-field hydrodynamics of a suspended cylindrical canopy patch” by J. Zhou and S. K. Venayagamoorthy.

Background information and literature relevant to this chapter are presented again so the chapter may be read as a

stand-alone work. The chapter is written in a collective “we” voice to acknowledge collaboration with the co-author.
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Figure 4.1: Examples of suspended finite canopies. Left panels: marine aquaculture farms. Right panels:

floating aquatic vegetations.

the mean flow along the vertical direction. As a result, the planar cylinder configuration uniquely

dictates the flow structure.

For partial-depth canopy patches, however, it is conceivable that the vertical dimension of

the patch is no longer irrelevant due to its capacity in modifying the three-dimensional features

caused by the patch free end as in the case of a solid cylinder (Sumner 2013). Instead, the patch

density φ and the patch aspect ratio AR = h/D as defined in figure 4.2 are both important (for the

convenience of discussion, the patch width is fixed at D in this paper thus AR ∝ h). The field study

of Plew et al. (2006) suggested that AR tends to affect the flow diversion either horizontally around

or vertically beneath the patch. Taddei et al. (2016) and Tseung et al. (2016) considered canopy

patches with constant AR values and observed that flow bleeding along the vertical/streamwise

direction increases/decreases with increasing φ. Qiao et al. (2016) varied the AR of a spanwise
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Figure 4.2: (a) Sketch of the computational domain (side view, not to scale). The suspended patch (diame-

ter, D, and height, h) extends downwards from the domain top boundary in a deep water with a depth of H ,

i.e. H/h ≫ 1. The origin of the coordinate system is located at the center of the patch top surface, and z is

pointing downwards. The domain width (out-of-plane) is B = 11D. The distances from the patch center to

the upstream and downstream domain extremities are Lu = 9D and Ld = 45D, respectively. (b) Plan view

of cylinder configurations (C19: φ = 0.16, C37: φ = 0.31, C61: φ = 0.50, CS : φ = 1).

suspended linear cylinder array with a constant φ. Nevertheless, at a fundamental level, it remains

unclear what is the complete picture of the interlinks between patch geometry (φ and AR), flow

bleeding and flow diversion in the vicinity of the patch, which is the focus of this paper. It is

noteworthy that the effect of patch aspect ratio AR (varying patch height h at a constant flow depth

H) and the effect of submergence ratio H/h (varying H at a constant h) are dynamically different.

Therefore, the results of most existing water-flume experimental studies where only H is varied

(Nepf & Vivoni 2000; Hamed et al. 2017) cannot be applied to predicting the effect of AR.

In this paper, we present results from numerical simulations of a uniform incident flow imping-

ing on a cylindrical canopy patch suspended in deep water. The aim is to systematically investigate

the influence of φ and AR on the three-dimensional mean hydrodynamics in the vicinity of the

patch that is missing in the literature.

4.2 Simulation Setup

The numerical model is validated using a Cartesian mesh with a resolution of 0.125d through-

out the near-wake region. Firstly, the canonical case of flow past an infinitely-long solid circu-

lar cylinder at Red = 1000 was simulated. The mean drag coefficient predicted by the present

LES is CD = 1.01 (figure 4.3a) which agrees well with the value of 1 reported in experiments
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Figure 4.3: Model validation. Left panel (an infinitely-long solid circular cylinder with diameter d at

Red = 1000): (a) time history of the drag and lift coefficients; (b) power density spectrum of the lift

coefficient. Right panel (a solid patch with φ = 1 and a porous patch with φ = 0.2, both are emergent):

(c) longitudinal profiles of mean streamwise velocity along the patch centerline (y = 0). Symbols indicate

results from the present LES, and lines represent the data from Chang & Constantinescu (2015). The shaded

region depicts the streamwise extent of the patch (−0.5D ≤ x ≤ 0.5D).

(Zdravkovich 1997). The Strouhal number was observed to be St = 0.209 (figure 4.3b where f

is the vortex shedding frequency), which is also very close to the experimental measurements of

0.21 (Zdravkovich 1997). Secondly, two simulations of flow impinging on an emergent canopy

patch having the same cylinder configurations with those in Chang & Constantinescu (2015) were

conducted (d = D/10.4 and Red = 960). The agreement in the centerline streamwise velocity

is quite good (figure 4.3c). For the porous patch (φ = 0.2), the steady-wake velocity is a little

overpredicted which produces a slightly longer steady-wake region.

The main geometrical and flow parameters investigated in this study are shown in figure 4.2.

A uniform incident velocity U∞ was prescribed at the inlet, and a convective boundary condition

was used at the outlet. The domain top boundary was modeled as a free-slip rigid lid that coincides

with the patch top surface. The patch is suspended in a very large domain (L = Lu + Ld = 54D,

B = 11D and H = 9D ∼ 36D depending on AR). All the solid surfaces were treated as no-

slip walls. The patch consists of Nc individual solid cylinders of diameter d = D/11, resulting

in a patch density of φ = Nc(d/D)2. All the LES runs were performed with Red = 1000 and
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ReD = 11000. Four patch densities φ = Nc(d/D)2 were considered (three porous patches plus a

limiting case of solid patch). For each φ, h was varied to give four patch aspect ratios (AR = h/D)

as 0.25, 0.50, 0.75 and 1.00 (16 simulations in total). The same mesh resolution as in the model

validation was used throughout. After the solution became statistically steady, time-averaging

were performed over an interval corresponding to approximately 20D/U∞. In this paper, the mean

velocities in the x, y and z directions are denoted as U , V and W , respectively.

4.3 Results and Discussion

4.3.1 Wake Structure

As an overview, we show the instantaneous downstream wake structure in figure 4.4. In the

steady wake region, the separated shear layers (SSLs) at the sides and bottom surface of the patch

keep growing until they merge at some distance downstream, after which the flow starts to recover

to the undisturbed condition. Different with the emergent patches which are predominantly 2-D,

the wake length of a suspended patch is shorter at x-y planes closer to the patch free end due

to stronger interaction of the SSLs. For this rather dense patch in figure 4.4, the signatures of

individual cylinder wakes almost disappear, while the patch-scale vortex shedding is inhibited by

the interference of the bottom SSL. This is consistent with previous studies of solid cylinder with

a free end (Sumner 2013) since a patch aspect ratio of 0.50 (and actually the whole range of AR

investigated in this paper) is way below the critical AR beyond which the von Karman vortex street

would appear.

Figure 4.5 shows the effect of array geometry on the streamwise extent of the downstream

wake. For a constant AR = 0.5 (figure 4.5a), the strength of streamwise bleeding through the

patch dictates the wake length: the velocity field behind denser patches recover faster towards the

undisturbed free-stream condition due to the weaker stabilizing base bleed. On the other hand, for

a constant φ = 0.5 (figure 4.5b), the wake length increases with increasing AR. The reason is

two-fold: (i) the effect of bottom SSL is weaker for taller patches along their heights; and (ii) as

will be discussed soon below, the increasing vertical bleeding for taller patches pushes the bottom
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(a)

(b)

(c)

Figure 4.4: Instantaneous flow structures in case C61AR0.50. (a) Visualization of the vortex structures using

the Q-criterion. (b) Contours of U/U∞ along the x-z plane at y = 0. (c) Contours of U/U∞ along the x-y
plane at z = h/2.
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(a) (b)

Figure 4.5: Contours of U/U∞ in the x-z plane at y = 0 showing the streamwise extent of the downstream

wake. (a) Effect of φ. (b) Effect of AR.

SSL downwards, resulting in a even weaker interaction between the lateral and bottom SSLs and

thus a longer wake region.

From now on, we focus on the mean flows in the near field of the patch. Figure 4.6 shows

the effect of patch density on flow bleeding. For the porous patches, an increase in φ leads to

weaker streamwise bleeding but stronger vertical and lateral bleeding. As discovered in studies

of emergent patches (e.g. Zong & Nepf 2012), the reduced streamwise bleeding contributes to

shortening the total wake length, and this is not further discussed in this paper. Vertical bleeding

perpendicular to the patch bottom surface pushes the bottom SSL downwards and thus enlarges

the vertical size of the near-wake, which is consistent with Taddei et al. (2016). Similarly, the

lateral bleeding pushes the lateral SSLs to the sides and thus widens the wake, despite the fact that

the point of flow separation is fixed at the cylinders situated near the patch lateral extremities. As

expected, flow bleeding is completely blocked in the solid-patch case, resulting in a wake region

of the smallest height and width.

The patch aspect ratio is found to be another important parameter that influences flow bleed-

ing. As shown in figure 4.7(a), vertical bleeding increases with increasing AR, which effectively

presents to the flow as an even taller patch than the actual increase of patch height. There is also
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Figure 4.6: Contours of U/U∞ showing the effect of patch density on flow bleeding. (a) x-z plane at y = 0.

(b) x-y plane at z = h/2.

Figure 4.7: Contours of U/U∞ showing the effect of patch aspect ratio on flow bleeding. (a) x-z plane at

y = 0. (b) x-y plane at z = h/2.

a slight strengthening of the lateral bleeding as AR increases in figure 4.7(b). The streamwise

bleeding shows a visually weak dependence on AR.

4.3.2 Vertical Bleeding Inside the Patch

We provide here an explanation for the observed dependence of vertical bleeding on φ and AR

in §4.3.1. In figure 4.8(a), starting from the patch top surface (z = 0) and downwards, the mean

vertical bleeding velocity W is horizontally averaged inside the patch at every vertical location.
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Figure 4.8: (a) Sketch showing the vertically moving x-y planes (dark gray) used for horizontally averag-

ing vertical bleeding velocity W inside the patch. (b) Vertical profiles of W/U∞. (c) Vertical profiles of

d(W/U∞)/d(z/D). In each plot, the horizontal gray line marks the location of patch bottom surface. The

three patch densities are denoted respectively as C19 ( ), C37 ( ) and C61 ( ).

The general varying trend of W with z in figure 4.8(b) is being zero at the impermeable top surface

and increasing monotonically towards the patch bottom surface. The vertical gradient of vertical

bleeding velocity, d(W/U∞)/d(z/D), however, exhibits a non-monotonical variation with z. On

one hand, it is non-zero at z = 0 and decreases downwards due to the gradually attenuated top

boundary effect. On the other hand, when approaching the patch free end, there is a significant

increase of d(W/U∞)/d(z/D) because of the abrupt expansion of cross-section below z = h.

As a result, except for the shortest patches with AR = 0.25, an intermediate equilibrium region

is observed where the vertical bleeding is almost uniformly accelerating with respect to z, i.e.

d(W/U∞)/d(z/D) is constant.

At a fixed AR, since the cylinder arrangement is heavily staggered in the horizontal directions

and aligned in the vertical direction as seen by the flow (figure 4.2b), the variation of φ modifies

the canopy resistance along different directions to different degrees (Zhou et al. 2017). There is a

growing priority for the flow entering the patch to be vertically diverted as φ increases. As a result,
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a denser patch is accompanied by a overall faster acceleration of vertical motions with respect to z

(i.e. larger d(W/U∞)/d(z/D)) over the same vertical distance of h, resulting in stronger vertical

bleeding through the patch bottom surface.

Although a larger AR also leads to stronger vertical bleeding at the patch bottom surface (figure

4.7a), the way how it is achieved is different. As AR increases while keeping φ constant, the effect

of cross section expansion below z = h that tends to speed up the vertical motions inside the patch

becomes less prominent due to the enlarged patch height, i.e. smaller overall d(W/U∞)/d(z/D).

However, the flow entering the patch has to travel a longer distance (h) to bleed out of its bottom

surface, during which the accumulative accelerating effect of the albeit smaller d(W/U∞)/d(z/D)

eventually result in a stronger vertical bleeding at z = h.

4.3.3 Quantitative Evaluation of Bleeding Flow Through the Patch Surface

To quantitatively evaluate the bleeding flow along different directions, we created a non-intrusive

control volume closely following the patch outer surface as shown in figure 4.9. The total inflow

rate entering the patch is defined by

Qinflow =

∫∫

Sl1,Sl4

Ui · dS. (4.1)

This must be equal to the total ourflow rate leaving the patch surface,

Qoutflow = QBx +QBy +QBz, (4.2)

where

QBx =

∫∫

Sl2,Sl3

Ui · dS, QBy =

∫∫

Sl1,Sl2,Sl3,Sl4

V j · dS, QBz =

∫∫

Sb

Wk · dS (4.3)

are referred to as the streamwise, lateral and vertical bleeding flow rate, respectively. In these

expressions, dS is the unit normal vector of the surface of the control volume, and (i, j,k) are

65



Figure 4.9: Sketch showing the surface of the control volume used to quantitatively evaluate the bleeding

flow. (a) Lateral surface composed of four segments: Sl1, Sl2, Sl3 and Sl4 (laid flat). (b) Bottom surface (at

z/h = 1). The origin of the θ-coordinate is located at the patch leading edge and is positive anticlockwise.

the unit vectors along the (x, y, z) coordinates, respectively. Similarly, the corresponding surface-

averaged streamwise, lateral and vertical bleeding velocities can be rendered respectively as UB =

QBx/(Dh), VB = QBy/(2Dh) and WB = QBz/(πD
2/4).

Figure 4.10 shows the typical pattern of time-averaged velocity vector fields (U ,V ,W ) follow-

ing the patch surface. The streamwise velocity U peaks near the latter half of region Sl1 and the

former half of region Sl4, and is greatly decreased near the patch’s trailing edge (regions Sl2 and

Sl3). Strong lateral flow can be observed in most part of regions Sl1 and Sl4, while it weakens con-

siderably in regions Sl2 and Sl3 due to flow separation. Noticeably, the vertical velocity W exhibits

the most remarkable variation with flow depth (z), expecially in regions Sl1 and Sl4. Moreover,

as one moves from the leading edge to the trailing edge along the patch bottom surface Sb, due to

the growing effect of wake entrainment occurring immediately downstream of the patch, there is a

clear shift from downwash to upwash flow.

Figure 4.11 gives an overview of the three-dimensional bleeding dynamics through the surface

area of the twelve porous patches investigated in this paper. In terms of bleeding velocity (figure

4.11a): (i) For a fixed AR, as φ increases, UB drops dramatically while VB and WB increase; (ii)

For a fixed φ, WB increases with increasing AR. Larger values of AR promotes more horizon-

tal flow inside the patch (because of weaker 3-D end effects), which leads to larger VB. All of
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Figure 4.10: Spatial variation of time-averaged velocities in the vicinity of the patch surface (0.023D apart)

in case C37AR0.75: (a) streamwise velocity, (b) lateral velocity and (c) vertical velocity. Left panel: the

lateral surface (laid flat); right panel: the bottom surface at z = h. The origin of the θ-coordinate is located

at the patch leading edge and is positive anticlockwise. The integral regions in equations (4.1) and (4.3) are

denotated in (a). The impermeable top surface at z = 0 is not shown.

these quantitative assessments are consistent with the flow structures shown in figures 4.6 and 4.7.

Meanwhile, to satisfy flow continuity, there is overall a slight decrease of UB with increasing AR.

Instead of discussing the absolute strength of bleeding (UB/U∞, VB/U∞, WB/U∞), we define

the relative bleeding to be the proportion of bleeding flow rates along different directions relative

to the total inflow rate entering the patch. In figure 4.11(b), QBx/Qinflow decreases significantly

with increasing φ, but shows an even weaker dependence on AR than that of UB. The increase of

QBy/Qinflow with increasing φ and AR is again observed, and it gradually exceeds QBx/Qinflow at

large values of φ or AR (as large as 64%). The effect of AR on QBy/Qinflow is two-fold. A larger

AR promotes 2-D horizontal flows inside the patch and thus larger VB. More importantly, it also
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Figure 4.11: Three-dimensional bleeding dynamics through the patch surface. (a) Bleeding velocities

normalized by the free-stream velocity. (b) Proportion of bleeding flow rates relative to the total inflow rate.

Dashed lines indicate the dependence of bleeding on AR with φ being fixed.

generates a larger lateral surface area of the cylindrical patch over which VB is integrated, resulting

a more significant increase of QBy/Qinflow than that of VB (compare the slopes of the green dashed

lines between figures 4.11a and b). By contrast, the bottom surface area stays unchanged with

varying AR, and this leads to the most striking difference between figures 4.11(a) and (b): AR has

opposite effects on the absolute and relative vertical bleeding.

4.3.4 Flow Diversion Around and Beneath the Patch

An important observation from figures 4.6 and 4.7 is that bleeding flow tends to enlarge the size

of the near-wake, presenting to the flow as a wider (lateral bleeding) or taller (vertical bleeding)

patch body than its actual dimensions. In what follows, we discuss the interlinks between the patch

geometry (φ and AR), the aforementioned bleeding flows perpendicular to the main stream, and

the proportional redistribution of the streamwise flow over the domain cross section. As depicted in
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Figure 4.12: (a) Cross-sectional view at the y-z plane at x = 0 showing the demarcations (dashed lines)

between flow-through (Qt), flow-around (Qa) and flow-beneath (Qb) regions. (b) Effect of patch geometry

on |∆Qt| normalized by Q∞. (c) Effect of patch geometry on the proportion of |∆Qa| in |∆Qt|. The square

symbol in (c) indicates the special case C61AR0.50T where there is no vertical bleeding.

figure 4.12(a), due to the canopy drag, the otherwise uniform total flow rate Q∞ = U∞BH flushing

through the computational domain is redistributed into three pathways: penetrating through the

patch (Qt), horizontally around the patch (Qa) and vertically beneath the patch (Qb), i.e. Q∞ =

Qt +Qa +Qb. The change of flow rate in region i (i = t, a, or b) with respect to the undisturbed

condition is defined as ∆Qi = Qi − Qi,φ=0, where Qi,φ=0 is the flow rate in region i without the

patch. It directly follows that |∆Qt| = |∆Qa|+ |∆Qb|. Next, we take the domain cross section at

x = 0 as an example and analyze the flow-diversion dynamics therein.

Figure 4.12(b) shows the reduction of flow through the patch interior normalized by Q∞ under

the influence of varying patch geometry. On one hand, for a fix φ, |∆Qt| is greater for patches with

larger AR, mainly due to the growing cross-sectional area of the patch (Dh). On the other hand, for

a fix AR, |∆Qt| increases monotonically with patch densification and asymptotically approaches

the solid-patch case where |∆Qt|/Q∞ = (Dh)/(BH). However, it is evident in figure 4.12(c)

that the partition of |∆Qt| into flow-around and flow-beneath (quantified by |∆Qa|/|∆Qt| and

thus |∆Qb|/|∆Qt| = 1 − |∆Qa|/|∆Qt|), although still varies monotonically with AR, possesses

a non-monotonic dependence on φ. This can be explained by the interrelations between the patch

geometry, flow bleeding and flow diversion as follows:

• The patch density φ affects flow diversion mainly by means of modifying flow bleeding. In

figure 4.6, as φ increases from 0.16 to 0.50, both the vertical and lateral sizes of the near-
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wake are enlarged. According to figure 4.11, the decrease of |∆Qa|/|∆Qt| with increasing

φ in figure 4.12(c) must be attributed to the dominating effect of lateral bleeding which pro-

motes flow diversion beneath the patch, compared with the vertical bleeding which promotes

lateral diversion. To verify this statement, an additional simulation C61AR0.50T was carried

out, where a circular plate of diameter D is placed at the patch bottom surface to elimi-

nate vertical bleeding and presumably enhance lateral bleeding. As expected, |∆Qa|/|∆Qt|

drops from 8.5% to 5.6% in figure 4.12(c). Furthermore, the value of |∆Qa|/|∆Qt| associ-

ated with the limiting case of a solid patch (φ = 1) turns out to be much larger compared

with all the porous patches, due to the absence of bleeding flow. There clearly exists a turn-

ing point between φ = 0.50 and 1 after which bleeding along all directions start to recede

with increasing φ. The associated entirely different flow dynamics precludes a monotonic

interpolation over this range in figure 4.12(c). This is beyond the scope of this paper and we

leave it to be addressed in future work.

• The patch aspect ratio AR affects flow diversion mainly by changing the real geometrical

dimensions of the patch. The disturbances induced by the patch free end is weaker along

the patch height at larger AR, therefore the approaching flow is less three-dimensional and

favors a lateral diversion other than vertical, i.e. |∆Qa|/|∆Qt| increases. Clearly, the above-

mentioned dominance of lateral bleeding over vertical bleeding in terms influencing flow

diversion cannot counteract this effect and hence a larger proportion of ∆Qt is diverted

around the patch.

4.3.5 Drag Coefficient

From a momentum balance point of view, the drag coefficient of an obstacle is mainly influ-

enced by the spread of its wake and the intensity of the velocity deficit in the wake itself. For

porous patches, there are mainly four flow phenomena which affect the drag coefficient compared

with a solid patch:

• The internal cylinders offer some extra resistance to the incident flow, i.e. larger CD;
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Figure 4.13: Time-averaged drag coefficient versus patch density and aspect ratio.

• The streamwise bleeding contributes to diminishing the velocity deficit in the wake and

hence to lower CD;

• The lateral bleeding prevents the reattachment of the flow along the sides of the porous

patches hence contributing to widening the wake, i.e. larger CD;

• The vertical bleeding pushes downwards the shear layer forming at the patch bottom hence

enlarging the vertical size the wake, i.e. larger CD.

Figure 4.13 shows the variation of the time-averaged drag coefficient with patch density φ. It

can be seen that the values of CD of patches with a larger aspect ratio AR are generally larger,

mainly due to the fact that the bottom shear layer which induces wake entrainment and hence

decreases the pressure drag, is weaker for taller patches. This is consistent with previous studies

of a solid obstacle (e.g. Inoue & Sakuragi 2008). It is evident in figure 4.13 that the effect of AR

plays a dominating role compared with the flow bleeding in the game of drag generation.

On the other hand, for a fixed AR, CD increases as φ increases from 0.16 to 0.31, and reaches

a plateau between φ = 0.31 and 0.50. During this process, the increase of the number of con-
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stituent cylinders, the decrease of streamwise bleeding and increase of lateral/vertical bleeding all

contribute to increasing CD. However, surprisingly, as φ increases further, the CD drops abruptly

towards the solid-patch case (φ = 1), which is even smaller than that of the sparsest patch with

φ = 0.16. This can be attributed to the absence of internal resistance and the bleeding flows as

well. However, it is controversial which of these phenomena is most responsible for the substantial

reduction of CD for the solid patch. Nicolle & Eames (2011) and Chang & Constantinescu (2015)

argued that the internal resistance is more dominant, while Taddei et al. (2016) suggested that the

lateral bleeding controls the dynamics. Furthermore, it is noteworthy that in figure 4.13 there is a

big gap of data between 0.50 < φ < 1. This lack of data calls for more future study to investi-

gate whether for 0.50 < φ < 1 the plateau of CD still persists and then abruptly decreases after

a threshold value of φ, or whether it smoothly decreases towards the solid-case value. Therefore,

similar with the discussion of flow diversion in figure 4.12, a monotonic interpolation is not made

within this range.

Consistent with the abovementioned previous studies, the results presented in this section sug-

gest that porous obstacles (either emergent, submerged or suspended) act as very efficient mo-

mentum sinks when impinged by a incoming uniform flow (i.e. more efficient than their solid

counterpart). We suggest that this result could be exploited for engineering applications that re-

quire to maximize flow resistance while maintaining low roughness densities. (i.e. number of

roughness elements per unit surface). For example, fish passes at steep slopes are commonly built

using roughness elements to minimize mean velocities (usually in the form of rocks or artificial

baffles) to allow for upstream fish migration. The information contained in figure 4.13 suggests

that replacing solid with porous roughness elements (e.g. vegetation-like surfaces) could lead to

an enhanced flow resistance and ultimately an improved fish pass efficiency.

4.4 Conclusions

Uniform flow interacting with a suspended cylindrical canopy patch was numerically investi-

gated using large eddy simulations, with the aim of providing a systematic understanding of the
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effect of patch density and aspect ratio on the highly three-dimensional mean flow dynamics in

the near field. Flow bleeding along all directions was quantitatively evaluated for the first time

by integrating the velocity field along the patch outer surface. It was observed that the absolute

streamwise(UB)/lateral(VB)/vertical (WB) bleeding decreases/increases/increases with either in-

creasing φ or AR. Vertical motions inside the patch was examined to provide an explanation for

the similar dependence of WB on φ and AR. In terms of relative vertical bleeding (QBz/Qinflow),

it is interesting to note that a larger AR causes a smaller proportion of the total flow entering the

patch to bleed out vertically. Close interlinks between the patch geometry, flow bleeding and flow

diversion were identified, which have important implications for marine farms where fluxes of

nutrients and wastes determine productivity and environmental impacts.
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Chapter 5

Bottom Gravity Currents Interacting with an Infinite

Submerged Array2

5.1 Introduction

Gravity currents occur whenever fluid of one density flows primarily horizontally into a fluid

of different density. There are many examples of gravity currents, both naturally occurring and

man-made (Simpson 1997). Gravity currents propagating along a smooth surface has been exten-

sively studied (Rottman & Simpson 1983; Shin et al. 2004; Cantero et al. 2007; Ooi et al. 2009).

However, it is not uncommon for a gravity current to encounter macroscale obstacles or small-

scale roughness elements that provide an additional drag and impede its progress (Hatcher et al.

2000). The dynamic impact of the obstacles is felt over different fractions of the total flow depth

depending on their submergence ratio H/h, where H is the flow depth and h is the array height. A

handful of previous studies have dealt with the effect of emergent arrays (H/h 6 1) on buoyancy-

driven exchange (Tanino et al. 2005; Jamali et al. 2008; Zhang & Nepf 2008; Ozan et al. 2015).

Nevertheless, the problem of gravity currents interacting with a partial-depth array (H/h > 1) has

received less attention, partly due to the additional complexity arising from the drag continuity at

the array-ambient interface. The propagation and structure of bottom-boundary gravity currents

over a sparse array of two-dimensional submerged obstacles have been investigated by Tokyay

et al. (2011a, 2012, 2014). Cenedese et al. (2016) experimentally found that enhancement of the

dilution of the bottom currents by a submerged array can occur due to two different mechanisms.

2The research presented in this chapter has been published in substantial part in Journal of Fluid Mechanics under

the title “On the propagation of gravity currents over and through a submerged array of circular cylinders” (J. Zhou

et al. 2017). Background information and literature relevant to this chapter are presented again so the chapter may

be read as a stand-alone work. The chapter is written in a collective “we” voice to acknowledge collaboration with

Dr. S. K. Venayagamoorthy from Colorado State University, Dr. Claudia Cenedese from Woods Hole Oceanographic

Institution, and Dr. Roger Nokes from University of Canterbury, New Zealand. S. K. V. and C. C. were able to forge

this collaborative research at the Workshop on the Mathematics of Layers and Interfaces that was held in Oaxaca,

Mexico on November 8-13, 2015.
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For a sparse array, the vast majority of the gravity current propagates within the array, and the

individual cylinder wakes are the main contributor to the current dilution. In contrast, for a dense

array, the gravity current rides on top of the array and the dilution is mainly enhanced by the ver-

tical convective instability arising from the unstable stratification at the interface. The propagation

of a surface current beneath a floating array has been studied experimentally by Zhang & Nepf

(2011) and numerically by Ozan et al. (2016), which have led to similar results with the studies of

bottom currents over a submerged array.

Canopies from different systems with different scales exhibit a wide range of solid volume

fraction φ (defined in equation 5.1 later). For rooted aquatic vegetation, φ ranges from 0.001

for marsh grasses to 0.45 for mangroves (Nepf 2012). The range of φ for terrestrial forests has

not been specifically reported in the literature, but is also expected to vary significantly between

different circumstances. In the industrial setting, however, there is an even wider scope of φ. For

example, the packing density of buildings may reach its minimum (φ ≈ 0) in the open country

and its maximum (φ ≈ 1) in a dense urban center. Other dense porous media over which gravity

currents may propagate include sediment beds, coral reefs and reservoir rocks (Ghisalberti 2009).

To date, a very limited range of φ has been investigated, with the highest being around 0.35 for

emergent arrays (Zhang & Nepf 2008) and 0.36 for submerged arrays (Cenedese et al. 2016). It

has come to an agreement that the front velocity of the gravity current decreases as the array is

densified to up to φ ≈ 0.35, regardless of the submergence condition. For the emergent case, it

seems unnecessary to extend φ even higher since a further retarding of the current by the increased

array drag can be readily expected until it ceases to advance. In contrast, given the additional flow

pathway above a submerged array, one expects the gravity current propagation to approximate the

flat-bed case when φ reaches unity. The associated dynamics of flow transition occurring within

the range of φ = 0.36 ∼ 1 that regulates the propagation and structure of the gravity current is

nontrivial and has not yet been explored.

Unlike natural canopies, arrays of obstacles with human intervention, including urban canopies,

crop canopies, forest plantations, and engineering retarding facilities, are sometimes non-equidistant
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Figure 5.1: Schematic diagram showing the full-depth lock-exchange setup used in this study. (a) elevation

view of the channel; (b) plan view of the in-line arrangement; (c) plan view of the staggered arrangement.

The vertical dashed line in (a) indicates the gate position at x = 0. The rightmost end of the array is far from

the channel extremity. Circular cylinders (when present) with a diameter of d and a height of h are mounted

on the channel bed, with their axes parallel to the vertical direction. The streamwise and spanwise center-

to-center cylinder spacings are denoted as sx and sy, respectively. In the staggered case, the offset rows are

shifted by sy/2 along the spanwise direction. In both (b) and (c), the array is referred to as equidistant if

sx = sy and non-equidistant otherwise. Not to scale.

with the obstacles spacings varying significantly in different directions (see equation 5.2 for def-

inition of array non-equidistance). However, most existing studies limit their consideration for

gravity currents interacting with equidistant arrays (or similarly, random arrays) where the indi-

vidual roughness elements are nearly equidistantly distributed (Tanino et al. 2005; Cenedese et al.

2016). The conventional geometrical characterization consisting of horizontally-averaged bulk pa-

rameters, i.e. the solid volume fraction φ and the frontal area of solids per unit volume a (defined

below), was employed in all these studies. Therefore, whenever there is a nonnegligible degree of

array non-equidistance, the universality of the consensus that a certain set of φ and a (with all other

parameters fixed) uniquely determines the state of the gravity current propagation, is questionable

and needs to be reexamined.

Figure 5.1 shows the lock-exchange setup of a bottom-boundary Boussinesq gravity currents

propagating over and through a submerged array of circular cylinders used in this study. The

initial maximum and minimum fluid densities in the lock and the ambient region before gate
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removal are denoted as ρmax and ρmin, respectively. The reduced gravity is defined as g′ =

g (ρmax − ρmin) /ρmax. The channel depth, H , and the corresponding buoyancy velocity, ub =
√
g′H , are used as the characteristic length and velocity scales, respectively. Time is rendered

dimensionless in terms of t0 = H/ub. The dimensionless fluid density is defined as ρ = (ρa −

ρmin)/(ρmax − ρmin) ∈ [0, 1] where ρa is the absolute fluid density. The dimensions of each of the

circular cylinders is fixed throughout this study, i.e. d in diameter and h = 2.5d in height. This

results in an aspect ratio of h/d = 2.5. There are N such circular cylinders within the volume of

the array (Varray = WhLarray, including pores). The array density (also referred to as the solid

volume fraction hereinafter) is given by

φ =
N (π/4) d2h

Varray

. (5.1)

We will present a combined experimental and numerical investigation to provide a compre-

hensive understanding of the current-array interaction under the impact of array densification and

non-equidistance. The results of this study are expected to have great implications for practical

applications in a variety of fields. Examples include oceanic turbidity currents over bottom to-

pography (Meiburg & Kneller 2010), thermally-driven exchange flows through aquatic canopies

(Oldham & Sturman 2001), sea breezes or haboobs through urban areas (Huppert 2006; Knippertz

& Todd 2010) and snow avalanches over mitigative fences (Hopfinger 1983). Taking advantage of

the unique obstacle representation technique of our numerical model (Hirt 1993), we are able to

vary the embedded array geometry realistically without changing the computational mesh. The re-

sulting freedom of geometrical variation enables us to perform an extensive parametric study to ad-

dress the following outstanding research questions that are closely related to density-driven gravity

currents over groups of obstacles in aquatic/geophysical/atmospheric environments. Specifically:

1. How does the gravity current behavior vary over the full range of φ on encountering a

submerged array? We will start from the classic flat-bed condition (φ = 0), experimentally

densify the array to up to φ = 0.36, and then gradually approach the fully-blocked condition
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(φ = 1) using LES. Across this range, we will present insights into the flow behavior and

transitions regulating the initial deceleration and subsequent reacceleration of the gravity

current as φ increases, which is fundamentally different as compared to the case of emergent-

arrays where the front velocity depends monotonically on φ.

2. What is the appropriate geometrical characterization of a non-equidistant array when it af-

fects the gravity current propagation? We will demonstrate that arrays with the same density

φ can result in entirely different structures of the gravity current depending on its level of

non-equidistance (sx 6= sy) and cylinder arrangement (either in-line or staggered). A two-

dimensional parameter space will be proposed in which the array density φ is decomposed

into its streamwise and spanwise components respectively as

µx = d/sx and µy = d/sy. (5.2)

Physically, µx can be interpreted as a wake parameter, with large µx indicating a strong

suppression of the individual cylinder wakes. Meanwhile, µy can be interpreted as an intru-

sion parameter, with large µy indicating less intrusive flow through the lateral space between

cylinders. Accordingly, the original array density can be expressed as

φ =
(π

4

)

µxµy. (5.3)

Similarly, the frontal area of solids per unit volume can be written as a = (µxµy)/d for

non-equidistant arrays (µx 6= µy). Since d is fixed in this study, the parameter a can be

uniquely determined as
(

4

π

)

φ/d. We will show that this new geometrical framework, which

emphasizes the necessity of directional decomposition of the array density, provides a more

unambiguous description of the gravity current propagation especially when the array is

highly non-equidistant. Depending on the specific combination of µx and µy, four dynam-

ically different flow regimes with their mutual transitions are identified. On top of this, the

two cylinder arrangement patterns in figure 5.1(b, c) will be analyzed and compared.
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The layout of this chapter is as follows. The experimental methodology, numerical model and

its validation, as well as the matrix of numerical simulations are given in §5.2. Based on this, the

results from a broad-range parametric study using LES are presented in the ensuing sections. We

firstly discuss the effect of array geometry on the gravity current under a particular submergence

ratio H/h in §5.3, §5.4 and §5.5. In §5.3, a discussion of the gravity current front velocity is

provided. In §5.3.1, we present results of the temporal evolution of the current front, while in

§5.3.2 we discuss the dependence of the time-averaged front velocities on array geometry during

the slumping phase. In §5.4, we describe in detail the various flow regimes identified in this

study. The transitional dynamics among different flow regimes for equidistant and non-equidistant

arrays is discussed in §5.5.1 and §5.5.2, respectively. In §5.6, with a particular array geometry, the

flow depth was varied to investigate the effect of submergence ratio. Finally, §5.7 provides some

concluding comments and connects the results to practical situations.

5.2 Descriptions of Experiments and Numerics

5.2.1 Experimental Setup

The experimental work of this study is conducted at University of Canterbury, New Zealand,

using a similar apparatus to that of Cenedese et al. (2016). As shown in figure 5.1, a gravity current

was generated through the classic lock-exchange configuration in a flat flume with perspex lateral

walls and a glass bottom. The flume was 620 cm in length, 25 cm in width and 50 cm in height.

A stainless steel gate sealed by plastic foam was located Llock = 100 cm from the left hand end

of the flume, partitioning it into two regions: the lock region and the open region containing the

roughness elements which extended Larray = 300 cm away from the gate. The array consisted

of vertical rigid plastic cylinders that were 2 cm in diameter and 5 cm in height which are fixed

for all the experiments, resulting in a cylinder aspect ratio of h/d = 2.5. The cylinders were held

in place by a perforated aluminum base plate and could be screwed in and out to create different

geometrical configurations with varying µx, µy and arrangement patterns as indicated in figure 5.1.
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A 4g/l salt solution (ρmax = 1.0014 g/cm3) and a 14.7 ml/l ethanol solution (ρmin = 0.9963

g/cm3) were filled into the lock region and the ambient-fluid region, respectively, resulting in a

reduced gravity of g′ = 5 cm/s2 so that the flow can be considered as Boussinesq. The purpose of

using an ethanol solution as opposed to fresh water for the ambient fluid was to match its refractive

index with the lock fluid (n = 1.3337) in order to eliminate optical distortions. The densities were

measured with an Anton Paar DMA 5000 density meter. The experiment was started by pulling

the gate vertically out of the tank. The flow evolution was captured using a JAI BB-141GE (Bayer

color) CCD camera recording at a frame rate of 30.128 Hz. The 1392 × 1040 pixel images were

transferred directly to a fast hard drive on a PC during capture. A mirror was used to increase

the distance between the camera and the field of view, thus decreasing the impact of parallax.

Both the light and dense fluids were seeded with approximately neutrally buoyant Pliolite particles

sized at 250-300 µm. A LED lightbank generated an approximately 1 cm wide lightsheet which

illuminated a slice of the flow from above along the centerline of the tank. The field of view of the

camera was from x = 77.9 ∼ 128.1 cm, which is referred to as the illuminated region. Enough

particles were added to ensure that there were at least 1000 particles in the camera window with

a volume of roughly 502 mm × 10 mm × H . The post-processing of the captured images was

undertaken using a Light Attenuation (LA) technique with the Streams software system (Nokes

2016).

In this study, a total of 11 laboratory experiments were conducted with bottom roughness

present. The streamwise array density was varied as µx =0.090, 0.181 and 0.363 while the span-

wise array density was fixed at µy = 0.636, resulting in a solid volume fraction of φ = 0.045,

0.090 and 0.181, respectively. For each array geometry, the water depth was varied to simulate

different submergence ratios at H/h = 3, 4, 5.4 and 7. The data of φ = 0.045 associated with

H/h = 7 was not recorded. It is acknowledged that there are intrinsic problems in obtaining ro-

bust time-averaged velocity fields using data recorded by a camera fixed in the laboratory frame

of reference. The primary reasons for this are firstly, that it must be assumed that the current is in

a quasi-steady state such that the current front propagates at a constant speed and that the internal
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Figure 5.2: Elevation and plan views of the experimental flume and optical system components at University

of Canterbury, New Zealand. Upon the gate removal, a BBGC propagates to the left due to a fixed reduced

gravity g′ = 5 cm/s2. Not to scale.

flow is statistically stationary during the recorded motion; and secondly, that the recording pe-

riod is sufficiently long to be able to compute robust Reynolds averages. However, comparison of

the vertical profiles of the horizontal velocity for three repeated experiments with the same initial

conditions (not shown) gives us confidence that the results presented in this paper are robust.

5.2.2 Numerical Model and Validation

The LES filtered Navier-Stokes equations for time-dependent, three-dimensional, incompress-

ible stratified flows with the Boussinesq approximation are given in tensor notation by

∂ui

∂t
+

∂ (uiuj)

∂xj

= − 1

ρ0

∂p

∂xi

+ ν
∂2ui

∂xj∂xj

− g
ρ

ρ0
δi3 −

∂τSGS
ij

∂xj

, (5.4)

subject to the filtered continuity equation
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∂ui

∂xi

= 0, (5.5)

and the filtered density transport equation

∂ρ

∂t
+

∂ (ρuj)

∂xj

= κ
∂2ρ

∂xj∂xj

−
∂χSGS

j

∂xj

, (5.6)

where ui is the Cartesian components of the filtered velocity field, p is the filtered pressure, ρ

is the filtered density, ρ0 is a characteristic reference density, g is the gravitational acceleration,

δi3 is the Kronecker delta, ν is the kinematic viscosity, and κ is the molecular diffusivity of the

dissolved species that gives rise to the density variation. The spatial-filtering operation is not

written explicitly. Time is represented by t and the index i = 1, 2, 3 indicates the x (streamwise),

y (spanwise), and z (vertical) directions, respectively. Invoking the Boussinesq approximation

(∆ρ/ρ ≪ 1), the density differences are only significant in the buoyancy term of the momentum

equations. The two flow parameters arising from the non-dimensionalization of the governing

equations are the channel Reynolds number ReH = ubH/ν and the molecular Schmidt number

Sc = ν/κ.

Figure 5.3 compares the numerical density fields with experiments (Cenedese et al. 2016) hav-

ing the same array geometries. Two typical flow structures for a gravity current propagating past

a submerged array under a submergence ratio of H/h = 4 are shown. For the sparse array (figure

5.3a, c), the vast majority of the gravity current propagates along the channel bed which resembles

the classical case for a smooth bottom. The turbulent cylinder wakes are the main contributor to

the dilution of the gravity current. In contrast, for the dense array (figure 5.3b, d), the array drag

is large enough such that a new, well-defined current nose is found to propagate along the array

top. The over-current nose is well mixed with the underlying lighter fluid via vertical convective

instability.

Within the laboratory illuminated section (x = 77.9 ∼ 128.1 cm), the gravity current was found

to be propagating at a nearly-constant speed. The corresponding time-averaged Froude number is
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Figure 5.3: Comparison of experimental and numerical instantaneous density fields of a gravity current

propagating past a sparse and a dense array. The submergence condition is fixed at H/h = 4. (a) sparse,

experimental; (b) dense, experimental; (c) sparse, LES; (d) dense, LES. For the sparse array, µx = 0.361,

µy = 0.313, and φ = 0.09. For the dense array, µx = 0.722, µy = 0.626 and φ = 0.36. The experimental

density fields are from Cenedese et al. (2016).

given by

Fr = Uf/ub, (5.7)

where Uf is the time-averaged front velocity that was calculated through a linear interpolation to

the variation of the front position, xf , as a function of time, t. It can be seen in figure 5.4 that

the values of Fr for the numerical simulations and the laboratory experiments are in excellent

agreement to up to φ = 0.36, except for the case with φ = 0.181 and H/h = 7. Starting from the

canonical case of gravity currents propagating over a flat bottom, Fr is initially seen to decrease

as the array becomes denser, which is consistent with gravity current front speeds in emergent

canopies (Zhang & Nepf 2008) and sparse submerged canopies (Cenedese et al. 2016). As φ in-

creases further, our laboratory experiments indicate for the first time a non-monotonic dependence

of Fr on φ, which was confirmed by the numerical simulations. However, the detailed Fr ∼ φ

relationship and the underlying flow physics beyond φ = 0.36 are still unknown. This serves as

one of the motivations of the present study.
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Figure 5.4: Comparison of the time-averaged Froude number between the laboratory experiments and the

numerical simulations for different array densities and submergence conditions (black: H/h = 3; red:

H/h = 4; green: H/h = 5.4; blue: H/h = 7). Error bars are included to account for the range of

Fr in 4-6 different experimental methods for measuring the front velocity for each case due to the highly

unsteady nature of the flow. For in-line arrays, the mean values of experimental and LES results are linearly

interpolated by solid lines. The data between in-line and staggered arrays are interpolated using dashed

lines. Experimental data of the smooth (φ = 0) and the densest cases (φ = 0.36) are from Cenedese et al.

(2016).

5.2.3 Matrix of Parametric Study

A broad-range parametric study is performed using the array characterization method as de-

scribed in §5.1 and given by equations (5.2) and (5.3). All the large eddy simulations were con-

ducted in a channel with a flat bottom wall and lateral vertical endwalls. The top boundary is

modeled as a free surface. The initial lock-gate position is at x = 0, as shown in figure 5.1. An

array of vertical cylinders with an aspect ratio of 2.5 is mounted on the channel bed, with the up-

stream face of the first row of cylinders located at x = 0 so that the interaction between the gravity

current and the array occurs immediately after the gate removal. The streamwise dimension of the

array is determined in each simulation to ensure a negligible effect from the downstream boundary

of the computational domain. The reduced gravity is fixed at g′ = 5 cm/s2.
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The simulation runs performed in this study are summarized in table 5.1. The unobstructed

flat-bed case (φ = 0) and the fully-blocked solid-slab case (φ = 1) under a submergence ratio of

H/h = 5.4 are regarded as two baseline simulations with the notation

F-0-5.4 and F-1-5.4, (5.8)

respectively. The simulations with cylinders at a fixed submergence raio of H/h = 5.4 are denoted

as

I(S)-µx-µy-5.4, (5.9)

where I indicates in-line arrays and S indicates staggered arrays. The value of µy is varied across

a 10-element set of 0.181, 0.272, 0.363, 0.454, 0.545, 0.636, 0.727, 0.818, 0.909 and 1.000. The

value set of µx is identical to that of µy with an additional value of µx = 0.090. In order to

investigate the effect of array non-equidistance on the current propagation, µx and µy are varied

independently such that 110 simulations are conducted for in-line and staggered arrangements,

respectively (220 in total). As µx and µy vary, the corresponding solid volume fraction, φ, ranges

from 0 to π/4 according to equation (5.3), which covers the whole range of possible aquatic and

terrestrial conditions (note that arrays with φ > π/4 is unachievable for circular cylinders due to

their curvature).

In addition, instead of varying the planar array configuration, a equidistant staggered array with

a fixed geometry (µx = µy = 0.636) is used to study the effect of submergence ratio. This last set

of LES runs are denoted as

S-0.636-0.636-H/h, (5.10)

where the submergence ratio H/h varies as 1, 2, 3, 4, 6, 10 respectively. The array is initially

emergent (H/h = 1), and eventually becomes deeply submerged (H/h = 10) as the flow depth

rises.

Most of the LES runs with a submergence ratio of H/h = 5.4 were performed with a channel

Reynolds number ReH > 30000 which is typical for exchange flows within aquatic canopies
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Simulation group Comments µx µy φ H/h # of runs

F-0-5.4 Flat bed 0 0 0 5.4 1

F-1-5.4 Solid slab 1 1 1 5.4 1

I-µx-µy-5.4 In-line arrays (0, 1] (0, 1] (0, π/4] 5.4 110

S-µx-µy-5.4 Staggered arrays (0, 1] (0, 1] (0, π/4] 5.4 110

S-0.636-0.636-H/h Submergence ratio 0.636 0.636 0.318 [1,10] 6

Table 5.1: List of simulations performed showing the parameter space covered. The boldfaced characters

indicate the varying parameters in each simulation group.

where Re ∼ 104 because the current is driven by a small amount of temperature difference due

to differential shading. In atmospheric and geophysical settings, however, the Reynolds number is

higher (e.g. Re = 105 ∼ 108) due to the increase of the characteristic length and velocity scales.

However, we expect the bulk propagation dynamics to be similar, and the Re-scaling effects are

left to future studies. For most of the simulations, the cylinder Reynolds number Red = U fd/ν

was between 500 and 1000 such that the flow can be considered as turbulent and three-dimensional

(Williamson 1996).

The total number of simulations conducted in the present study is 228, in order to provide a

comprehensive understanding of the various flow regimes and transitions when a gravity current

encounters a submerged array of obstacles. This extensive parametric study is made possible

at the cost of sacrificing some of the grid resolution. The uniform mesh size of 0.2d that was

used for comparison with the experimental data as shown in figures 5.3 and 5.4 is applied to the

whole computational domain. A grid-independence study was performed where the grid size was

halved to 0.1d, and the difference of the front velocity was found to be less than 5%. For most

simulations, the number of grid points was 1300×60×80 in the streamwise (Lx = 23H), spanwise

(Ly = 0.9H) and vertical (Lz = 1.2H) directions, respectively. The fact that Lz is slightly larger
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than H is to ensure that free surface fluctuations are accurately modeled by our numerical solver.

For the simulations focusing on the self-similar propagation in §5.3.1, the streamwise length of

the domain is increased as needed. No-slip boundary conditions were employed on the velocity

field at the bottom boundary, the upstream and downstream vertical endwalls, and on the surfaces

of the cylinders. Symmetry boundary conditions are applied to the lateral endwalls. The time step

was automatically adjusted by the solver to be as large as possible without exceeding the stability

limits and affecting accuracy, with a mean value of 0.003t0.

5.3 Front Velocity

In this section, we discuss the propagating properties of the front of the gravity current, with

the temporal evolution in §5.3.1 and the time-averaged front velocity during the slumping-phase

in §5.3.2, respectively. Six representative simulation cases with different array geometries under

a fixed submergence ratio of H/h = 5.4 are analyzed and compared. Detailed flow structures of

these simulations will be discussed in more detail in §5.4. For ease of interpretation here, flow

regimes corresponding to the six cases are respectively: F-0-5.4 (flat-bed, figure 5.9a), S-0.363-

0.363-5.4 (through-flow, figure 5.9b), S-0.636-0.636-5.4 (over-flow, figure 5.9c), S-1.000-1.000-

5.4 (over-flow, figure 5.9d), I-0.090-1.000-5.4 (plunging-flow, figure 5.9e) and I-1.000-0.272-5.4

(skimming-flow, figure 5.9f ). For the two over-flow cases, only the over-nose position is plotted.

5.3.1 Temporal Evolution of the Gravity Current Front

The trajectories of the dimensionless front position xf/H versus the dimensionless time t/t0

are shown in figure 5.5. The position of the nose is determined by inspection of the cross-

sectionally (laterally) averaged density fields, which can be considered arguably to be more robust

than the center-line velocity captured in the laboratory experiments in §5.2.1. As expected, in all

simulations, after a short initial acceleration, the gravity current reaches a slumping phase in which

the front trajectories can be well approximated by lines with constant slopes. This constant-speed

phase has been observed in lock-exchange gravity currents propagating over a smooth surface
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(Rottman & Simpson 1983), through an emergent canopy (Tanino et al. 2005), and over a series of

submerged two-dimensional obstacles (Tokyay et al. 2011a). The vertical gray line in figure 5.5

indicates the time before which time-averaged Froude number can be appropriately calculated. For

the flat-bed case, Fr = 0.451, which agrees well with previous studies of full-depth lock release

for similar order of Reynolds number (Keulegan 1958; Härtel et al. 2000; Shin et al. 2004; Cantero

et al. 2007). The laboratory experiments of Cenedese et al. (2016) report an almost identical value

of Fr (see figure 5.4).

It is evident in figure 5.5 that except for case I-1.000-0.272-5.4, the presence of the array slows

down the advancement of the gravity currents in all other simulations compared with the flat-bed

case. However, the array with the lowest solid volume fraction (I-0.090-1.000-5.4) results in the

slowest gravity current propagation, which is contrary to the prediction of Fr variation with φ for

equidistant arrays (e.g. Zhang & Nepf 2008). At later stages of all the cases, the front speed starts

to decrease. A thorough discussion of Fr averaged over t = 2t0 ∼ 21.5t0 across a broad range

of array configurations is provided in §5.3.2, where we focus on the current propagation in the

slumping phase before any decelerating effects become significant. The fact that the current nose

in case I-1.000-0.272-5.4 is initially slightly ahead of that in case F-0-5.4 but overtaken around

t = 60t0 is discussed later in §5.5.2.1.

For a better interpretation of the self-similar propagation of the gravity current for these rep-

resentative simulations, figure 5.5 is replotted using log-log scale in figure 5.6. For case F-0-5.4,

due to the finite volume of the release, a disturbance with the appearance of an internal hydraulic

drop generated at the lock endwall eventually overtakes the current front and causes it to decel-

erate. Consequently, after a transitional phase, the gravity current reaches a buoyancy-inertial

self-similar phase (black line in figure 5.6a). The corresponding front trajectory follows a power

law, xf ∼ t2/3 (or equivalently Uf ∼ t−1/3 where t is the time since release), which is consistent

with the theoretical value proposed by Rottman & Simpson (1983). The buoyancy-viscous phase

was not observed due to the high Re in the time frame considered.
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Figure 5.5: Time variation of the dimensionless front position xf/H as a function of the dimensionless time

t/t0 for six representative simulation cases. The vertical gray line indicates the time (t = 21.5t0) before

which the front trajectories can be well approximated by lines with constant slopes.

Compared with the flat-bed case, the presence of obstacles alters the self-similar property of

the gravity current propagation after the slumping phase because of different mechanisms. In

case S-0.363-0.363-5.4 (blue line in figure 5.6a), the gravity current is within the through-flow

regime. Initially the current adjusts to the uniformly-distributed array drag until t ≈ 10t0 when the

deviation of the front trajectory from the flat-bed case occurs. Later on, the array drag becomes

increasingly significant as more obstacles are immersed in the current body, and finally the gravity

current transitions to a turbulent drag-dominated phase (xf ∼ t1/2) in which the front velocity

decreases faster than that of the buoyancy-inertia phase in case F-0-5.4, which is consistent with

the analytical model for a finite release proposed by Hatcher et al. (2000).

Comparison between the two dense cases within the over-flow regime, i.e. S-0.636-0.636-5.4

and S-1.000-1.000-5.4, reveals their different propagating dynamics. In case S-0.636-0.636-5.4

(figure 5.9c), the clear-cut over-nose controls the bulk propagation and the vertical convection is

the main contributor to the dilution of the over-current. However, the relatively large volume of

dense fluid trapped within the array due to the high porosity of the array (p = 1 − φ = 0.682),
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Figure 5.6: Representation of figure 5.5 using log-log scale. The vertical gray line demarcates the constant-

speed slumping phase and the subsequent self-similar phases. Best fitting lines in the form of xf ∼ tk are

plotted for k = 1 ( ), k = 2

3
( ) and k = 1

2
( ), respectively. For ease of visualization: (a) front

positions corresponding to figure 5.9(a, b, c); (b) front positions corresponding to figure 5.9(d, e, f ).

together with the drag exerted by the turbulent cylinder wakes, albeit small, still result in a power

dependence of xf ∼ t1/2 similar to case S-0.363-0.363-5.4. In contrast, the longitudinal current

propagation in case S-1.000-1.000-5.4 is completely above the array top boundary, with the fluid

motion within the array being purely subject to vertical convective instability (figure 5.9d). As a

result, the gravity current exhibits another self-similar property in which xf ∼ t2/3. The possible

mechanism accounting for this power dependence is the overtaking of the reflected bore due to

the finiteness of the lock-release that is similar to the flat-bed case. This slower decrease of the

front velocity in case S-1.000-1.000-5.4 as compared to the xf ∼ t1/2 relationship of the turbulent

drag-dominated phase in case S-0.363-0.363-5.4 can also explain the fact that the front position of

the former case slightly lags behind but overtakes the latter around t = 70t0 in figure 5.5.

The two cases with non-equidistant arrays in figure 5.6(b) are also found to have different

post-slumping self-similarities in current propagation. In case I-0.090-1.000-5.4 (plunging-flow

regime in figure 5.9e), the gravity current decelerates when moving upwards on encountering the

upstream face of each row of obstacles, and accelerates when moving downwards after it passes

the cylinder free ends. Consequently, the front trajectory is subject to large-amplitude temporal
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variations. After a transitional phase, the current enters a turbulent drag-dominated regime where

xf ∼ t1/2. A similar array geometry (ribs with µx = 0.05 ∼ 1, µy = 1) was studied by Tokyay

et al. (2014) and the same drag-dominated regime was found. On the other hand, the current in

case I-1.000-0.272-5.4 is within the skimming-flow regime (figure 5.9f ) where the array drag is

largely reduced. The flow dynamics of each sub-current is basically the same as in the flat-bed

case (compare figures 5.9a and 5.9f ) such that the front position evolves as the buoyancy-inertial

self-similarity, xf ∼ t2/3.

5.3.2 Time-averaged Front Velocity in the Slumping Phase

As shown in figures 5.5 and 5.6, within the range of t = 2t0 ∼ 21.5t0 demarcated by the gray

line, the gravity current is propagating in the slumping phase or around the beginning of transition

to subsequent self-similar phases, and thus a constant-speed approximation is appropriate. In what

follows, we briefly discuss the time-averaged Froude number of the frontmost nose (either through

or above the array) in this time frame, which is defined as

Fr
∗

= max
{

FrON , F rTN

}

, (5.11)

where FrON and FrTN are the Froude numbers of the over-nose (ON) and the through-nose (TN),

respectively. The submergence ratio is fixed at H/h = 5.4.

Figure 5.7 shows the variation of Fr
∗

with µx or µy with the other being fixed, for both in-line

and staggered arrangements. As will be discussed in §5.5, the two acceleration mechanisms of the

gravity current are the transition to skimming-flow and over-flow, respectively. For in-line arrays

in figure 5.7(a), the value of Fr
∗

first decreases and then increases with increasing µx at any fixed

µy. For low-to-moderate µy, based on the flow-regime classification in §5.4, the increase of Fr
∗

with increasing µx is the consequence of a through-to-skimming transition (see §5.5.2.1). On the

other hand, for large µy, the streamwise densification of the array results in a much earlier increase

of Fr
∗

, which is caused by a plunging-to-over transition (see §5.5.2.2).
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Figure 5.7: Froude number versus streamwise (spanwise) array density at fixed spanwise (streamwise) array

densities under a submergence ratio of H/h = 5.4. (a, b) in-line arrays; (c, d) staggered arrays. Circles show

the values of Fr
∗

averaged over the interval t = 2t0 ∼ 21.5t0 and solid lines are the best fitting curves with

R2 ≥ 0.98. The two limiting cases are included in each panel: flat-bed case F-0-5.4 ( ); solid-slab case

F-1-5.4 ( ).
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The independent effects of µy on Fr
∗

are shown in Figure 5.7(b). For very small µx, increasing

µy leads to a monotonic decreases of Fr
∗

due to the net increase of drag without any accelerat-

ing mechanism present. At a fixed moderate-to-large µx, as µy increases, initially the through-

to-skimming transition accelerates the current even faster than the flat-bed limit (Fr
∗

=0.45, the

dashed line). Successive increase of µy causes the current to decelerate because of the increasing

array drag. Finally, as µy is increased further, the gravity current is accelerated again due to the

transition to over-flow.

Two major differences are observed for the staggered arrays shown in figure 5.7(c, d). Firstly,

the through-to-skimming accelerating mechanism is absent due to the interruption of interstitial

flow by the offset rows (see §5.5.2.1). In figure 5.7(c), the increase of µx at a fixed µy leads to

a monotonic decrease of Fr
∗

except for the cases with µy > 0.818 where the plunging-to-over

transition accelerates the current motion (see §5.5.2.2). Secondly, in figure 5.7(d), the critical

value of µy beyond which Fr
∗

starts to increase becomes smaller for contours with larger µx,

which is not the case for in-line arrays (figure 5.7b). At a fixed µx, as µy increases, there is a

more remarkable growth of the array drag promoting the transition to over-flow due to the offset

interruption.

5.4 Flow Regimes

Now, we discuss in detail the the various flow regimes mentioned in §5.3. In the spirit of using

the new two-dimensional parameter space to predict the current-array interaction as outlined in

§5.1, an interpolated recast of figure 5.7 in the µx-µy space is shown in figure 5.8. We define a

dimensionless parameter,

ǫ = Fr
∗

/Fr
∗

φ=0, (5.12)

where Fr
∗

φ=0 is the base value from the flat-bed case. In consequence, Figure 5.8 represents

the net effects of the array with a specific µx-µy combination on the gravity current propagation

with respect to the unobstructed flat-bed condition. By allowing for the independent variation of

µx and µy with the corresponding φ-contours embedded, figure 5.8 facilitates a convenient and
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unambiguous interpretation of the parametric dependence of the various flow regimes and their

mutual transitions on array geometry. The key message is that there is an infinite number of

possible states of flow along a single contour of φ, emphasizing the inappropriateness of using

the conventional φ-parameterization of array geometry whenever their is a nonnegligible degree of

array non-equidistance.

The density structures corresponding to different flow regimes are shown in figure 5.9. In

the flat-bed case F-0-5.4 (figure 5.9a), the classic gravity current interface and the lobe-and-cleft

structures are clearly observed. Once the array is present, the flow structure starts to differ from

the flat-bed case to varying degrees. Depending on the specific combination of µx and µy, four

distinct flow regimes of an obstructed gravity current are possible:

• Through-flow (figure 5.9b). For in-line arrays with small µx and small µy or staggered arrays

with arbitrary µx and small µy, the gravity current propagates along the channel bed, find-

ing its way through the pore regions between individual obstacles, which is referred to as

the through-nose (TN). The isolated cylinder wakes and their interferences act as the major

turbulence-energy dissipator (Cenedese et al. 2016). This regime bears some similarities to

gravity currents in sparse emergent canopies (Tanino et al. 2005) or gravity currents prop-

agating inside a highly porous medium over a solid boundary (Ozan et al. 2015) where the

current interface resembles that of a classic flat-bed gravity current (figure 5.9a).

• Over-flow (figures 5.9c, d). For arrays with large µx and large µy, due to the excessive

drag of a dense array with respect to the horizontal pressure gradient, a well-defined over-

nose (ON) propagates along the top boundary of the array and controls the overall current

propagation. Significant vertical convection (VC) occurs between the over-nose and the

underlying lighter ambient fluid, leading to intense turbulent mixing (Cenedese et al. 2016).

The volume of dense fluid trapped within the array increases with propagated distance of

the current. Therefore, the advancement of the over-current is accompanied by a continuous

loss of the effective buoyancy that drives its propagation, which scales as
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Figure 5.8: Variation of ǫ as defined in equation (5.12) in µx-µy space under a submergence ratio of H//h = 5.4. (a) in-line arrays; (b) staggered

arrays. Solid curves indicate contours of φ = (π
4
)µxµy with their values marked on the right hand side of (b). Approximate regions corresponding

to different flow regimes are annotated in both panels. Different paths of flow transition are shown by dashed arrows. The time-averaging period is

t = 2t0 ∼ 21.5t0.
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Be ∼ g′eVe, (5.13)

where g′e is the effective reduced gravity of the gradually diluted over-nose (g′e 6 g′e,t=0 =

g (ρmax − ρmin) /ρmax), and Ve is the gradually reduced volume of dense fluid above the

array top boundary (Ve 6 Ve,t=0 = WLlock(H − h)), using the notation in figure 5.1. This

flow regime is similar to gravity currents over a porous boundary (Ungarish & Huppert 2000)

or particle-driven gravity currents (An et al. 2012) in the sense that the dense current system

undergoes a continuous loss of effective buoyancy as it advances. The through-current, albeit

weakened, still persists (figure 5.9c) until the maximum array density for circular cylinders

(φ = π/4 ≈ 0.785) is achieved where no longitudinal propagation is permitted within the

array (figure 5.9d). In this case, the fluid motion within the pores is purely convective, and

the shape of the over-nose evolves closer to the flat-bed limit.

• Plunging-flow (figure 5.9e). For arrays with small µx and large µy, array non-equidistance

greatly affect the current propagation dynamics. Due to the strong blocking effect by each

spanwise row of obstacles, the nose of the gravity current is projected upwards when it

reaches the upstream face of each spanwise row, and then plunges towards the bed between

two adjacent rows. This is similar to the k-type roughness reviewed by Jimenez (2004)

for constant-density flows. The large-eddy simulations of a gravity current over a series of

submerged 2-D obstacles by Tokyay et al. (2011a) fall within this category.

• Skimming-flow (figure 5.9f ). For in-line arrays with large µx and small µy, the cylinder

wakes are greatly suppressed, and the gravity current is separated into several highly inde-

pendent sub-currents that pass through the array interior along the streamwise direction, with

minimal cross-stream interactions. Here, we follow the nomenclature of Oke (1988) where

the mesoscale atmospheric boundary-layer flow is almost decoupled from the recirculation

region within urban canopies when buildings are closely spaced, corresponding to the d-type

roughness in Jimenez (2004), if applied to the spanwise direction. This is the only regime
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that is absent in staggered arrays where streamwise channelizing is always interrupted by the

next offset rows (compare figure 5.8a, b).

In figure 5.8, starting from the flat-bed case, as one moves along the 45◦-diagonal (equidistant

array), ǫ is seen to first decrease and then increase, signifying the through-over transition. However,

when moving along the detours of the through-plunging (skimming)-over transitions, array non-

equidistance starts to significantly influence the flow dynamics. In the plunging-flow regime, the

current can be heavily impeded by fairly sparse arrays. whereas in the skimming-flow regime,

the gravity current may be propagating even faster than the flat-bed case, i.e. ǫ > 1. The three

pathways of flow transition, i.e. the through-over, through-plunging-over and through-skimming-

over transitions, will be discussed in detail is §5.5.

The most remarkable difference between the the in-line and staggered cylinder arrangements

is the nonexistence of the skimming-flow regime in figure 5.8(b) due to the offset interruption. The

blue zone with low values of ǫ in figure 5.8(b) appears more diffused than that in figure 5.8(a).

This can be interpreted using the one-dimensional plots shown in figure 5.7 where either of the

two parameters, µx and µy, is fixed: (i) streamwise densification: in figure 5.7(c), except along

contours of very large µy, the increase of µx is accompanied by a decrease of Fr
∗

, signifying a

net increase of resistance to the through-current as opposed to the case of in-line arrays (figure

5.7a). This extends the zone of low ǫ to the lower right portion of figure 5.8(b); and (ii) spanwise

densification: in figure 5.7(d), Fr
∗

starts to increase at smaller value of µy along contours of larger

µx, signifying an earlier transition to the over-flow as compared to the almost unchanged threshold

value of µy in figure 5.7(b). This causes a less prominent deep-blue zone in the upper right portion

of figure 5.8(b).

5.5 Flow Transitions

In what follows, we discuss three possible paths of flow-regime transitions annotated by the

dashed arrows in figure 5.8. The direct through-over transition for equidistant arrays (T ⇒ O) is

discussed in §5.5.1. We then follow with the assessment of the effects of array non-equidistance
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Figure 5.9: Visualization of representative flow structures using instantaneous density isosurfaces, ρ > 0.5.

(a) F-0-5.4 (unobstructed flat bed, φ = 0); (b) S-0.363-0.363-5.4 (equidistant and sparse, φ = 0.103); (c)
S-0.636-0.636-5.4 (equidistant and dense, φ = 0.318); (d) S-1.000-1.000-5.4 (highest density achievable

for circular cylinders, φ = π/4); (e) I-0.090-1.000-5.4 (impermeable fences, φ = 0.071); (f ) I-1.000-0.272-

5.4 (channelization, φ = 0.214). The arrows mark the unobstructed nose (N), through-nose within the array

(TN), over-nose above the array (ON) and the vertical convection within the pore regions (VC), respectively.
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in §5.5.2. The through-skimming-over flow transition (T ⇒ S ⇒ O) is discussed in §5.5.2.1, and

the through-plunging-over flow transition (T ⇒ P ⇒ O) is discussed in §5.5.2.2.

5.5.1 Equidistant Array: Through-over Flow Transition

5.5.1.1 Density and Velocity Structures

In this section, we analyze the flow transition dynamics from the through-flow regime directly

to the over-flow regime without the effects of array non-equidistance. Figure 5.10 depicts the

instantaneous fluid density fields with φ ranging from 0 to 1. Figure 5.10(a) shows the classic

structure of a gravity current propagating on a smooth bottom. In figure 5.10(b), the array is sparse

such that the gravity current propagates along the channel bed, finding its way either between or

over the cylinders. Compared with the flat-bed case, the net increase of array drag slows down the

gravity current mainly by the turbulent dissipation in the cylinder wakes. Denser arrays tend to

divert the current above the array, and a discernible over-current gradually emerges (figure 5.10c).

The over-current is diluted mainly due to the exchanged flow coming from underneath. In case S-

1.000-1.000-5.4 (figure 5.10d), through-flow is completely blocked and the current fills the space

between cylinders with dense fluid as it advances. The vertical convection is stronger and thus

enhancing the current dilution as compared with that in figure 5.10(c). Eventually, in the solid-slab

case (figure 5.10e), the dense fluid only exists and propagates above the solid obstacle with a height

of h placed on the channel bed. The density structure again resembles that of the flat-bed case but

with smaller flow depth (H − h).

It is evident from figures 5.8 and 5.10 that as the gravity current transitions from through-flow to

over-flow, its time-averaged front velocity begins to increase with array densification. This T ⇒ O

transition is the first possible acceleration mechanism for a gravity current past a submerged array.

For this flow transition path, the pore regions between the cylinders behave like a “void roughness”

in the sense that the over-current is subject to less momentum loss as it approaches the solid-

slab limit F-1-5.4 with a porosity p = 0 (i.e. φ = 1). In case F-1-5.4, according to equation

(5.13), Ve ≡ Ve,t=0 since no trapping of dense fluid within the array occurs after the gate removal.
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Figure 5.10: Instantaneous fluid density fields along the channel centerline at t = 21.5t0 showing the

T ⇒ O transition. (a) F-0-5.4; (b) S-0.272-0.272-5.4; (c) S-0.636-0.636-5.4; (d) S-1.000-1.000-5.4; (e)

F-1-5.4. Roughness elements are shown in dark gray. The lock region (−Llock 6 x < 0) is not shown.

Assuming negligible effects of the abrupt elevation of the channel bottom at the lock gate, an

estimate of the Froude number can be obtained as

Fr
∗

φ=1 = Fr
∗

φ=0

√

H − h

H
, (5.14)

where H − h is the effective lock height which is time-invariant due to zero array porosity. The

resulting Fr
∗

φ=1 for H/h = 5.4 is calculated to be 0.406 (ǫ = 90%), which is slightly larger than

the LES value of 0.401 (ǫ = 89%), presumably because of the energy loss near the leading edge of

the slab at x = 0. For case S-1.000-1.000-5.4, Fr
∗

φ=π/4 = 0.363 (ǫ = 81%). The reason is that the

presence of the pores between cylinders results in an additional reduction of Ve which increases

with time because of the array porosity, p = 0.215. Besides, the effective density difference, g′e,

is also reduced due to the enhanced dilution of the over-current with respect to the solid-slab case.
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Figure 5.11: Time-averaged and laterally-averaged horizontal velocity profiles showing the T ⇒ O transi-

tion for equidistant arrays. The velocity data are recorded at a distance of H/2 behind the current nose by

moving with the gravity current frame. The time-averaging period is 2t0 ∼ 21.5t0. The horizontal gray line

marks the array top.

Consequently, this continuous decay of Be that is absent in the solid-slab case results in a 9.5%

difference between Fr
∗

φ=π/4 and Fr
∗

φ=1.

Figure 5.11 shows the time-averaged and laterally-averaged horizontal velocity profiles cor-

responding to the cases in figure 5.10. The velocity data are taken from the cross section at a

distance of H/2 behind the current leading edge as we move with the current frame. The time-

averaging is performed over 2t0 ∼ 21.5t0 as in §5.3.2. Starting from the flat-bed case, a clear

transition from through-flow to over-flow can be observed. The velocity profile of the through-

flow case, S-0.272-0.272-5.4, resembles that of case F-0-5.4 but with smaller mean magnitude. As

φ increases further, the average horizontal velocity within the array decreases, and reaches zero

in cases S-1.000-1.000-5.4 and F-1-5.4 as expected, which implies a gradual suppression of lon-

gitudinal propagation. Meanwhile, above the array, the horizontal momentum of the over-current
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recovers as the array is densified, and eventually reaches the solid-slab case where all the dense

fluid is propagating along the array top.

The array density φ is observed to influence the driving mechanism of the flow within the array,

which is similar to that of constant-density barotropic flows over a submerged canopy despite of

the difference in flow forcing. For example, Nepf (2012) suggested that for a sparse array, the

velocity follows a turbulent boundary-layer profile, while for a dense array, suppression of the

downward penetration of the vertical turbulent stress leads to enhanced shear below and above

the array top. Similarly, in the context of gravity currents, for sparse arrays, the velocity follows a

hyperbolic-tangent profile as with the classic flat-bed case (compare velocity profiles of F-0-5.4 and

S-0.272-0.272-5.4 in figure 5.11). As the array becomes denser, there is a gradual suppression of

through-current propagation and acceleration of the over-current, which strengthens the horizontal

shear layer at the array top boundary.

Figure 5.12 sheds some light on the dilution of the over-current observed in figure 5.10. We

define the lower region of the array as the “longitudinal propagation zone” (0 6 z < δ) where

the flow communicates with the surrounding water predominantly through longitudinal current

propagation. The remaining upper array is defined as the “vertical convection zone” (δ 6 z < h)

where turbulent buoyancy fluxes dominate the flow behavior. The vertical convection zone (if it

exists) is only prominent near the over-nose, and weakens upstream of the nose due to the gradual

homogenization of the water column after the passage of the over-current. In figure 5.12(a), the

gravity current is in the through-flow regime and no vertical convection zone exists. The in-array

flow is purely due to longitudinal advection driven by the pressure gradient. In figure 5.12(b),

the increase of array drag results in the coexistence of over- and through-currents interconnected

by a vertical convection zone. One portion of the light fluid between the cylinders is vertically

exchanged with the denser over-current, while the remaining favors a horizontal propagation below

z = δ, forming the longitudinal propagation zone. However, for the case in which horizontal

propagation is fully blocked (figure 5.12c), despite the smaller amount of lighter fluids initially

within the array at higher φ, they are all forced to exchange with the overlying denser over-current,
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Figure 5.12: Instantaneous density isosurface at ρ = 0.5 for different array densities. (a) S-0.272-0.272-

5.4; (b) S-0.636-0.636-5.4; (c) S-1.000-1.000-5.4. The horizontal dashed lines roughly divides the in-array

region into a longitudinal propagation zone (0 6 z < δ, encompassed by the green window) and a vertical

convection zone (δ 6 z < h, encompassed by the red window). Arrows indicate the ejection of the lighter

ambient fluid from underneath, with their length signifying the strength of the vertical exchange. Note,

the vertical convection is more pronounced near the over-nose, and vanishes far upstream where the water

column is largely homogenized.
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resulting in an enhanced dilution of the over-current as shown in figure 5.10(d) in comparison with

that in figure 5.10(c).

5.5.1.2 Dilution of the Over-current

Figure 5.13 shows the variation of mixing pattern of the gravity currents in the over-flow regime

by visualizing the evolution of fluid density with time along a fixed horizontal line located slightly

above the array top. Consistent with §5.3.1, the over-nose is initially propagating at a constant

speed and then begins to mildly slow down which leads to smaller angles between the front tra-

jectory and the time axis. Both the passage of the interfacial billows over the 0.03H line and the

vertical mixing with the lighter fluid within the array contribute to the dilution of the gravity cur-

rent. As φ increases, despite the smaller volume of ambient fluids within the array pores, they favor

a vertical exchange other than longitudinal propagation due to the growing array drag. As a conse-

quence, the dilution of the gravity current becomes stronger for denser arrays. Around t = 5.2t0 in

case S-1.000-1.000-5.4 (figure 5.13c), the vertical buoyancy forcing is so strong that a large-scale

ejection of the underlying light fluid into the over-current occurs, leading to a significant amount

of turbulent mixing. This ejection event is found to be intermittent also at later times (not shown

here), which is analogous to the case of constant-density flows in the context of quadrant-hole

analysis (e.g. Finnigan 2000).

5.5.1.3 Global Energy Budget

In essence, a density-driven gravity current can be interpreted as a conversion of potential

energy into kinetic energy, which subsequently is dissipated into heat by viscous friction. To

better understand the through-to-over transition, a global energy budget is performed using the

approaches by Necker et al. (2005), Ooi et al. (2009) and Ozan et al. (2015) for compositional

gravity currents. The differential equation relating the rates of change of the potential and kinectic

energy can be expressed as

d

dt
(Ek + Ep) = −ε, (5.15)

where Ek and Ep is the total kinetic energy and excess potential energy over the flow domain Ω,
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Figure 5.13: Evolution of fluid density with time along the x-axis which is located 0.03H above the array

top (z = ha + 0.03H). (a) case S-0.636-0.636-5.4; (b) S-0.818-0.818-5.4; (c) S-1.000-1.000-5.4.
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Ek(t) =

∫

Ω

1

2
uiuidV, (5.16)

Ep(t) =

∫

Ω

ρzdV, (5.17)

and ε is the total dissipation rate. Integrating equation (5.15) with respect to time yields the balance

equation for the mechanical energy,

Ek + Ep + Ed = Ek0 + Ep0, (5.18)

where Ek0 and Ep0 are the total initial (t = 0) kinetic and potential energy, and Ed(t) =
∫ τ

0
ε(τ)dτ

is the time integral of the total dissipation rate. For the lock-release configuration in this study

which starts from rest, Ek0 = 0. The variation of the terms in equation (5.18) with time is plotted in

figure 5.14 for the simulations of submerged arrays with φ ranging from 0 to 1 with equidistant and

staggered configurations. In all the simulations, a first regime characterized by a rapid conversion

of potential energy into kinetic energy is present until t ≈ 8t0. Afterwards, the rate of decay of Ep

becomes smaller, whereas Ek starts to decrease due to the growing effect of dissipation.

The transition process from through flow to over flow can be easily analyzed from the energy-

conversion perspective using figure 5.14, where the global energy budget is observed to be a strong

function of the array density. The introduction of a sparse array with small φ results in a consider-

able increase of Ed compared with the flat-bed case (φ = 0). In the range of φ up to 0.1, the gravity

current is propagating within the through-flow regime, and Ed increases with φ mainly because of

the turbulent dissipation in the cylinder wakes. As the array becomes further denser, the closeness

between cylinders begins to give rise to wake sheltering effects which suppress Ed. The average

potential energy undergoes a monotonic increase with increasing φ. The reason for this trend is the

increasing occupation of space by solids that forces the mass center of the flow to shift upwards,

which is consistent with the studies of gravity currents through sparse arrays, either submerged or

(Tokyay et al. 2011a) or emergent (Ozan et al. 2015). The rate of increase of Ep becomes smaller

as φ exceeds 0.3, which implies that the turbulent cylinder wakes are almost completely suppressed
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Figure 5.14: Time history of the potential energy Ep (blue lines), kinetic energy Ek (red lines) and integral

of the total dissipation Ed (black lines) in the simulations of submerged equidistant arrays with φ ranging

from 0 to 1, including the flat-bed and solid-slab cases. The submergence ratio is fixed at H/h = 5.4. All

the terms are non-dimensionalized by the initial potential energy, Ep0.
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beyond this threshold, and further densification of the array only reduces the energy loss associated

with the vertical convective instability. This is accompanied by a slower decay of Ek around the

same value of φ, and a subsequent increase of Ek at φ > 0.4, consistent with the variation of front

velocity in figure 5.8. The turning point of average Ed with φ is at φ = 0.1, which occurs earlier

than that of Ep and Ek. The energy loss associated with the vertical convective instability is found

to be smaller than that of the turbulent wakes. The smallest average Ed is reached for the solid-slab

case (φ = 1), where both of these two mechanisms of energy dissipation are missing and the flow

is less turbulent with respect to the flat-bed case due to a reduction of the effective water depth

by ha. Based on figures 5.8 and 5.14, it follows that the gravity current is propagating within the

through-flow regime at φ = 0 ∼ 0.1 and the over-flow regime at φ = 0.4 ∼ 1, which is connected

by a transitional regime in the range of φ = 0.1 ∼ 0.4.

5.5.2 Non-equidistant Array

We discuss in this section under what circumstances the µx-µy characterization is necessary.

As indicated in figure 5.8, in addition to a direct transition from through-flow to over-flow, there

are two other possible detours that lead to the same destination. We discuss the through-skimming-

over flow transition path (T ⇒ S ⇒ O) in §5.5.2.1, and the through-plunging-over flow transition

path (T ⇒ P ⇒ O) path in §5.5.2.2, respectively.

5.5.2.1 Through-skimming-over Flow Transition

The through-skimming flow transition is another accelerating mechanism of the gravity current

regardless of the array submergence, in contrast to the T ⇒ O acceleration which is only possible

for a submerged array. Figures 5.15 and 5.16 show the density and velocity structures during the

through-skimming-over flow transition, respectively. It is obvious that the information provided

by the array density φ about the current propagation for non-equidistant arrays is fairly misleading.

For the case I-0.636-0.272-5.4 (figure 5.15b, g), all the cylinders are subject to strong wake inter-

ferences due to their streamwise closeness. Three discernible sub-currents can be observed but

with enhanced dilution with respect to the flat-bed case, due to the still persisting wake-induced
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Figure 5.15: Instantaneous fluid density fields at t = 21.5t0 showing the T ⇒ S ⇒ O transition. (a, f )

F-0-5.4; (b, g) I-0.636-0.272-5.4; (c, h) I-1.000-0.272-5.4; (d, i) S-0.636-0.272-5.4; (e, j) I-0.636-0.636-5.4.

The left panels are plotted in the x-z plane along the array centerline, and the right panels are plotted in the

x-y plane located 0.2h above the channel bed. Roughness elements are shown in dark gray. Note that in

(d) the centerline density data are not available at every other cylinder in the streamwise direction due to the

staggered arrangement.

mixing. The current is within a transitional stage between through-flow and skimming-flow where

cross-stream interaction between sub-currents is weak but nonnegligible. The wake sheltering

effect results in a significant drop of form drag per cylinder upon the incoming flow with this spe-

cific configuration. Therefore, when moving along the contour of φ = 0.136 in figure 5.8(a), the

current in case I-0.636-0.272-5.4 has a much larger ǫ as compared to other array configurations

with the same array density. As µx increases to 1 (figure 5.15c, h), the cylinder wakes have been

completely suppressed and the array has been fully channelized. The three sub-currents only com-

municate with each other in the above-array area (z > h), and thus a sudden contraction of the

channel cross-sectional area below z = h accelerates the currents due to the conservation of mass

principle. The current in this particular configuration even propagates faster than the unobstructed

case in the slumping phase, which appears as the peaks of ǫ in figure 5.8(a) and the velocity pro-

file in figure 5.16 as well. This is a phenomenon similar to the skimming flows observed in wind

passing building clusters (Oke 1988), as well as the d-type roughness in turbulent flows over rough
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Figure 5.16: Time-averaged and laterally-averaged horizontal velocity profiles showing the T ⇒ S ⇒ O
transition. The velocity data are recorded at a distance of H/2 behind the current nose by moving with the

gravity current frame. The time-averaging period is 2t0 ∼ 21.5t0. The horizontal gray line marks the array

top.

walls (Jimenez 2004), where the main streams are separated from the smaller-scale flows within

the closely-packed roughness elements.

A point worth noting is that in figure 5.5, the leading current front in case I-1.000-0.272-

5.4 is overtaken by the front in case F-0-5.4 after t ≈ 60t0. Inspection of the density structure

(not shown) indicates that the overtaking occurs shortly after the time when the height of this

finite-volume gravity current is reduced below the array top. Therefore, the inner link between

the sub-currents above z = h is lost, and so is the T ⇒ S acceleration mechanism due to the

sudden contraction of the flow cross section. The added friction drag of the cylinders then begins

to decelerate the current with respect to the flat-bed case.

The T ⇒ S transition is exclusive for in-line arrangements, and thus there is no skimming-

flow regime in figure 5.8(b). In a staggered array (figure 5.15d, i), the high-velocity interstitial
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jets between the spanwise gaps are always obstructed by the offset rows immediately downstream

such that the channelizing is heavily interrupted. Comparison between cases I-0.636-0.272-5.4

and S-0.636-0.272-5.4 indicates that the difference in cylinder arrangement alone may result in

a significant change of the gravity current propagation dynamics for arrays with high values of

µx/µy.

Along the contours of µx = 1 in figure 5.7(b), the value of Fr
∗

first increases beyond the flat-

bed limit and peaks around µy = 0.25. Further increase of µy results in a considerable increase of

array drag such that the gravity current is unable to squeeze into the sub-channels. The T ⇒ S

acceleration is compensated by a significant reduction of flow rate, and Fr
∗

starts to drop. In

figure 5.16, the velocity profile of case I-0.636-0.636-5.4 indicates that the current is shifting from

skimming-flow to the over-flow regime due to the increase of µy when compared with case I-0.636-

0.272-5.4. With even larger µy, the current transitions from skimming-flow to the over-flow, and

Fr
∗

increases again due to the S ⇒ O acceleration.

5.5.2.2 Through-plunging-over Flow Transition

In this section, we briefly discuss the third path of flow transition depicted in figure 5.8(a),

focusing on the configurations with large µy. Again, relevant density fields and velocity profiles

are shown in figures 5.17 and 5.18, respectively. According to figure 5.17(a), case I-0.090-0.636-

5.4 is within the through-flow regime where the gravity current mainly propagates between the

cylinders. The values of µy for the remaining cases are all unity for each row of cylinders to be

felt as impermeable by the current, and we assess the effect of streamwise array densification.

As µy is increased to 1 (case I-0.090-1.000-5.4 in figure 5.17b), the current is right within the

plunging-flow regime and its propagation is greatly impeded. For all the simulation cases shown,

the streamwise spacing between the cylinders, if normalized by the water depth H , is comparable

or small with respect to the vertical dimension of the current due to the deep submergence of the

array. Therefore, even with µx as low as 0.090, the corresponding velocity profile in figure 5.18

indicates that the contact time of the current nose with the channel bed is very limited. Time history

of the current propagation (not shown) indicates that after the nose reattaches to the bed, it hardly
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Figure 5.17: Instantaneous fluid density fields along the channel centerline at t = 21.5t0 showing the

T ⇒ P ⇒ O transition. (a) I-0.090-0.636-5.4; (b) I-0.090-1.000-5.4; (c) I-0.545-1.000-5.4 (d) I-1.000-

1.000-5.4. Frontal cylinder configurations as seen by the current are shown on the right.

favors a horizontal propagation but rather begins to climb the next row of cylinders. The gravity

current undergoes significant mixing and energy dissipation during this climbing and plunging

motions. We expect more contact of the current nose with the channel bed as the submergence

ratio H/h decreases. Consistent with figure 5.7, the transition from plunging-flow to the over-flow

regime occurs immediately after µx is increased beyond 0.090. Along the path of the through-

plunging-over flow transition, the gravity current is first greatly impeded by the T ⇒ P transition,

reaching the region with lowest ǫ in figure 5.8, and then accelerates again because of the P ⇒ O

transition.

5.6 Effect of Submergence Ratio

In the foregoing sections, the effects of array configuration on the gravity current propagation

have been discussed under a fixed submergence ratio of H/h = 5.4. In what follows, orthogonal

to the two-dimensional parameter space in figure 5.8, the array geometry is fixed with µx = µy =
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Figure 5.18: Time-averaged and laterally-averaged horizontal velocity profiles showing the T ⇒ P ⇒ O
transition. The velocity data are recorded at H/2 behind the current nose by moving with the gravity current

frame. The time-averaging period is 2t0 ∼ 21.5t0. The horizontal gray line marks the array top.

0.636 (staggered) and the water depth is varied to investigate the effect of submergence ratio in the

range of 1 6 H/h 6 10.

It can be seen in figure 5.19 that the increased of H/h acts as another mechanism that promotes

the through-to-over flow transition other than the increase of array drag as described in §5.5.1.

When the array is emergent (figure 5.19a), due to the uniformly-distributed drag exerted by this

dense canopy (φ = 0.318) on the gravity current over its whole depth, the current propagation

is dominated by the cylinder drag such that the interface is nearly triangular, which is consistent

with Tanino et al. (2005). As H/h increases to 2, the current interface within the canopy is still

triangular due to the still overwhelming drag with respect to the horizontal current momentum. The

vertical convection zone is almost negligible. Starting from H/h = 3 and onwards, a increasingly

well-defined over-nose can be identified that propagates along the array top. Due to the gradual

113



Figure 5.19: Instantaneous density isosurface at ρ = 0.5 under different submergence conditions for a fixed

array geometry (µx = µy = 0.636, staggered). (a) H/h = 1; (b) H/h = 2; (c) H/h = 3; (d) H/h = 4; (e)

H/h = 6; (f ) H/h = 10. The horizontal dashed lines roughly divides the in-array region into a longitudinal

propagation zone (encompassed by the green window) and a vertical convection zone (encompassed by the

red window) as in figure 5.12.

flooding of dense fluid with increasing water depth, a through-over flow transition occurs during

which the vertical convection zone gradually deepens into the lower canopy, accompanied by the

suppression of longitudinal advection (figure 5.19a ∼ f ).

Figure 5.20 shows the time-averaged and laterally-averaged horizontal velocity profiles at dif-

ferent submergence ratios corresponding to those in figure 5.19. Since the gravity current prop-

agation in the emergent (H/h = 1) and the shallowly-submerged case (H/h = 2) is governed

by the array drag, the increase in water depth only results in faster current propagation within

the array while the shape of the velocity profiles are similar. However, as H increases further,

the emergence of the over-nose brings about a distinctly different flow behavior. The over-current

propagates faster as the array poses a progressively smaller resistance with respect to the total hori-

zontal momentum of the gravity current. Meanwhile, the in-array current propagation recedes with

rising water depth. The transition to over-flow at higher submergence ratios leads to the growing

dominance of vertical buoyancy fluxes within the array over the longitudinal current propagation
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Figure 5.20: Time-averaged and laterally-averaged horizontal velocity profiles for a staggered array with

µx = µy = 0.636 under different submergence conditions. The velocity data are recorded at H/2 behind the

current nose by moving with the current frame. The z coordinate is normalized by the maximum water depth,

Hmax = 10h, and u is normalized by ub =
√
g′H corresponding to different flow depths, respectively. The

time-averaging period is 2t0 ∼ 21.5t0 with t0 = H/ub. The gray line marks the array top.

driven by the horizontal pressure gradient, which is consistent with the deeper penetration of verti-

cal convection zone in figure 5.19. This is opposite to what has been observed for constant-density

flows over a submerged canopy, where deeper array submergence enhances the downward transfer

of horizontal momentum via vertical turbulent stress, and thus gives rise to faster in-array flows

(e.g. Nepf & Vivoni 2000).

5.7 Conclusions

Submerged canopies are ubiquitous in aquatic flows and even more commonly seen in oceanic

and atmospheric environments. Laboratory experiments and large eddy simulations were used to

study lock-exchange gravity currents propagating over and through an infinite array of submerged
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circular cylinders. After validating our numerical model with experimental data, we performed

an extensive parametric study to account for as many possible array geometries as possible (over

200 numerical simulations), in order to provide a comprehensive understanding of the influences

of array density (φ) and non-equidistance (µx 6= µy) that have not been adequately addressed in

previous studies. The discussions in §5.3, §5.4 and §5.5 fix the submergence ratio at H/h = 5.4.

The effect of H/h is presented in §5.6.

In order to investigate the behavior of the gravity current over the full possible range of φ, the

array density was varied from the unobstructed flat-bed case (φ = 0) continuously towards the

fully-blocked solid-slab case (φ = 1). When a gravity current encounters a dense array submerged

in the fluid (H/h > 1) with excessive drag, the existence of the additional flow pathway outside

the array brings about the fundamental difference in current propagation with that of an emergent

array. Staring from the flat-bed case, the time-averaged Froude number Fr was initially seen

to decrease as φ increases, which is consistent with current propagation in emergent canopies.

However, as φ increases further, our experiments indicated for the first time a non-monotonic

dependence of Fr on φ which is confirmed by the numerical simulations (figure 5.4). As the array

gradually approaches a solid-slab, the diminishing individual cylinder wakes together with the

smaller amount of dense fluid trapped within the pore regions, jointly result in a less momentum

loss of the over-current. This through-over flow transition associated with the densification of

an equidistant array was observed to be the first mechanism of gravity current acceleration as φ

increases (figures 5.10 and 5.11).

Strictly speaking, it is rare that an array is absolutely equidistant. When µx ≈ µy, the con-

ventional array characterization using the horizontally-averaged parameter φ can be applied with

acceptable error. However, judging from the front velocity and flow structure of the gravity current

when it encounters a highly non-equidistant array, we demonstrated that the flow condition cannot

be uniquely determined by φ at all. Instead, its orthogonal components are individually important.

Consequently, we proposed a new geometrical framework consisting of the streamwise and span-

wise array densities, µx and µy, to provide a more convenient and unambiguous prediction of the

116



gravity current propagation under the impact of array non-equidistance. Physically, µx controls the

wake sheltering and µy controls the current intrusion. It is highlighted that an infinite number of

flow conditions are possible along a single contour of φ in figure 5.8, emphasizing the breakdown

of the equidistant-array assumption.

Depending on the specific µx-µy combination, four dynamically different flow regimes and

their transitions are identified. The flow falls into the through-flow regime with small µx and small

µy (in-line array, figure 5.8a) or arbitrary µx and small µy (staggered array, figure 5.8b) where

the gravity current propagates along the bed with strong cylinder wakes. With sufficiently large

µx and µy, a well-defined over-current emerges and rides on the array top (i.e. over-flow regime)

irrespective of the cylinder arrangement. As one moves away from the 45◦-diagonal (increasing

array non-equidistance), two extreme conditions can occur: (i) in the energy-consuming plunging-

flow regime (small µx and large µy), the gravity current reattaches to the bed before it is projected

upwards by the next row of cylinders; and (ii) for the skimming-flow exclusively occurring in in-

line arrays with large µx and small µy, high-speed channelized gravity current may even propagate

faster than the flat-bed case due to the abrupt contraction of the flow cross section within the array

(note that ǫmax = 1.1 in the colorbar of figure 5.8). This through-skimming flow transition is

identified as the second mechanism of gravity current acceleration as φ increases. It is absent for

staggered arrays with offset interruption (figures 5.15 and 5.16), highlighting the effect of cylinder

arrangement pattern (note the difference between figures 5.8a and 5.8b).

The self-similar properties of current propagation after the slumping phase (xf ∼ t) are found

to vary among different flow regimes. Gravity currents in the through-flow and plunging-flow

regimes transition to the turbulent drag-dominated phase where xf ∼ t1/2 due to strong cylinder

drag. The highly independent sub-currents in the skimming-flow regime are subject to negligible

streamwise obstacle resistance, and hence the front velocity decays as xf ∼ t2/3 which resembles

the buoyancy-inertial phase of the flat-bed condition. The front velocity in the over-flow regime

decays as xf ∼ t1/2 if the through-current still exists (red line in figure 5.6a), but exhibits another
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power dependence of xf ∼ t2/3 if the cylinder wakes are completely suppressed with the gravity

current evolving closer to the flat-bed limit (black line in figure 5.6b).

Hydrologic storage occurs in regions of diminished flow in which water can remain in contact

with biologically and geochemically active surfaces for an extended time before moving down-

stream (Harvey et al. 2003). Longer periods of hydrologic retention in submerged canopies con-

tributes to the nutrient removal for water quality applications, and more broadly, hydrologic storage

(Nepf et al. 2007). However, the true retention time associated with dense partial-depth canopies

in field conditions is often much shorter than what is estimated based on the through-current prop-

agation (Ozan et al. 2016). The possible explanation is that as the array becomes denser, the

over-current gradually accelerates and overtakes the underlying through-current (figure 5.10), and

thus the water renewal in the canopy region downstream of the through-current is mainly accom-

plished by vertical exchange due to the unstable stratification at the array-ambient interface (figure

5.12). On the other hand, this increased canopy flushing rate prevents the nutrient uptake of the

submerged vegetation from being supply-limited, partly compensating the declined growth rate

caused by the weakened longitudinal transport of nutrients within a dense array. In this regard, the

effect of the through-over flow transition on the retention time in submerged canopies is a key part

of our understanding of how fluid mechanics influences the ecology of lotic ecosystems.

The fast-spreading destructive gravity current flows (e.g. snow avalanches, haboobs and py-

roclastic flows) pose a significant threat to lives and properties, emphasizing the effectiveness of

the preventative measures to weaken their power as well as accurate precaution systems. The re-

gion with the slowest front velocities (plunging flow) in figure 5.8 well explains the fact that snow

fences are always built perpendicular to the mountain slope. Since an very early transition to over-

flow is possible for an array with large µy (figure 5.7c), special attention should be paid to the gaps

between rows to prevent unexpected acceleration of the avalanche due to the plunging-over flow

transition (figures 5.17 and 5.18). Meanwhile, in urban canopies where the streets may be highly

channelized, the inclusion of the directional information of atmospheric gravity fronts (e.g. ha-

boobs and sea breezes) in weather forecasting models is necessary. These propagating fronts may
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be heavily impeded if their path is perpendicular to the streets (plunging-flow), or on the contrary,

accelerated if they advance along the streets (skimming-flow).
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Chapter 6

Intrusive Gravity Currents Interacting with a

Submerged Obstacle3

6.1 Introduction

Dense water formed in semi-enclosed seas often has to flow through narrow straits or down

continental slopes before it reaches the open ocean. These regions of dense water flowing over

topography are known as dense overflows. The dense water can be formed through a variety of

processes including surface cooling, the addition of salt in the form of brine from freezing pack

ice in high-latitude seas, and evaporation in enclosed subtropical seas. The dense overflows are

regions of significant mixing, which modifies the temperature and salinity signal of the dense

water. Many of the deep water-masses of the ocean originate in these overflows and have their

properties set by the mixing that occurs therein (refer to Chassignet et al. (2012) for a complete

review). Figure 6.1 shows schematically the common formation process of deep water masses

in the continuously stratified midocean. A dense overflow moves down topography, accelerating

under gravity. This acceleration leads to the development of strong shear between the dense water

and the lighter overlying water column. There is also strong shear in the friction layer at the

bottom boundary (especially when bottom roughness is present). These two shear layers may

lead to turbulence-generating instability, which dilutes the descending dense current. Finally, the

initially very dense overflow may separate from the topography at its level of neutral buoyancy

and intrudes into the open ocean in the form of an intrusive gravity current. Note that compared

3The research presented in this chapter has been published in substantial part in Environmental Fluid Mechanics

under the title “Numerical simulation of intrusive gravity currents past obstacles in a continuously stratified ambient”

(J. Zhou and S. K. Venayagamoorthy 2017). Background information and literature relevant to this chapter are pre-

sented again so the chapter may be read as a stand-alone work. The chapter is written in a collective “we” voice to

acknowledge collaboration with the co-author.
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Figure 6.1: Large eddy simulation showing the formation process of deep water masses. A constant flux of dense current is prescribed at the left

boundary. Left panel: density contours. Right panel: dye concentration contours.
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with the density contours, the dye-concentration contours are much more helpful in identifying the

intrusion.

There are numerous studies on the dynamics and structure of gravity currents given their

broad geophysical and engineering relevance. A bottom-boundary gravity current (hereafter called

BBGC) forms when the current is denser than the ambient fluid, and an intrusive gravity current

(hereafter called IGC) forms when a fluid is released into a non-homogeneous (i.e. stably strati-

fied) ambient and travels at its level of neutral buoyancy. Both of these types of gravity currents

have been reviewed in the monograph by Simpson (1997). The most commonly studied case is the

BBGC in a homogeneous fluid (Benjamin 1968; Simpson & Britter 1979; Klemp et al. 1994; Shin

et al. 2004; Nogueira et al. 2014; Lombardi et al. 2015). Maxworthy et al. (2002) was the first to

experimentally investigate BBGC in a continuously stratified ambient. They found that the front

speed of the BBGC is given by U = FNH , where F is the Froude number, H is the total fluid

depth, N is the buoyancy frequency given by N =
√

(g/ρ0) (−dρ/dz) (z is the vertical coordi-

nate, g is the acceleration due to gravity, ρ is the local fluid density, and ρ0 is the reference density).

They suggested that F ≈ 0.266, which lies in close agreement with the analytical prediction of

F = 0.25 by Ungarish & Huppert (2002).

For intrusive gravity currents at arbitrary depths, Bolster et al. (2008) developed a model based

on energy arguments to predict the front speed U as

U =
1

2
FNH

[

12

(

hN − 1

2
H

H

)2

+ 1

]1/2

, (6.1)

where hN is the level of neutral buoyancy at which the intrusion density matches the ambient

density. Munroe et al. (2009) examined the generation of internal waves by asymmetric intrusions

and the consequent current-wave interaction. They demonstrated that even though the energy

associated with the internal waves is not so large to have a leading-order effect on the front speed,

it is large enough to affect non-negligibly the consequent evolution of the IGC.
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Topographic features are ubiquitous in natural and engineered flows, and hence it is important

to understand the interaction of stratified flows such as gravity currents with such topographic

features for practical reasons such as mitigation of pollutants transported by the current (see Baines

(1995) for a complete review). When a BBGC encounters an isolated bottom-mounted obstacle, a

proportion of the flow may continue over the obstacle while the remaining flow may be reflected

back as a hydraulic jump. On encountering the obstacle, the gravity current head is deflected

upwards and then reattaches to the bottom boundary. Eventually a similar but smaller current

re-establishes downstream of the obstacle. Armi (1986) constructed a comprehensive theoretical

framework to study two-layer flows interacting with an isolated bottom-mounted obstacle. Lane-

Serff et al. (1995) theoretically predicted the proportion of the over-passing flux, the speed of the

reflected jump, and the depth of the reflected flow. Gonzalez-Juez & Meiburg (2009) extended

the shallow-water theory to predict the height and front speed of the downstream re-established

current as functions of the upstream Froude number and the ratio of obstacle height to current

height. La Rocca et al. (2013) used Lattice Boltzmann simulations to simulate the interaction of

3D gravity currents with an emerging cylinder. Tokyay & Constantinescu (2015) investigated the

flow induced by a compositional gravity current propagating over a fixed non-erodible triangular

bottom-mounted obstacle using 3-D large eddy simulations. Several studies have investigated the

time-varying forces on obstacles that result from the impact of gravity currents. The magnitude of

the drag increases monotonically with time in an exponential fashion towards a maximum when the

current impinges on the obstacle, and goes through a transient phase and eventually reaches a quasi-

steady value (Gonzalez-Juez & Meiburg 2009; Gonzalez-Juez et al. 2009, 2010). The structure and

evolution of a bottom-propagating compositional gravity current over a series of obstacles were

analyzed by a series of efforts of Tokyay et al. (2011a, 2012, 2011b). They classified the flow into

a low-drag case where the front speed is close to constant, and a high-drag case where the current

transitions to a drag-dominated regime in which the front speed decays with time. Recently there

is a growing interest in studying sediment-driven turbidity currents over bottom topography for

sedimentation-control (Nasr-Azadani & Meiburg 2014a,b).
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However, there are only a limited number of studies in the refereed literature that focus on the

interaction of BBGC with obstacles in a continuously stratified ambient. Ozgokmen et al. (2006)

were the first to consider a bottom-boundary gravity current interacting with sloping topography in

the presence of ambient stratification, albeit over a smooth surface. Their results showed that, with

constant slope angle and linear ambient stratification, the gravity current separates from the slope

bottom which causes the entrained mass flux to depend only on the ambient stratification while

the slope angle is irrelevant. Ozgokmen et al. (2007) also performed a large eddy simulation of

stratified mixing in a two-dimensional dam-break problem within a rectangular enclosed domain.

Ozgokmen & Fischer (2008) further extended this line of investigation by incorporating rough

sloping beds. They considered the interaction between a bottom-boundary saline current and rough

seafloor topography within a temperature-stratified ambient fluid. They presented results on the

front speed using a parameter matrix consisting of the amplitude of bottom roughness and the

strength of ambient stratification.

As shown in figure 6.1, the post-separation deep water masses may encounter large-scale to-

pography mounted on the ocean floor. To our knowledge, no studies on the interaction of IGC

with bottom-mounted obstacles in a continuously stratified ambient have been conducted to date.

As such, an overarching objective of the present study is to explore the dynamics of a symmetric

IGC interacting with a bottom-mounted obstacle using the non-hydrostatic FLOW-3D computa-

tional fluid dynamics (CFD) code. The capability of the numerical model to capture the essential

dynamics of a classical IGC without obstacle effect is first assessed by comparison with available

experimental and theoretical results, in order to lay the foundation for analyzing and parameteriz-

ing the properties of a topography-affected IGC. An overview of the problem configuration and a

summary of simulations that were performed in this study are described in §6.2. We then present

and discuss the simulation results in §6.3. In §6.3.1, we present the results and analysis of classical

IGC without obstacle effect for validation purpose. In §6.3.2, we present new results from a series

of simulations of a symmetric IGC interacting with an obstacle to gain insights into the down-

stream flow pattern, and highlight the effect of the obstacle height on the downstream propagation
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speed of IGC. We finally draw some conclusions and provide some suggestions for future work in

§6.4.

6.2 Simulation Setup

Two series of simulations for two problem configurations were performed in this study. The

first series of simulations for the first problem configuration were performed to validate the capa-

bility of FLOW-3D to capture the flow dynamics of IGC in a continuously stratified ambient in the

absence of an obstacle and are discussed in more detail in §6.2.1. The second series of simulations

for the second problem configuration were done to investigate the effects of a bottom-mounted

obstacle with varying non-dimensional height D̃ on a symmetric IGC propagating at mid-depth as

discussed in §6.2.2. A massless scalar (dye) is added to the lock fluid for enhancing flow visualiza-

tions similar to that in figure 6.1. All the simulations reported in this study are two-dimensional,

based on observations from previous studies which indicate that no considerable differences be-

tween 2-D and 3-D simulations for gravity current flows were apparent (Ozgokmen et al. 2006;

Bolster et al. 2008; An et al. 2012).

The schematic for the numerical setup is shown in figure 6.2. In this lock-release configuration,

the density of the intruding fluid ρi lies between the minimum and maximum densities of the

ambient stratified fluid, ρU and ρL, respectively. The stratification is uniform and the density of

the ambient fluid is given by ρs(z) = ρL + (z/H)(ρU − ρL), where H is the total flow depth and

z is vertically upwards. Once the lock gate is removed, the fluid of density ρi will travel along its

level of neutral buoyancy h, where ρs(z = h) = ρi. The downstream bottom-mounted obstacle

has a height D and thickness W . The level of neutral buoyancy, obstacle width and height can

be non-dimensionalized using the total fluid depth as h̃ = h/H , W̃ = W/H and D̃ = D/H ,

respectively.

No-slip boundary conditions are employed at left, right, and bottom walls as well as at the

obstacle surface, while the tank is left open to the atmosphere at the top. For all simulation cases

the Reynolds number defined as Re = NH2/ν is sufficiently large (i.e. > 104) so that viscous
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Figure 6.2: (a) A schematic of the initial setup for a full-depth lock-release flow; (b) a schematic of an IGC

propagating at its level of neutral buoyancy.

effects are negligible. Details of the simulations for the two problem configurations discussed

above are provided separately in what follows.

6.2.1 IGC without the Obstacle

The simulations of IGC without the obstacle’s effect correspond to the condition with D =

0 in figure 6.2, i.e. the obstacle is absent. The results using the two-dimensional LES model

in FLOW-3D are compared with the theoretical, experimental and DNS data from Bolster et al.

(2008), Munroe et al. (2009) and Maxworthy et al. (2002):

• Bolster et al. (2008) focuses on the propagation speed of an IGC through the whole range of

dimensionless level of neutral buoyancy (h̃), in order to assess the suitability of FLOW-3D

for simulating an IGC in a quantitative sense. The numerical setup is identical with that of

Bolster et al. (2008). The tank dimensions are: Ltank = 182 cm, Llock = 30 cm, and H = 20

cm. The density of the lock fluid is varied in a manner such that h̃ varies from 0 to 1 in 0.1

increments. The parameter matrix consists of two different values of buoyancy frequency

(N = 1 s−1 and 0.5 s−1) and eleven different values of h̃. The number of grid points used
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for all simulations are 840 in the horizontal (streamwise) direction and 230 in the vertical

direction, resulting in a grid resolution of 1 mm.

• The comparison with the experimental and DNS results of Munroe et al. (2009) is used to

further validate the numerical model by visualizing the evolution dynamics of a symmetric

IGC (h̃ = 0.5) and the associated internal wave field. The numerical setup is identical with

that of Munroe et al. (2009), with Ltank = 197.1 cm, Llock = 18.5 cm, and H = 30 cm.

The buoyancy frequency is fixed at N = 2 s−1. The number of grid points is 1991 in the

streamwise direction and 320 in the vertical direction, again resulting in a grid resolution of

1 mm.

• The data from the experimental study of bottom gravity currents in a linearly stratified ambi-

ent by Maxworthy et al. (2002) is used to validate the numerical model in terms of temporal

evolution of the gravity current front location. The tank dimensions are: Ltank = 240 cm,

Llock = 20 cm, and H = 15 cm. The gravity current is generated using a partial-depth lock

release where the ratio of lock height to the flow depth is 1/3. An additional dimensionless

parameter, R, is introduced to measure the relative strength of the current and the ambient

stratification, i.e. R = (ρi − ρU)/(ρL − ρU). Three representative runs are simulated: (i) run

11 where N = 1.422 s−1, R = 1.000; (ii) run 19 where N = 1.941 s−1, R = 1.397; and

(iii) run 22: N = 2.000 s−1, R = 1.189. The same mesh resolution is used.

6.2.2 IGC with the Obstacle

The numerical simulations of an IGC interacting with a bottom-mounted obstacle were under-

taken in a domain depicted by the schematic in figure 6.3(a) with Ltank = 2.8 m, Llock = 1 m, and

H = 0.2 m. The lock length is selected so as to guarantee sufficient supply of upstream intrusion

fluid. The obstacle is located 0.4 m downstream of the lock gate, which is two times the flow

depth to ensure that a fully-developed IGC is achieved before reaching the obstacle. Two types of

obstacles are used, i.e. a thick obstacle with W = 0.1 m (W̃ = 0.5) and a thin obstacle with W =

0.01 m (W̃ = 0.05). For each obstacle thickness, its height is varied from 0.02 m (D̃ = 0.1) to
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Figure 6.3: (a) Computational domain depicting the lock-release simulations of an IGC interacting with a

bottom-mounted obstacle; (b) a zoomed-in view highlighting the grid refinement near and downstream of

the obstacle.

0.18 m (D̃ = 0.9), in order to investigate the effect of obstacle height on the flow dynamics. The

buoyancy frequency is fixed at N = 1 s−1. The lock fluid density is the mean of the ambient strat-

ified fluid, which implies that only a symmetric IGC propagating at mid-depth is simulated in this

study. In this manner no dominating mode-1 internal wave controls the motion of IGC and hence

the pulsating feature of asymmetric intrusions reported by Maxworthy et al. (2002) and Munroe

et al. (2009) are eliminated. Also, since the mode-2 long wave is locked to the intrusion head,

the disturbance of the density field only occurs at the vicinity of the intrusion. This allows us to

focus on the intrusion-obstacle interaction, with interferences from wave-obstacle interaction min-

imized. As shown in figure 6.3(b), the grid size of the region ranging from the left end of the tank

to 0.05 m upstream of the obstacle is 2 mm, and is refined to 1 mm further downstream, in order

128



to adequately resolve the flow field in the vicinity of the obstacle as well as further downstream of

the obstacle.

6.3 Results and Discussion

6.3.1 IGC without the Obstacle

In this section we first provide a quantitative validation of the time-averaged propagation speed

of a classical IGC outlined in §6.2.1 by comparing with the theoretical and experimental data from

Bolster et al. (2008), followed by the flow field of a free-propagating symmetric IGC to provide a

qualitative comparison with the experimental and DNS results of Munroe et al. (2009). Next, the

results of the temporal evolution of a bottom gravity current nose in a linearly stratified ambient is

compared with the experimental data from Maxworthy et al. (2002).

6.3.1.1 Time-averaged IGC Front Speed versus Level of Neutral Buoyancy

The propagation speed of the front of a gravity current is perhaps one of the most discussed

quantity in the study of gravity currents. Figure 6.4 compares the simulated propagation speed

of the front of an IGC with the experimental results of Bolster et al. (2008). The theoretical

predictions given by equation (6.1) with F = 0.25 and 0.266 are also shown. It can be seen that the

front speeds predicted by the numerical simulations from FLOW-3D are in good agreement with

both the theoretical predictions and the experimental measurements. Consistent with discussion

presented in Bolster et al. (2008), three important conclusions that can be drawn from figure 6.4

are: (1) for a given stratification, the mid-depth intrusion travels the slowest, and the maximum

front speed is attained by either the top or the bottom boundary current intrusion; (2) for a given

level of neutral buoyancy, the intrusion speed is directly proportional to the buoyancy frequency.

The dimensionless intrusion velocities (U/NH) collapse over the range of N = 0.5 s−1 ∼ 1 s−1

over the entire range of h̃; (3) noting that the mode-n long-wave speed is given by NH/nπ (note,

the speeds of the first three modes are plotted in figure 6.4), it is clear that intrusions at any depth
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Figure 6.4: The dimensionless IGC propagation speed as a function of level of neutral buoyancy: (a)

comparison of numerical simulations to theoretical predictions; (b) comparison of experiments Bolster et al.

(2008) to theoretical predictions. The horizontal grey dashed lines represent from top to bottom the first-,

second-, and third-mode long-wave speed, respectively.
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are subcritical to mode-1 waves, subcritical to mode-2 waves for approximately 0.3 < h̃ < 0.7,

and supercritical to all higher modes.

The agreement of the numerical results is further assessed using the coefficient of variation

of the root-mean-square deviation of the intrusion speed, i.e. CVRMSD, which is usually used to

compare differences between two data sets and is given by

CVRMSD =

√

∑n
i=1

(xi − x̂i)2

n

/

x̄ , (6.2)

where xi is the standard data, x̂i is the predicted data, n is the number of data points, and x̄ is the

mean of the standard data. The theoretical prediction given by equation (6.1) are considered as the

standard data herein, with F taking the mean of 0.25 and 0.266. Throughout the whole range of

h̃, the maximum value of CVRMSD was 6.0% for the case with N = 1 s−1, and 5.6% for the case

with N = 0.5 s−1, which are sufficiently small.

6.3.1.2 Flow Structure of a Mid-depth IGC

Figure 6.5 demonstrates the characteristic behavior of a symmetric IGC (h̃ = 0.5) for a back-

ground ambient stratification with a buoyancy frequency of N = 2 s−1. For the times shown in

the plots, the IGC is within the slumping phase and is propagating at a constant speed. The intru-

sion head continuously becomes thinner but the front speed stays unchanged. Sutherland & Nault

(2007) also noted this phenomenon and stated that a symmetrical IGC was found to propagate

at a constant speed up to 20 lock lengths with no indication of a decelerating self-similar phase,

although the intrusion thickness decreases as it propagates. The supposition that the IGC has

evolved into a closed-core solitary wave may account for this behavior. An entrapment of ambient

fluid can be observed due to the roll-up of Kelvin-Helmholtz billows behind the intrusion head.

Throughout the evolution of this symmetric IGC, the leading mode-2 internal wave is locked to the

intrusion head, and the disturbances of the density field is only limited within the near-intrusion

region. The density contours near the IGC head are displaced upward and downward within the
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Figure 6.5: Snapshots of a symmetric IGC (h̃ = 0.5) with N = 2 s−1, at times (a) t = 7 s and (b) t = 12

s. The LES results from this study are compared with the experimental and DNS data from Munroe et al.

(2009). The white lines denote density contours and the dye concentration contours provides a visualization

of the intrusion.
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upper and lower half of the tank respectively. Overall, the simulation results from the LES model

in FLOW-3D match well with the experiments and DNS data from Munroe et al. (2009).

6.3.1.3 Positional History of the Nose of a Bottom IGC

Figure 6.6 shows the xf versus t trajectory of a bottom propagating gravity current in a linearly

stratified environment, where the current is denser than the ambient fluid. For all the three sim-

ulations, after a very short initial acceleration phase, the gravity current reaches a constant-speed

slumping phase where the xf -t curves can be well approximated by lines of constant slopes. The

dimensionless time-averaged front velocities, F = U/NH are observed to be 0.131, 0.264 and

0.210 for Run 11, Run 19 and Run 22, respectively, which are almost the same with the exper-

imental measurements of Maxworthy et al. (2002). Moreover, the transitional distance Xtr after

which the internal wave starts to control the gravity current propagation is predicted as 0.189 m,

0.768 m and 0.442 m for Run 11, Run 19 and Run 22, respectively, which are also in excellent

agreement with the experiments. Together with the discussions in §6.3.1.1 and §6.3.1.2, it can be
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Figure 6.6: Positional history of the bottom gravity current nose in a linearly stratified ambient for three

representative runs: (×) the present LES; (◦) the experimental data of Maxworthy et al. (2002). The transi-

tional distance (Xtr) and time (Ttr) mark the end of the constant-speed slumping phase, and the solid lines

represent the time-averaged front velocities therein.
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seen that the FLOW-3D solver is capable of capturing the temporal and spatial evolution of IGC

propagating in a continuously stratified ambient fluid, either free from or along the boundary.

6.3.2 IGC with the Obstacle

6.3.2.1 General Description

Figures 6.7 and 6.8 depict the temporal evolution of a passive scalar concentration of two

representative simulation cases with a short obstacle (W̃ = 0.5, D̃ = 0.3) and a taller obstacle

(W̃ = 0.5, D̃ = 0.5) respectively. It is immediately apparent from these figures that the obstacle

height significantly impacts the downstream flow behavior, and taller obstacles lead to more intense

mixing.

In the short-obstacle case, initially the flow is a classical symmetric IGC propagating at mid-

depth (figure 6.7a). On encountering the obstacle, the intrusion below the obstacle top is blocked

and reflected back. The remaining part separates from the top left corner of the obstacle, quickly

re-establishes itself and propagates further downstream. The slanted upper and lower surfaces of

the intrusion result from the restoring buoyancy forces. Due to the obstacle’s cutting effect and the

flow separation which pushes the intrusion upward, the particles have a relatively small deviation

from their position of equilibrium, thus no obvious overshoot-and-springback feature is observed

in this case. However, for even shorter obstacle, e.g. D̃ = 0.1 (see figure 6.11b), the deviation is

large enough to overshoot and a concave-downward intrusion head emerges.

For the case of a taller obstacle (figure 6.8), when the intrusion encounters the obstacle, a major

portion of the intrusion head below the obstacle top is blocked and reflected back, while the upper

portion flows over the obstacle. A high-velocity jet-like flow plunges into the downstream stratified

fluid. Given that the jet fluid has the same density as the mid-depth ambient fluid and hence heavier

than its immediate ambient fluid, the jet will gain downward momentum from buoyancy forces as

it migrates towards its level of neutral buoyancy. Combined with the forward momentum due

to the horizontal pressure gradient (which also stems from buoyancy forces), the jet is expected

to travel in a damping sinusoidal path, which is consistent with figure 6.11(f ∼ j). There is a
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Figure 6.7: Time evolution of scalar concentration depicting the interaction of an IGC interacting with a

thick (W̃ = 0.5) and short (D̃ = 0.3) obstacle at different times: (a) t = 10 s; (b) t = 20 s; (c) t = 30 s; (d) t
= 40 s; (e) t = 50 s; (f) t= 60 s.

gradual rise in the vertical level at which the downstream intrusion travels due to dilution mainly

caused by lighter ambient fluid. Figure 6.9(a) shows a zoom-in view highlighting the flow structure

immediately downstream of the obstacle for a simulation case of a very tall obstacle (i.e. D̃ = 0.7)

at t = 28 s. The opposite flow directions of the downstream intrusion and the associated return flow

leads to enhanced local shear that results in the rolling up of the fluid interface in lumped vortices.

The entrapment of ambient fluid by the intrusion indicates the existence of the Kelvin-Helmholtz

instability. A classic Kelvin-Helmholtz instability from Price (2008) is shown in figure 6.9(b) for

comparison.

Based upon the observations discussed above, the flow of a symmetric IGC past a bottom-

mounted obstacle in a continuously stratified ambient can be classified into two major types de-
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Figure 6.8: Time evolution of scalar concentration depicting the interaction of an IGC interacting with a

thick (W̃ = 0.5) and tall D̃ = 0.5) obstacle at different times: (a) t = 10 s; (b) t = 20 s; (c) t = 30 s; (d) t =

40 s; (e) t = 50 s; (f) t= 60 s.

pending on the obstacle height. For a short obstacle, the intrusion is simply cut by an amount

slightly larger than the obstacle height and propagates downstream in a similar form. On the other

hand, for a tall obstacle, a richer set of phenomena occur, and the downstream flow pattern is a

combined effect of three major mechanisms: (1) horizontal advection driven by horizontal pres-

sure gradients; (2) overshoot-and-springback phenomenon when a fluid parcel is disturbed away

from its state of equilibrium in a continuously stratified fluid; and (3) the Kelvin-Helmholtz in-

stability generated by local velocity shear (i.e. vertical gradients of horizontal velocities). Thus,

the completely-altered downstream flow dynamics highlights how the interaction of a IGC with an

obstacle is quite different to that of a BBGC interacting with an obstacle.
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Figure 6.9: (a) A zoom-in view of the scalar concentration field immediately downstream of the obstacle

for a simulation case with a very tall obstacle (W̃ = 0.5, D̃ = 0.7) at t = 28 s. The white solid lines indicate

the density contours; (b) a depiction of a classical Kelvin-Helmholtz instability (Price 2008).

6.3.2.2 Effect of Obstacle Size

Figure 6.10 shows the temporal evolution of scalar concentration for a simulation case with a

relatively thin but tall obstacle (W̃ = 0.05, D̃ = 0.5). Compared with figure 6.8, which is for

a simulation case with the same obstacle height but 10 times the width, it can be seen that there

are some changes in the fine structure of the downstream flow. However, the bulk features of

the downstream intrusions are remarkably similar despite an order of magnitude difference in the

width of the obstacle. This indicates that the obstacle thickness appears to have a negligible effect

on the bulk downstream propagation distance (at least for the thicknesses explored here). This

issue is further explored in §6.3.2.3.

Snapshots of downstream scalar concentration fields at a selected time t = 50 s for a series of

10 simulations cases for a fixed obstacle width (W̃ = 0.5,) and varying obstacle heights in the

range D̃ = 0 ∼ 0.9, are shown in figure 6.11. It is clear that the obstacle height is a key factor

in determining downstream motion. Very short obstacles (e.g. D̃ = 0.1) have no direct contact
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Figure 6.10: Time evolution of scalar concentration depicting the interaction of an IGC interacting with a

thin (W̃ = 0.05) and tall D̃ = 0.5) obstacle at different times: (a) t = 10 s; (b) t = 20 s; (c) t = 30 s; (d) t =

40 s; (e) t = 50 s; (f) t= 60 s.

with the IGC, and only influence the motion downstream through interaction with the return flow.

The propagation distance of the IGC is only slightly reduced compared to the classical IGC (see

figure 6.11a, b). The concave-downward intrusion head forms as a result of particle overshoot and

springback phenomenon discussed earlier. As the obstacle height increases to D̃ = 0.2, it directly

touches the intrusion and thus poses a more noticeable retarding effect on the propagation of the

intrusion as seen in figure 6.11(c). For obstacles heights D̃ ≥ 0.5, the overshoot-springback feature

can be easily seen in the downstream oscillations, given that the intrusion for these cases are forced

to rise above their equilibrium mid-depth level.

For obstacle heights in the range D̃ = 0.3 ∼ 0.6 (figure 6.11d ∼ g), increase in the obstacle

height generates no obvious corresponding reduction in downstream propagation distance. The
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Figure 6.11: Visualizations of the downstream intrusions at t = 50 s for simulation cases with different

obstacle heights: (a) D̃ = 0 (no obstacle); (b) D̃ = 0.1; (c) D̃ = 0.2; (d) D̃ = 0.3; (e) D̃ = 0.4; (f) D̃ = 0.5; (g)

D̃ = 0.6; (h) D̃ = 0.7; (i) D̃ = 0.8; (j) D̃ = 0.9. The upstream regions have been truncated for clarity.
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reason for this behavior is likely two-fold viz: (1) upstream impoundment which introduces addi-

tional kinetic energy into the downstream flow; and (2) taller obstacles lead to greater mixing with

lighter fluid which makes the intrusion propagate at a higher level and hence at a larger speed (see

equation (6.1)). Both of these two factors likely compensate the obstacle’s retarding effect on the

propagation speed. However, as the obstacle height increases even further (see figure 6.11h ∼ j),

the retarding effect becomes increasingly predominant and the intrusion loses its kinetic energy

rapidly. For the case of D̃ = 0.9, the over-passing fluid travels almost in the vertical direction and

propagates downstream very slowly.

6.3.2.3 Propagation Speed

The propagation distance of the intrusion front as a function of time for all the simulation

cases discussed in figure 6.11 are shown in figure 6.12. Three interaction phases can be identified

by inspecting this figure, namely: (1) an upstream slumping phase (t = 0 ∼ 16 s) that occurs

before encountering the obstacle noting that the IGC in all the simulation cases accelerate from

rest and propagate at exactly the same speed, regardless of the obstacle height; (2) a transient

phase (t = 16 ∼ 28 s) where the IGC encounters the obstacle and the retarding effect of the

obstacle is noticeable depending on the obstacle height and the propagation distance diverges with

no clear time dependence; and (3) a downstream constant-speed phase (t = 28 ∼ 60 s) when the

intrusion has gone past the obstacle and propagates further downstream. The slopes of the fitted

straight lines indicates a constant downstream front speed which depends on the obstacle height.

The overall varying trend, i.e. taller obstacle generally leads to larger retarding effect and thus

smaller propagation speed, is observed as expected.

In order to cast the results seen in figure 6.12 in a generalizable form, we plot the non-

dimensional front speed U/NH of the downstream intrusion as a function of the non-dimensional

obstacle height, D/H in figure 6.13. Given the previous comparison of propagation distances of

a symmetric IGC interacting with both thin and wider obstacles (see figures 6.8 & 6.10) showed

that the downstream intrusion speed has no obvious dependence on the streamwise dimension of

the obstacle, the obstacle height is plotted as the predominant independent variable that controls
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Figure 6.12: Simulated temporal evolution of an IGC past a thick obstacle (W̃ = 0.5), for cases with

D̃ = 0 ∼ 1. The symbols indicate varying non dimensional obstacle heights D̃ as follows: empty circles,

D̃ = 0 (no obstacle);empty squares, D̃ = 0.1; empty upward triangles, D̃ = 0.2; empty downward triangles

D̃ = 0.3; empty diamonds, D̃ = 0.4; stars, D̃ = 0.5; filled circles, D̃ = 0.6; filled squares, D̃ = 0.7; filled

upward triangles, D̃ = 0.8; filled downward triangles, D̃ = 0.9; filled diamonds, D̃ = 1.0, respectively.

The solid lines are the fitted straight lines for cases with different values of D̃, with the slope denoting the

corresponding propagation speed. The red dashed line indicates the experimental results for the case of D̃
= 0 (no obstacle) from Bolster et al. (2008), and the blue dashed line indicates the theoretical results for the

case of D̃ = 0 according to equation (6.1) with F = 0.266.
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the downstream propagation of a symmetric IGC past the obstacle. Note, we have also plotted the

front speeds for the thin obstacle simulations in figure 6.13 (shown in triangular symbols). For the

parameter range considered in this study, the flow pattern of a symmetric IGC past an obstacle in

a continuously stratified ambient can be subdivided into three regimes:

• A retarding regime (D̃ ≈ 0 ∼ 0.3): The front speed of the intrusion experiences a 20 %

reduction when compared with the case of D̃ = 0, simply due to the retarding effect of the

obstacle;

• An impounding regime (D̃ ≈ 0.3 ∼ 0.6): An additional 30% increase in the obstacle height

only leads to a negligible 5% reduction in front speed;

• A choking regime (D̃ ≈ 0.6 ∼ 1.0): The intrusion loses its forward momentum quickly and

accounts for the remaining 75% front-speed reduction.

This proportional distribution of the front-speed reduction among different ranges of obstacle

height provides a preliminary guidance for the engineering design of retarding facilities for a sym-

metric IGC in a continuously stratified ambient. However, it is important to note that we have

only varied the obstacle size in this study, while keeping all other pertinent parameters fixed, such

as the strength of the ambient stratification and the depth of neutral equilibrium of the lock fluid

(see figure 6.2). It is well known that an IGC in a stratified fluid will get thinner as it propagates.

Hence, the lock length will affect the long time evolution of the intrusion (e.g. the rate at which

intrusion thickness decreases), although it is irrelevant to the initial dynamics. Since the vertical

scale of the intrusion when it hits the obstacle tends to determine the existence of upstream im-

poundment as well as the direct contact of the obstacle with the intrusion (otherwise the return

flow), it is expected that the downstream intrusion speed to be a function of multiple factors, such

as the stratification, lock length, distance between the release position and the obstacle. Such a

comprehensive study that endeavors to cover a wider parameter space is beyond the scope of this

initial study where our goal is simpler with the primary focus being on the effect of the obstacle
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Figure 6.13: The downstream dimensionless front speed as a function of dimensionless obstacle height.

The black circles correspond to the slope of the fitted solid lines for D̃ = 0 to 1 in figure 6.12. The red and

blue squares correspond to the slope of the red and blue dashed lines in figure 6.12. The results for a thin

obstacle (W̃ = 0.05) are also plotted for comparison and are denoted by the black upward triangles.

height, given that it is one of the key variables that influences the interaction dynamics of an IGC

with an obstacle.

6.4 Conclusions

The focus of the present study was on the dynamics of a 2D symmetric IGC past a bottom-

mounted obstacle in a continuously stratified ambient fluid. Two series of LES simulations using

the FLOW-3D non-hydrostatic numerical model were performed. The first series of simulations

were used to validate the capability of the numerical model to capture the essential spatial-temporal

evolution dynamics of IGC in a continuously stratified ambient without topographic effects. The

propagation speed for IGC at arbitrary depths and the internal wave field for a symmetric IGC were

simulated and compared with analytical, experimental and DNS data, and good agreement were

found.
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The main findings of this study are based on the second series of simulations that included a

bottom-mounted obstacle in order to investigate the interaction dynamics of a symmetric IGC with

the obstacle. The obstacle height was found to significantly impact the downstream flow behavior,

while the obstacle width appears to only have a minor effect. For short obstacles, the intrusion was

simply distorted minimally by the obstacle and propagated further downstream in a similar form

to the classical IGC. For taller obstacles, the downstream flow was determined to be a joint effect

of horizontal advection, overshoot-springback phenomenon, and the Kelvin-Helmholtz instability.

The most remarkable difference between a topographically-affected BBGC and IGC is that while

the downstream BBGC still possesses the same dynamics after encountering tall obstacles, the

downstream IGC may evolve quite differently further downstream.

On encountering the obstacle, the intrusion enters a transient phase where its speed oscillates,

and then propagates further downstream far from the obstacle at a constant speed. The relationship

between the downstream (constant) intrusion speed and obstacle height can be subdivided into

three regimes: (1) a retarding regime (D̃ ≈ 0 ∼ 0.3) where a 30% increase in obstacle height leads

to a 20% reduction in intrusion speed, simply due to obstacle’s retarding effect; (2) an impounding

regime (D̃ ≈ 0.3 ∼ 0.6) where an additional 30% increase in obstacle height only leads to a rather

negligible additional 5% reduction in intrusion speed, presumably due to the accelerating effect

of upstream impoundment and downstream enhanced mixing; and (3) a choking regime (D̃ ≈

0.6 ∼ 1.0) where the remaining 40% increase in obstacle height accounts for the remaining 75%

reduction in intrusion speed as a direct result of the dominance of the obstacle’s blocking effect.

Overall, this study is a first step towards understanding the dynamics of IGC at arbitrary depths past

complex terrain in continuous stratified ambients. Future work focusing on asymmetric intrusions

interacting with multiple and irregular obstacles is required to gain more insights into the internal

wave field and its influence on the intrusion-obstacle interaction. It will also be desirable to perform

a limited number of 3D simulations to investigate the lateral instability of the coherent structures

such as the Kelvin-Helmholtz billows, in order to obtain a complete understanding of turbulent

mixing.
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Chapter 7

Summary & Conclusions

7.1 Summary of Investigation

In this dissertation, an in-depth investigation of constant-density/density-driven environmental

flows interacting with single/multiple obstacles has been carried out using large eddy simulations.

The governing equations were solved using the finite-volume CFD software, FLOW-3D, developed

by Flow Science, Inc. The main results of the research are presented in chapters 4, 5, and 6,

respectively.

In chapter 4, the mean three-dimensional hydrodynamics in the vicinity of a suspended cylin-

drical canopy patch was investigated. High-resolution three-dimensional large eddy simulations

were conducted to study the effects of patch density (0.16 ≤ φ = Nc(d/D)2 ≤ 1, by varying Nc)

and patch aspect ratio (0.25 ≤ AR = h/D ≤ 1, by varying h) on the near-field flow properties

(a total of 16 simulations). The respective effects of φ or AR on the bleeding flow through the

patch surface area were analyzed based on visualization of the velocity fields. A close look at the

flow dynamics inside the patch provides an explanation for the observed dependence of vertical

bleeding on these two parameters. Next, the three-dimensional flow-bleeding dynamics was quan-

titatively assessed using a flow-rate budget. Finally, the interlinks between the patch geometry (φ

and AR), the bleeding flows perpendicular to the main stream, and the proportional redistribution

of the steamwise flow rate were discussed in detail.

In chapter 5, the propagation dynamics of a bottom-boundary gravity current over a submerged

array of cylinders was investigated using laboratory experiments and large eddy simulations. Ex-

cellent agreement between experiments and LES was found. A new geometrical framework (µx-

µy) was proposed to better characterize the planar array geometry. Firstly. to investigate the front

velocity of gravity currents across the whole range of array density φ (i.e. the volume fraction of

solids), the array was densified from a flat-bed (φ = 0) towards a solid-slab (φ = 1) under a partic-
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ular submergence ratio H/h. Next, the streamwise array density µx and the spanwise array density

µy were varied independently to explore the effect of array non-equidistance. Furthermore, for a

constant array geometry, the flow depth was varied to result in different submergence conditions.

Both in-line and staggered arrays are considered. A total of 228 simulations were performed for

this extensive parametric study. The time-averaged front speed in the slumping phase was used

to identify four dynamically different flow regimes. Based on density and velocity structures, the

transitions between different flow regimes were then analyzed.

In chapter 6, the interaction of a mid-depth intrusion with an isolated bottom-mounted obstacle

was investigated using high-resolution two-dimensional large eddy simulations. We focused on the

effect of ambient stratification without including the obstacle’s grouping effects. After validating

the numerical model with a free-propagating intrusion, the obstacle was introduced. Both thick

and thin obstacles are considered. The submergence ratio D/H was varied between 0 to 0.9

in 0.1 increments. The downstream intrusion density structure and propagation speed were then

analyzed.

7.2 Conclusions on Key Findings

The following is a brief description of the main outcomes of this study:

• The near-field hydrodynamics of a suspended finite canopy patch strongly depends on the

patch geometry, and is much more complex than the case of emergent infinite canopies,

emergent finite canopies, and partial-depth infinite canopies. The resulting flow field is

highly three-dimensional: an increase in either φ or AR decreases/increases/increases bleed-

ing velocity along the streamwise/lateral/vertical direction. A close look at the flow inside

the patch reveals that despite the similar dependence of vertical bleeding on φ and AR, the

underlying physics are different. However, in contrast to the bleeding velocity, a flow-rate

budget shows that the proportion of the vertical bleeding flow leaving the patch in the total

flow entering the patch (i.e. relative vertical bleeding) decreases with increasing AR. The

interlinks between patch geometry, flow bleeding and flow diversion are identified: the patch
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influences the flow diversion not only directly by its real geometrical dimensions, but also

indirectly by modifying flow bleeding which enlarges the size of the near-wake. While loss

of flow penetrating the patch increases monotonically with increasing φ, its partition into

flow diversion around and beneath the patch shows a non-monotonic dependence.

• There is a wide range of possible states of flow along a single contour of φ, emphasizing

the inappropriateness of using the conventional φ-parameterization of array geometry for

nonequidistant arrays (µx 6= µy). Instead, the newly proposed two-dimensional parameter

space allows for the independent variation of µx and µy, and thus provides a more quantita-

tive and unambiguous description of the dynamics of canopy flows compared with the array

density given by φ =
(

π
4

)

µxµy. In terms of bottom gravity currents, four dynamically differ-

ent flow regimes are identified: (i) through-flow propagating in the array interior subject to

individual cylinder wakes (µx: small for in-line array and arbitrary for staggered array; µy:

small); (ii) over-flow propagating on the top of the array subject to vertical convective insta-

bility (µx: large; µy: large); (iii) plunging-flow climbing sparse close-to-impermeable rows

of cylinders with minor streamwise intrusion (µx: small; µy: large); and (iv) skimming-flow

channelized by an in-line array into several sub-currents with strong wake sheltering (µx:

large; µy: small). The most remarkable difference between in-line and staggered arrays is

the nonexistence of skimming-flow in the latter due to the flow interruption by the offset

rows. Our analysis reveals that as φ increases, the transition from through-flow towards

over- or skimming-flow is responsible for increasing the gravity current front velocity.

• Compared with gravity current’s propagation in a homogeneous ambient, a richer set of flow

phenomena is possible in the case of a continuously stratified ambient. For short obsta-

cles, the intrusion re-established itself downstream without much distortion. However, for

tall obstacles, the downstream flow was found to be a joint effect of horizontal advection,

overshoot-springback phenomenon, and associated Kelvin-Helmholtz instabilities. Analy-

sis of the numerical results show that the relationship between the downstream propagation

speed and the obstacle height can be subdivided into three regimes: (1) a retarding regime (D̃
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≈ 0 ∼ 0.3) where a 30% increase in obstacle height leads to a 20% reduction in propagation

speed, simply due to the obstacle’s retarding effect; (2) an impounding regime (D̃ ≈ 0.3 ∼

0.6) where the additional 30% increase in obstacle height only leads to a further (negligible)

5% reduction in propagation speed, due to the accelerating effect of upstream impoundment

and downstream enhanced mixing; and (3) a choking regime (D̃ ≈ 0.6 ∼ 1.0) where the

propagation speed is dramatically reduced due to the dominance of the obstacle’s blocking

effect. The obstacle thickness was found to be irrelevant in determining the downstream

propagation speed at least for the parameter range explored in this study.

• There are fundamental differences in the flow dynamics between porous canopies and their

solid counterpart, that is to say, one should not assume a monotonic variation of flow dy-

namics as φ is increased from 0 continuously to 1. Relevant evidences include: (i) In figure

4.12(c), the decrease of |∆Qa|/|∆Qt| with increasing φ is governed by the dominance of

lateral bleeding over vertical bleeding. However, the value of |∆Qa|/|∆Qt| associated with

the limiting case of a solid patch (φ = 1) turns out to be much larger compared with all the

porous patches, due to the absence of bleeding flow; (ii) In figure 4.13, the patch drag coeffi-

cient CD increases as φ increases from 0.16 to 0.31, and reaches a plateau between φ = 0.31

and 0.50. However, as φ increases further, the CD drops abruptly towards the solid-patch

case (φ = 1), which is even smaller than that of the sparsest patch with φ = 0.16. This can be

attributed to the absence of internal resistance and/or the bleeding flows which enlarges the

effective patch dimensions; (iii) In figure 5.8, it seems that as φ increases, the time-averaged

front speed of the gravity current first decreases and then increases towards the flat-bed con-

dition. However, in figure 5.10, as φ increases, dilution of the over-current riding on top of

the array was strengthened as φ increases from 0 to 0.785, but a much weaker dilution oc-

curs at the limiting case of a solid slab, due to the absence of the vertical convection between

the over-current and the underlying lighter ambient fluid. Based on the above, there clearly

exists a turning point between very dense canopies and their solid counterpart after which
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the dependence of flow parameters on φ are reversed. Further research which is beyond the

scope of this study is required to quantitatively define the transition.

7.3 Suggestions for Future Research

The research presented in this dissertation provides fundamental insights into the physics of en-

vironmental flows driven by difference forcing mechanisms interacting with obstacles of different

geometries, with or without density stratification. From a practical point of view, the results can

aid in the development of better parameterizations of such processes in engineering applications.

Given the limitations of this study, several directions of future research are suggested below:

• It would be interesting to introduce density stratification (either multi-layered or continu-

ously stratified) into the problems presented in chapters 4 and 5 to better mimic the oceanic

and atmospheric conditions. For chapter 4, the stratification could suppress vertical bleed-

ing, while at the same time, prevent the bottom shear layer from intruding into the wake

region. The resultant effect of these two contradictory processes on the wake structures is

intriguing. For chapter 5, stronger ambient stratification tends to increase the gravity current

front speed due to stronger buoyancy forcing, but also tends to decrease the current motion

because it inhibits the through-to-over transition. Again, the resultant effect is unknown and

could be investigated using an analogous parametric study to that presented in chapter 5.

• In chapter 5, not only the array drag, but also the incoming buoyancy forcing (i.e. g′ and H),

determines the propagation properties of gravity currents. Although we are aware that the

flow-regime diagram in figure 5.8 is only proposed for a particular submergence ratio, it is

conceivable that it can also be applied to other submergence conditions as long as the array

is submerged. However, the transition thresholds between different regimes would require

some modifications. For example, there will be an earlier transition to over-flow since that

deeper submergence tends to promote the through-over transition (figures 5.19 and 5.20),

presumably the plunging-over and the skimming-over transitions as well. Besides, this study
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only considered a particular cylinder aspect ratio h/d = 2.5. A future direction of study will

be to investigate how the variation of h/d modify the gravity current propagation.

• For the problem presented in chapter 6, future work focusing on asymmetric intrusions inter-

acting with multiple and irregular obstacles is required to gain more insights into the internal

wave field and its influence on the intrusion-obstacle interaction. It will also be desirable

to perform a limited number of 3D simulations to investigate the lateral instability of the

coherent structures such as the Kelvin-Helmholtz billows, in order to obtain a complete un-

derstanding of turbulent mixing.

• The gap of data between dense and solid patches calls for future study on the detailed flow

dynamics within this range. To date, no studies have been done on this issue. To achieve

this, a significant separation of the lengthscales between the canopy and its constituent ele-

ment, D/d, will be needed to approach the solid-canopy limit (φ = 1) as close as possible.

Obviously, this will require more computational effort to fully resolve the flow at the much

smaller element-scale.
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