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ABSTRACT

FINITE ELEMENT ANALYSIS OF SKELETAL MUSCLE: A VALIDATED APPROACH TO

MODELING MUSCLE FORCE AND INTRAMUSCULAR PRESSURE

Impaired muscle function can such as weakness is a reduction in muscle quality or quantity.
Muscle weakness is debilitating conditions which can result from neuromuscular diseases and
conditions such as multiple sclerosis, muscular dystrophy, stroke, injury, and aging. Impaired
muscle function leads to disability, risk of injury, decreases in quality of life, and even death.
Early disease detection, rehabilitation efforts, surgical techniques, and drug delivery can all be
improved with the ability to identify muscle weakness by determining individual musclerforce
vivo. Current clinical methods fail to measure individual muscle force as they are either
inaccurate for individual muscle estimations (torque measurements) or are too invasive (buckle
transducer insertion). Electromyography (EMG) is commonly used to diagnose improper muscle
function, yet it is only a measurement of electrical activity. Thus, there is no minimally invasive
clinical method which currently evaluates muscle force in vivo, which makes identifying and

treating impaired muscle a challenge.

Pressure of interstitial fluid within muscle (i.e. Intramuscular Pressure, IMP) is the direct result
of active muscle contraction or passive stretch. A low profile pressure microsensor can be used
to measure IMP and thus evaluate force of individual musthaso. Accurate microsensor use
however, is reliant upon developing a relationship between IMP and force, which is currently

incomplete. Specifically, while force and IMP are correlated, the variability ofiliWivo



makes muscle force estimates from IMP measurements a challenge. Additionally, the
distribution of IMP throughout muscle is variable and poorly understood. The goal of this work

is to develop a computational model which can be used to better understand the behavior of
intramuscular pressure. However, a lack of mechanical experimental analysis of skeletal muscle

makes developing a robust model a challenge. Thus, two specific aims are proposed:

1) Experimentally investigate the passive properties of skeletal muscle and identify proper
modeling assumptions to make in developing a constitutive approach.

2) Develop and implement a finite element approach for skeletal muscle which is capable of
simulating muscle force and intramuscular pressure under passive stretch and active

contraction conditions

Implementation of this model will provide insight into the potential causes of variability of

intramuscular pressure measuremamtgvo and future clinical approaches.
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CHAPTER 1:

INTRODUCTION

1.1 Skeletal Muscle Anatomy and Physiology

Skeletal muscle is a soft tissue which comprises roughly 30% of body mass in females
and 40% of body mass in males [1]. The primary role of skeletal muscle is to maintain posture
and provide locomotion to the body. Skeletal muscle is unique as it has both a complex structure-
function relationship as a passive material and exhibits contractile capabilities when voluntarily
stimulated [2]. From the smallest repeating unit of the tisshe force generating sarcomete
to whole muscle, the biological design and mechanical function allows skeletal muscle to grow,

adapt, and perform its primary role: drive movement of the skeletal system.

1.1.1 Micro and Cellular Level
The signature quality of skeletal muscle, contractile force, is first generated by the sarcomere
before eventually being transmitted through muscle to tendons, and finally the skeletal system.
Thus, understanding active muscle function must first start at the sarcomere, which is between 1-
P LQ JB3.QRlaM¥ primary constituents of the sarcomere are the myofilaments actin and

myosin (Figure 1-1). The ability of skeletal muscle to generate force is traditionally attributed to
these two proteins through the sliding filament theory (FigurB)1[4,5]. In its natural state,
myosin is bound to actin through cross bridges [2]. The addition of adenosine triphosphate

$73 IDFLOLWDWHY WKH XQELQGLQJ DQG 3FKDUJLQJ" RI P\RV|

high energy state (Figure BY When the myosin head-binds to the actin filament and pivots,



this shortens the overall length of the sarcomere. The action of one myosin head pivoting
produces roughly 5 pN of force [6], while the maximum force from one sarcomere is roughly

150 mN [7]. The z disk separates sarcomeres in series, while the m line designates the middle of
each sarcomere (Figure 1-1A). The final component of the sarcomere is the protein titin, which is
largely responsible for the passive tension in elongated sarcomeres [8]. Titin, one of the largest
molecules discovered at roughly 3 MDa, is a key contributor to passive muscle fiber stiffness and
organization of the sarcomere [9], and recent studies have suggested it may play a role in force

enhancement in eccentric (shortening) skeletal muscle contraction [10,11].

Actin (thin filament) M line z CxIEk

\,-\' y

Af==------ R

= Y

Titin Myosin (thick filament)
B ———— ——
High energy Low energy
C ACti(Head c
Myosin

Figure 1-1. A) Schematic of the relaxed sarcomere, which is comprised of contractile
myofilaments actin and myosin and the protein titin. The m line and z disk are architectural
identifications of the sarcomere. B) Schematic of the contracted sarcomere, which is largely
attributed to the interaction between actin and myd3jischematic of the interaction between
actin and myosin under high energy (left) and low energy (right) states.

The maximum isometric force (when the sarcomere is at a constant length while contracting)

generated by a sarcomere is largely a function of the sarcomere length [2,3]. Additionally, titin is

considered responsible for passive stiffness when the sarcomere is passive stretched [10,12,13].
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Under isometric activation, the force-length relationship is thus broken into active and passive
contributions (Figure 1-2). For the active contribution, this includes an ascending limb where
actin overlap inhibits force production (Figure 1-2A), a plateau region where actin/myosin
overlap is optimal (Figure 1-2B), and a descending limb where actin/myosin overlap decreases
(Figure 1-2C). The sarcomere supports passive tension beginning at the plaitsaknown as

optimal length, which increases in nonlinear fashion as it is stretched.
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Figure 1-2. The force-length relationship of the sarcomere, beginning with active force for A) the
ascending limb, where actin interference occurs, then B) the plateau or optimal length, where
overlap between actin and myosin is maximized, and C) the descending limb, where actin-
myosin overlap decreases. D) Passive tension is attributed to stretching of the protein titin.
Sarcomeres are organized in series and in parallel to form myofibrils, which are grouped in
skeletal muscle cells (Figure 1-3A). Skeletal muscle cells, also known as muscle fibers, are long
cylinder shaped structures, similar to other cells within the body in that they contain
mitochondria, nuclei, fluid filled sarcoplasm, and a membrane (Figure 1-3A). The length and

diameter of muscle fibers, however, are variable depending on the specific muscle task, as long

fibers have high contraction velocities and produce a large range of motion, while fibers with a



larger diameter generate more force [2]. Surrounding the myofibrils is the transverse tubule
system, which transmits contractile signals to the myofilaments. These signals originate as
electrical potentials within the brain and spinal cord, travel to muscle through nerve cells known
as motor neurons, and are transferred into chemical signals at the muscle fibers (Figure 1-3B).

motor unit is comprised of the motor neuron and the muscle fibers which it innervates.

A

Mitochondria

Myofibril = —
= < 3d Transverse
= = ©
% <7} tubule system
Nucleus |\ -y
=
-

|

Sarcoplasm

B Spinal cord Muscle fibers

Motor
neurons

Figure 1-3. A) Muscle fibers or cells contain mitochondria and nuclei similar to other cells, along
with contractile myofibrils and the transverse tubule system. B) A motor unit is comprised of a
motor neuron or nerve cell and the muscle fibers it innervates.

When muscle fibers are stimulated through motor neurons with a single impulse, they generate

fiber twitch which occurs over 100 ms [2]. Increases in impulse frequency lead to summations of

contraction waves, which when stimulated at high frequencies such as 100 Hz, fully fuse to
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create a smooth force profile (Figure 1-4). The maximum contractile forces created by muscle
fibers and motor units are highly variable, as they depend on fiber size, number of fibers, and the
oxidation type of muscle fibers [2]. Fast muscle fibers generate more force and contract at a
faster rate than slow muscle fibers, and each motor unit is comprised of fibers with similar fiber
type. While physiologically there is a continuous distribution of fiber behavior ranging from
SIDVWHVW™ WR 3V onPfider Whes &lldwel fdr geHdbaW\characterization of

differences between fibers and muscles which have variations in physiology and function.

Fused
tetanus
(o))
-t Unfused
L? _ tetanus
Summation
Twitch
T Pl b1l PTTTITT
Time

Figure 1-4. Representative graph of the force generated by a motor unit under various impulse
frequencies. Gray arrows represent a single impulse at each time point.

The most common classification of muscle fibers and motor units is a division into three types:
fast fatigable, fast fatigue resistant, and slow [14]. Variations in the function of these fibers are
largely due to composition, including the type of myosin, the distribution of mitochondria, the
size of the transverse tubule system, the size of the motor neurons, and the organization of the
sarcomere [2,14,15]. In effect, fast fatigable fibers and motor units generate the highest amount

of force but fatigue quickly, even within seconds. Fast fatigue resistant fibers generate less force



but are resistant to fatigue, and slow fibers generate the least amount of force but show very little
fatigue even over multiple hours. These fatigue properties are largely due to the methods through
which the fibers generate the molecule necessary for the actin-myosin complex to contract:
adenosine triphosphate (ATP). Slow fibers use oxidative metabolism to create 32 ATP molecules
per glucose molecule, while fast fatigable fibers use glycolysis to yield only two ATP molecules
per glucose molecule [2]. Fast fatigue resistant fibers use both mechanisms. While oxidative
metabolism is more efficient, oxygen is not readily available in large quantities, thus glycolysis
can be used on stored glucose molecules. This phenomenon contributes to motor unit
recruitment, where the small slow fibers are first recruited to prevent fatigue and excess use of
stored glucose, then medium sized fast fatigue resistant, and finally large fast fatigable fibers,

which is known as the Henneman size principle [16].

1.1.2 Tissue Level

Skeletal muscle is organized in a hierarchical structure by the extracellular matrix (ECM) [17].
The endomysium is the first layer of this matrix as it surrounds muscle fibers themselves (Figure
1-5A). The perimysium groups multiple fibers together into bundles or fascicles, and the
epimysium surrounds whole muscle (Figure 1-5A). The ECM is largely comprised of collagen,
including many different collagen types depending on the specific layer [18,19]. In total, skeletal
muscle is comprised of roughly &lntra and extracellular fluid by mass, with the remaining

20% being constituents such as extracellular matrix, contractile material, and solid cellular
components [2,17,18,20]. Additionally, the extracellular matrix plays a key role in transmission
of contractile force, as is connects muscle fibers in parallel, thus transmitting force laterally

throughout the tissue (Figure 1-5B) [21]. Finally, much of the passive tensile stiffness of skeletal



muscle can be attributed to the ECM, in addition to stretching of titin at the sarcomere level [22].
Muscle is attached to the skeletal system through aponeurosis, which is a tendinous-like sheath

where fibers terminate, and tendon.

A Endomysium

Relaxed O

Epimysium

@

Perimysium

Figure 1-5. A) Muscle extracellular matrix provides a hierarchical structure starting with
endomysium, which surrounds muscle fibers, then perimysium, which groups multiple fibers into
a bundle or fascicle, and finally epimysium, which surrounds whole muscle. B) Schematic of
transmission of contractile force (black arrow) in skeletal muscle, as the ECM connected muscle
fibers laterally (top), such that when fibers contract the force is transmitted laterally through
shearing of the ECM (bottom).

The isometric force-length relationship observed at the sarcomere level is similarly observed at
the whole muscle level, and while muscle lengths range significantlyo, a general estimate

of £ 20% of optimal length is usually appropriate (Figure 1-6A) [3]. Additionally, just as the
sarcomere generates force as a function of length, muscle force also varies depending on
contraction velocity. However, the difficulties in experimentally observing this phenomenon at
the sarcomere level make it much easier to study at the fiber or tissue level [23,24]. Muscle
contraction velocity is designated into two scenarios: muscle shortening or concentric activation,
and muscle lengthening or eccentric activation. Under concentric activation, muscle force

decreases in nonlinear fashion as contraction velocity increases (Figure 1-6B) [25]. Under

eccentric activation, however, muscle force rapidly increases and plateaus as the rate of



lengthening increases (Figure B)6Whole muscle specific tension (total force divided by area)

is 25 N/cnt or 250 kPa for fast fibers, and 10 Nfcar 100 kPa for slow fibers [2].
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Figure 1-6. A) Isometric force-length relationship of whole muscle is similar to that of the
sarcomere. A general estimate of muscle straunivois + 20% of optimal length, although this
varies. B) Force-velocity relationship of whole muscle is divided into two conditions: concentric
(shortening) and eccentric (lengthening) contractions.

Organization of muscle fibers vivo also contributes to the function of force generation.

Perhaps the two most important characteristics of whole muscle structure are fiber length and
physiological cross sectional area (PCSA, Equation 1, whasemass,a; is pennation angleé

is density, and. jyis fiber length). Muscles with longer fibers have a larger operating range,

which provides more range of motion for the skeletal system, and have faster contraction
velocities. Muscles with larger PCSA are able to generate more force due to increases in fiber
area. Longer fiber lengths are the result of more sarcomeres in series, which contract at the same
rate and change in length, while larger PCSA is the result of more sarcomeres in parallel, which

all contract with the same force. Increases in PCSA are partially the result of fiber packing, or

fiber pennation. The pennation angigis the angle between the force generation of muscle and



the orientation of muscle fibers (Figure 1-7A). Fiber packing through pennation allows for more
fibers in series and thus greater force production (Figure 1-7B).

2%5#3“‘32@ @)

\AAAJ

A - B

SN

Figure 1-7. A) Skeletal muscle pennation angiés the angle between the direction of whole
muscle and muscle fibers. B) In comparison to a pennation angle of zero (top), pennate fiber
packing (bottom) allows for more fibers in parallel for the same volume, and thus more muscle
force.

The structure and composition of skeletal muscle manifests in unique function as a passive
constituent as well. Specifically, muscle exhibits transversely isotropic and nonlinear stiffness
behavior under both tensile [26,27] and compressive [28,29] loading. However, there are
conflicting studies in terms of tensile anisotropy, as some report the muscle fiber or longitudinal
direction exhibits a stiffer response than the cross fiber or transverse orientation [30], while
others report the opposite [26,27KLOH LWV XQFOHDU H[DFWO\ ZK\ WKHVH
the disparities may be the result of post mortem handling and rigor mortis effects [28,31,32],
variations in muscle architecture across species, or differences in testing protocol.

Time dependent relaxation also occurs under both tensiof8$3&nd compression [388], and

while this is largely attributed to inherent viscoelasticity of muscle, poroelasticity (fluid flow)
may play a role as well [39]. Additionally, while passive tensile viscoelasticity at the muscle
fiber level is nonlinear [35], this does not appear to be the case at the whole muscle level [34].

This complex passive behavior is the result of contributions from and interactions between



muscle fibers, the extracellular matrix, and the fluid content of skeletal muscle. While the
extracellular matrix largely contributes to tensile stiffness as stated above [22], the complete
structure-function relationship for skeletal muscle is still not clear. Thus, to better understand
passive muscle function, the nonlinear viscoelastic behavior at the tissue level and the role of

poroelasticity must be elucidated.

1.2 Impaired Skeletal Muscle Function

Muscle weakness is a major clinical concerns surrounding skeletal muscle function. Weakness
can be the result of a wide range of clinical conditions, including neuromuscular diseases such as
multiple sclerosis [40], and muscular dystrophy [41], sarcopenia [42], injury to orthopaedic

tissue [43] and neurological tissue [44], and stroke [45]. Characterized as a decrease in the force
generated by skeletal muscle, weakness can cause increased risk of injury or fall [46], is
associated with osteoarthritis [47], and in the case of muscular dystrophy eventually causes death
[41]. The causes for neuromuscular diseases include motor neuron degradation for multiple
sclerosis and a breakdown of the force transmission within muscle through the dystrophin
molecule for muscular dystrophy. Thus, there is a wide range of causes for impaired skeletal
muscle function, and a long list of symptoms and increased risks for those wih for

impairment.

Muscle weakness result from and can lead to a number of physiological changes in skeletal
muscle function [2]. For example, chronic disuse leads to decreases in muscle volume (and thus
cross sectional area), increases in passive muscle stiffness through fibrosis, and a transition to

predominantly fast twitch fiber types [48]. Sarcopenia leads to muscle weakness as a result of

10



decreases in muscle quality (specific tension or force per area) and muscle quantity [49,50].
Thus, diagnosing and treating skeletal muscle impairment requires a knowledge of both improper

physiological function and structural or biological changes.

Current methods to evaluate skeletal muscle funatismvoinclude electromyography (EMG)

buckle transducer insertion, and torque measurements. However, EMG is a measurement of
electrical activity only [5H53], buckle transducer insertion is a highly invasive procedure

[54,55], and torque measurements are from multiple muscles crossing a joint and thus do not
directly measure individual muscle force [B58]. Thus, there is no current clinical approach to
directly evaluate individual muscle force. While the above approaches all provide valuable
insight into skeletal muscle function and impairmientivo, these drawbacks severely limit the
clinical capabilities of surgeons, physicians, and physical therapists. An approach to directly
identify individual muscle force would benefit diagnostic techniques for neuromuscular diseases,

treatments of muscle weakness and spasticity, and targeted delivery for drug therapies.

1.3 Intramuscular Pressure

Intramuscular pressure (IMP) is the pressurization of saturating fluid within skeletal muscle
which occurs as a result of active contraction or passive deformatia5J6d he correlation
between muscle force and IMP is evident under isometric contraction [64,66,67], and promising
under dynamic contractions [68]. Early studies of intramuscular pressure identified a linear
relationship between pressure and muscle contraction force under submaximal isometric

conditions [69], which were followed by studies at maximum voluntary contraction [62], and

11



under dynamic conditions [70], which were possible through advancements in @ressur

measurement technique.

IMP measurements have traditionally been obtained through insertion of a either needles [56,71],
wick catheters [66], or pressure transducers [62] which can be invasive, particularly for isotonic
(lengthening or shortening) contractions. More recently, the implementation of a minimally
invasive pressure microsensor has shown success at measuring IMP [64,68,72]. These fiber optic
microsensors measure fluid pressure through fluctuations of a diaphragm, which alters a fiber
optic signal (Figure 1-8). Recent sensor advancement has shed further light into proper
microsensor use, specifically sensor housing and anchoring within the tissue play a key role in
accuracy of IMP readings, particularly under dynamic conditions Tt&se new sensor
advancements havkus improved the functionality of this minimally invasive IMP measurement

approach.

Sensor and cablé'\ Diaphrag

A

Housin

B

Figure 1-8. A) Pressure microsensor image, highlighting the sensor diaphragm which deforms
due to environmental pressure, altering the fiber optic signal which is converted into pressure
readings. B) Microsensor schematic with nitinol housing and anchoring barbs (left).

However, the correlation between muscle force and IMP is not currently strong enough for use of

IMP as a clinical approach to estimate muscle force. This may be due to previous measurement

techniques [73], variations in IMP spatially throughout the tissue [71], and difficulties with

12



patient to patient and muscle to muscle reproducibility [62,74]. Additionally, even some
repeatability experiments have shown difficulties in developing a consistent relationship between
muscle force and intramuscular pressure [75]. Intramuscular pressure is also a function of fatigue
[76], and from an impairment standpoint it remains unclear how IMP varies with

musculoskeletal diseases such as cerebral palsy, muscular dystrophy, and sarcopenia. In
summary, there are major concerns in utilizing IMP measurements to predict skeletal muscle
force, as the IMP distribution throughout skeletal muscle is currently unknown and there is little
information on the force-IMP relationship in conditions other than healthy, rested skeletal

muscle. Thus, there is a need to develop a tool which can accurately characterize both muscle
force as well as intramuscular pressure, and provide both global and local insight into skeletal

muscle function.

1.4 Finite Element Analysis of Skeletal Muscle

Finite element analysis is the use of discretization to solve complex geometrical problems with
simplified approximate solutions (Figure 1-9). Finite element models have been developed
simulating wide range of orthopaedic tissues, including bone [77,78], cartilage [79,80], meniscus
[81,82], ligament and tendon [83], and intervertebral disk [84,85]. Additionally, finite element
models incorporating multiple tissues have also been developed and implemented, such as those

simulating the behavior of the human knee [86] and spine [87].
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Figure 1-9. A) A finite element model of the human knee with a hexahedral mesh discretizes the
complex geometry into elements. B) The solution for deformation of a hexahedron afement
simpler than that of a more complex geometry.

Finite element modeling of skeletal muscle requires a unique approach due to the contractile
nature of the tissue. Various finite element modeling studies have been conducted on skeletal
muscle, with a wide range of assumptions. Early muscle finite element modeling incorporated
muscle activation into a constitutive approach utilizing anisotropic hyperelasticity [88,89].
Blemker et al developed a three-dimensional idealized geometry of the biceps brachii which also
included a hyperelastic and anisotropic formulation to study various geometrical assumptions
[90]. Since then, similar models have been developed and implemented with improvements,
including whole muscle geometry [91], studies of the role of fiber orientation [92,93], passive
properties [94], simulations of shortening and lengthening muscle [95in an simulation

[96]. Inhomogeneous assumptions have also been applied at various tissue scales, separating

contractile and passive constituents of skeletal muscle (47.
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While each of these approachesdprovided valuable insight into muscle function or increased
accuracy over previous methods, there still exists major advancements to be made in the muscle
modeling field. Specifically, passive time dependent behavior of skeletal muscle is often
neglected despite clear evidence of this behavior at the fiber [35], tissue [36], and whole muscle
[34,102] level. There are limited finite element studies that treat skeletal muscle as viscoelastic
[34], and despite the conflicting data on the tensile nonlinearity of muscle viscoelasticity, this has
not been evaluated from a modeling perspective. Additionally, no finite element study of skeletal
muscle had previously been developed incorporating poroelastic effects although they may
contribute to muscle mechanics [39]. Finally, while some studies utilize a transversely isotropic,
hyperleastic constitutive formulation which models muscle fibers as reinforcing constituents
[88,101], some experimental studies have reported that muscle is actually stiffer in the cross fiber
or transverse direction [26,27]. Thus, recommendations must be made in terms of proper

modeling assumptions for skeletal muscle composition and function.

One of the earliest finite element studies of skeletal muscle was conducted to study the
relationship between skeletal muscle force and intramuscular pressure [103]. While this approach
was effective at modeling both passive and active muscle stress and intramuscular pressure, there
were several drawbacks which inhibit broad use of this model. Firstly, time dependent properties
were ignored, which severely limits the use of this model to study dynamic conditions.

Additionally, the idealized geometry and lack of fluid content inherently limit the physiological
accuracy, as intramuscular pressure is the pressurization of muscular interstitial fluid. Lastly, it
remains to be seen if this approach is valid outside of the single condition which was modeled,

the New Zealand White Rabbit tibialis anterior. Thus, while this model displayed efficacy of
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finite element analysis in accurately characterizing both muscle force as well as intramuscular

pressure, a more comprehensive approach is needed to achieve clinical impact.

1.5 Specific Aims

To improve clinical treatment of impaired skeletal muscle, the following specific aims have been
identified to facilitate the development and employment of a computational tool which is capable
of modeling both muscle force as well as intramuscular pressure. This tool can then be used to

further study the relationship between muscle force and intramuscular pressure and potentially

identify the cause of variability of intramuscular pressure measurements.

Specific Aim 1: Experimentally investigate the passive properties of skeletal muscle and identify

proper modeling assumptions to make in developing a constitutive approach.

Sub Aim 1A: Evaluate the viscoelastic nonlinearity of skeletal muscle in tension.
While the assumption of linear viscoelasticity is common in biological studies and has been
applied to skeletal muscle at the whole tissue level, muscle fibers have shown nonlinear
viscoelastic behavior. Thus, it remains unclear as to how skeletal muscle viscoelasticity should
be modeled from a tensile standpoint. Experimental data of skeletal muscle under stress
relaxation conditions will be completed and analyzed using various viscoelastic models to

determine the appropriate assumptions for future models.
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Sub Aim 1B: Elucidate the true tensile transverse isotropy of skeletal muscle.
Conflicting reports in literature of skeletal muscle transverse isotropy make proper modeling
assumptions difficult to determine. Specifically, the question of whether or not the longitudinal
or fiber direction is stiffer than the transverse or cross fiber direction must be answered.
Experimental work is proposed to compare the transversely isotropic tensile behavior of skeletal
muscle when tested under fresh conditions (pre-rigor) versus tissue subject to a freeze-thaw
cycle. The findings will dictate the transversely isotropic constitutive approaai\ivo

skeletal muscle.

Sub Aim 1C: Evaluate the hydraulic permeability of skeletal muscle.
The hydraulic permeability of skeletal muscle is unknown, despite the fact that it playsa majo
role in fluid pressurization (such as IMP) in biological tissues. Some biological tissues also
utilize fluid content and retention to disperse loads under compression, which is largely dictated
by the hydraulic permeability of the material. While this is not the primary role of skeletal
muscle, fluid content of muscle may still contribute to compressive stiffness. Thus, there is a
need to determine skeletal muscle permeability for implementation of physiologically accurate
computational models and to better understand the distribution of loads within the tissue. In this
study, direct permeation experiments will be performed along with simulations of experimental
findings with various assumptions to determine how to properly model skeletal muscle

permeability.
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Specific Aim 2: Develop and implement a finite element approach for skeletal muscle which is
capable of simulating muscle force and intramuscular pressure under passive stretch and active

contraction conditions.

Sub Aim 2A: Develop a passive constitutive approach and validate against stretched
skeletal muscle using finite element analysis.
Based on the findings from Specific Aim 1, a novel constitutive approach will be developed and
implemented to simulate the passive stretch response for skeletal muscle. Specifically, this model
will incorporate the tensile time dependent behavior determined in Aim 1B through
viscoelasticity, nonlinear and transversely isotropic behavior from Aim 1B through transversely
isotropic hyperelasticity, and the role of fluid flow and pressurization studied in Aim 1C through
poroelasticity. The combination of these elastic theories will yield a transversely isotropic,
hyper-visco-poroelastic constitutive approach. This constitutive model will be incorporated into
a finite element geometry of the rabbit tibialis anterior for validation against experimental data of
passively stretched muscle. The model will be validated against experimental data of both

muscle stress as well as intramuscular pressure.

Sub Aim 2B: Develop an active constitutive and geometric approach and validate against
contracting skeletal muscle using finite element analysis.
As a continuation of Specific Aim 2A, muscle activation will be simulated utilizing an addition
of active stress to the constitutive model developed in Aim 2A. Additionally, inhomogeneity will
be incorporated to account for muscle constituents which can (fibers) and cannot (fluid, ECM)

generate contractile force. This approach will similarly be validated against experimental data of
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rabbit muscle behavior under isometric maximally stimulated contractile conditions. This aim
will also further investigate how passive model properties contribute to fluid pressurization.
Based on experimental data and model output, clinical recommendations will be made about

sensor insertion technique.

Sub Aim 2C: Implement the developed approach from 2A and 2B in a model of human
skeletal muscle to strengthen validation and investigate variability of intramuscular pressure.
Following model validation under passive stretch (Aim 2A) and maximal isometric contraction
(Aim 2B) in a rabbit model, modeling of human muscle will be completed. Model agreement
with human muscle data will greatly strengthen the confidence in employing this constitutive
approach due to major differences in muscle architecture and scale. This model will also identify
possible contributions to the variability in intramuscular pressure measurémems
Modeling results can also provide insight into possible sensor insertion locations and help guide

future experimental work to validate computational findings.
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CHAPTER 2:
SKELETAL MUSCLE TENSILE STRAIN DEPENDENCE: HYPERVISCOELASTIC

NONLINEARITY

2.1 Introduction

The passive properties of skeletal muscle play a key role in force transmission throughout the
tissue under active generation and passive stfetel). In tendon transfer procedures, the
detachment and re-attachment of a muscle requires the estimation of resting length with manual
tensioning, which can lead to deficiencies in contractile function [5,6]. As skeletal muscle is non-
linear [7,8] and time dependent [9,10], this makes manually detecting proper resting length via
passive muscle tension a challenge. To improve simulations such as finite element analyses,
which can aid in surgical procedures by identifying proper muscle tension, we must first develop

a complete understanding of the time and strain dependent properties of skeletal muscle.

As the modeling approaches for soft biological tissues such as skeletal muscle continue to
advance, the formulation of constitutive relationships for these materials become more complex.
This is derived from a need for a more complete understanding of the material behavior of these
tissues, enabling simulations to accurately predict both local and global tissue function. While
computational models of skeletal muscle have been developing since the introduction of the Hill

model in 1938 [11], there have been relatively few studies of muscle tensile material properties

This chapter has been published as a Research Paper in the Journal of the Mechanical Behavior
of Biomedical Materials (53, 2016). All content has been adapted with permission from Elsevier.
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at the tissue level [8,12,13], with the majority of studies evaluating skeletal muscle compressive

properties [14 A8].

Studies of the structural response of individual muscle fibers [9] and intact muscles [7,10,19] are
more prevalent. Since skeletal muscle is a highly organized collection of fibeasaltmenous
connective matrix, which plays a key role in force transmission [20], it may be difficult to
extrapolate whole muscle behavior from results of studies of individual fibers. Likewise,
variations in anatomical structure between muscles from different locations in the body makes

inference of the response of one muscle from the study of another a dubious proposition at best.

Many recent investigations into skeletal muscle properties havesfbonshyperelastic material

properties [7,8,13,1A9]. However, the number of studies examining the time dependency are

limited to compressive conditions [#46,18,21], single fiber [9,22] or whole muscle

investigations [235], or utilize a linear or quasi-linear viscoelastic response [10,26,27]. Thus,

WR WKH DXWKRUYfY NQRZOHGJH WKHUH KDYH EHHQ QR SUHYL
nonlinear tissue level strain dependent viscoelastic behavior for skeletal muscle in tension.

However, when developing such a model, one must take care to ensure that any efforts can be
implemented into future computational analyses. This is typically done through the development

of an energy based formulation instead of a stress based formulation, which prevents stress

integration in a finite element simulation [28].

Thus, the goals of this study were to (1) examine the time and strain dependent material

properties of skeletal muscle tissue subjected to consecutive stress relaxation cycles and to (2)
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implement a fully nonlinear hyperviscoelastic model to capture muscle nonlinearity in both time

independent modulus and viscoelastic relaxation behavior under passive tensile conditions.

2.2 Methods

2.2.1 Specimen Preparation

Longitudinal (along the fiber direction) load-relaxation tests were performed on nine tibialis
anterior (TA) muscle samples harvested from nine New Zealand White rabbits (one sample per
animal). The handling of all study animals was performed with approval from the Mayo Clinic
Institutional Animal Care and Use Committee. Specimens were cut from the muscle midbelly
away from surrounding fascia and aponeurosis to a thickness of 3.6 mm using a razor tissue
punch with the long axis coinciding with muscle fiber direction (Figure 2-1). Specimens were
22.0 £ 4.1 mm long and 5.4 £ 1.0 mm wide as measured with digital calipers. All testing was
completed within two hours of sacrifice to mitigate the effects of post-mortem rigor [16,29].
Testing was performed at room temperature, and specimens were kept moist continually using a

saline mist spray.

2.2.2 Stress Relaxation Tests

Load-relaxation tests were performed on an MTS 858 material test device (MTS, Eden Prairie,
MN) with specimens mounted thin film clamps (Imada, Northbrook, IL) (Figure 2-B®) pre-

stress condition corresponding to 0.1% of the ultimate stress of the muscle by direction [13] was
applied. Specimen length was calculated as grip to grip length and strain was calculated from
crosshead displacement per previous work on rabbit skeletal muscle [13]. Samples were subject

to five load-relaxation cycles of 0.7 mm (mean strain of 0.031 £+ 0.002 standard error pf mean
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followed by a 300-second relaxation period [12]. Operating in this range ensured that tissue
remained below the ultimate strain [13] and would not be strained to the point of creating
damage or plastic deformation [9]. Force measurements were sampled at 20 Hz using a 1-kgf
load cell (Transducer Techniques, Temecula, CA). As the relaxation behavior of muscles under
stress relaxation has been shown to be strain-rate insensitive [30], all material tests were
performed at a uniform rate of displacement. Tissues were elongated at a rate of 3.8 mm/sec,

corresponding to 0.1 fiber-lengths/sec [31].

Figure 2-1: Midbelly specimens were excised from the tibialis anterior (A) along the fiber

direction (vertical arrow), loaded, and tested in a material testing system with thin film grips (B).
Samples were cut into rectangular strips and the apparent dog bone shape (B) is a result of tissue
compression at the grips and not changes in cross sectional area with sample length.

2.2.3 Raw Data Analysis

First Piola-Kirchoff stress|() was calculated as the reaction force divided by the initial cross-
sectional area and converted into Second Piola-Kirdho# L—'r wherer is the deformation

gradient. The relaxation ratio of each individual zeroed stress relaxation step was calculated as
the mean stress over the final one second of relaxation divided by the peak stress from that step.

Material elongation was determined using crosshead displacement. Green strain was calculated
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as the mechanical correlate ¢o(Equation 1, whered, is one dimensional Green strain aAd
engineering strain). All relaxation data was processed in Matlab (The Mathworks, Inc., Natick,
MA) using a first order Savitsky-Golay filtesgolayfil) as it is highly effective in reducing high

frequency noise.

A\L—Z>:SE93\F;S? 1)

2.2.4 Linear Viscoelastic Prony Series

Calculated stress relaxation data for each strain increment (five steps each and nine specimens
for a total of 45 stress relaxation stepere fitted to a constitutive formulation for viscoelastic
materials [14,32] (Equation 2, whefe A, & ;Bs the stress at tim@and strain leveld, ' :Ris

the time dependent elastic modulus, anslan integration variable). A three-term linear Prony
series [14,3235] was utilized to describe the time dependent elastic modulus (Equation 3, where
' 4is the instantaneous modulus, are relaxation coefficients, ang are time constantsh

nonlinear optimizationiggnonlin) in Matlab applied the Levenberg-Marquardt unbounded local
optimizing algorithm to fit experimental and model data. This approach varied all seven of the
material properties from Equation 3 to minimize the residuals between the model output and
experimental data at each time point [7,3288. Additional weight was given to the peak
response to ensure a good fit throughout loading and initial relaxation by mutiplying the peak
error by the total number of data points in each step [36].' Jlir@tial parameter value was set

to 10 kPa, the 4 terms were initially set to values of 0.5, 0.25, and 0.15, respectively, while the
4 terms were set to 0.1s, 10s, and 100s, respectively. These values were determined by
performing the optimization under a range of initial values and comparing the results to locate

the optimal fits. The' 4 terms were set to decreasing values as a large portion of tissue relaxation
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typically occurs over very short time periods in studies of biological tissues [14,15,35,36]. Each
parameter was then scaled within the optimization such that all initial values remain on the same

order of magnitude, which improves the fitting procedure [36,38].

5:AT;aPLIS P FEZ @1 )
'"'RL'4;Ds AlgisBsF 13 -@EE (3)
U

2.2.5 Fully Nonlinear Hyperviscoelastic Modeling
Experimental data was then averaged together to generate a single set of mean stress relaxation
data in addition to the nine individual specimens. These data were fit to a fully nonlinear

hyperviscoelastic model. Here the hyperelasticity was characterized by an isotropic polynomial

strain energy density (SED) function [36,39] (Equation 4, Wrﬁerk—:-g‘, O:4&;is the stretch

dependent strain energy densifgare the stretches in the longitudin@)(and transversed;
&) directions, respectively, ang; @re material constants]. K H 3 R LV V R30f vhbdtbed/ L R
skeletal muscle was assumed to be 0.47, per a previous study of fresh skeletal muscle under

uniaxial tension [8]. The resulting transverse strain was driven by the Poisson affect (

%L)b resulting in a simplification of the three stretches to only a longitudinal stretch and strain
uuo

dependence shown in Equation 5.

O:& L Ay gseu®EEE §F ubl (4)

~ o 6
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The instantaneous modulug was then calculated as a function of stretch from the SED

equation (Equation 6) [39]. Previous studies have applied a polynomial expression to identify the

dependence of Prony series parameters on stretch level for compressed muscle [15] and spinal
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cord [32]. However, we chose to employ a simple exponential function for the purpose of
minimizing the number of optimized parameters while still maintaining a robust, non-linear
function. Thus, the relaxation coefficients and time constants were given exponential dependence
on longitudinal stretch (Equations 7 and 8, whege U, &, and fi5 are material propertigsA

stretch and time dependent hyperviscoelastic tangent modul@si(; a ;Pwhich directly

incorporates the strain energy density function througand the viscoelastic nonlinearity

through ' sand i4:&; can then be defined (Equation 9). The complete nonlinear constitutive
relationship for second RaKirchoff stress is then developed (Equation 10), highlighting the
coupling between stretch and time dependence of the tangent modulus. It should be noted that
this tangent modulus characterizes the stiffness behavior at a particular deformation and is highly

QRQOLQHDU WKXV LW VKRXOG QRW EH FRQIXVHG D OLQHDU |

wE L v L VBtESt5k§aaf tEa04k UOC (6)
'8 L QATLKER . 4F sfo (7)

14208 L ATLKEM 48 sfo (8)
':éé;FP_'4:51;Dsﬁézl@gé:é;BsFi§’—g@—;l¥\CE 9)
S:&1 AP, (&P B @) (10)

The fitting procedure was similar to the optimization performed for single step data, but it
included all five consecutive relaxation steps and the expanded constitutive relation outlined
above. Ten separate optimizations were performed, each of the nine individual specimens in
addition to an averaged set of mean experimental data. The nine individual specimens provided
statistical measurement of variability, while the set of mean experimental data was used to

develop a single set of constitutive parameters as averaging parameters from multiple specimens
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is an ineffective approach in constitutive mode ling [40,41]. The initial parameter values were
structured similarly to the linear Prony series fitting, where initiabalues of 0.5, 0.25, and

0.15 were used along with initial values of 0.1s, 10s, and 100s. This was achieved by setting
all U, and fi4 initially to a value of zero, which results in no initial strain dependence. All initial
parameter values can be found in Table 2-1. To verify unigueness and global minima, the

optimization was repeated with each parameter either reduced by 50% or increased by 100%.

Table 2-1: Initial parameter values for the fully hyperviscoelastic model fitting. Each parameter
was scaled such that the initial values all shared the same order of magnitudg. WJland fi4
parameters are unitless.

Parameter | az [kPa] | a4 [kPa] 1,23 1,2,3 1,2,3[8] | &1,23
Initial Value 10 1000 |0.5,0.25,0.18 O 0.1,10,100 O

While the fully nonlinear hyperviscoelastic model provides a highly robust approach,

justification for employing such a complex constitutive formulation is needed. Specifically, it

was unclear if both the hyperelasticity and nonlinear viscoelasticity were both necessary. Thus,
the outlined optimization procedure to fit mean experimental data was employed with four
separate models combining linear and nonlinear components from Equations 2 through 7. These
models included the fully nonlinear model (FNM), a model including a linear instantaneous
modulus and nonlinear viscoelasticity (LINV, Equations 2, 3, 7, and 8), a nonlinear
instantaneous modulus and linear viscoelasticity approach (NILV or often referred to quasilinear
viscoelasticity or QLV, Equations 2-6), and a fully linear model (FLM, Equations 4-10)

(Equation 2).
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2.2.6 Statistics

The goodness of fit for each load-relaxation cycle was evaluated wiglotigmessOfFit

function in Matlab [36]. In brief, thé ILW~ YDOXH ZDV GHWHUPLQHG IURP WKH
square (Equation 11), whett% and Ware the model and experimental stress values,

respectively, at thd& Ydata point andlis the total number of data points. Fits range from -

(worst) to 1 (perfect). Additionally, the overall percent error and peak percent error (percent

difference between peak response at the end of loading) were calculated.

B 6
BEP L s&@z@%oh (11)

Muscle behavior was assessed by comparing the dependence on strain of all Prony series terms

(Equation 3) and the relaxation ratio with a general linear model, with significance set at p<0.05

for all tests. This was performed in Minitab Statistical Software (Minitab Inc., State College,

PA). The coefficients of variatiorC{/) was determined for all statistical measures in the linear

Prony series model to identify the accuracy of all fits. Thewas also calculated for all

statistical measures and parameter values for the fully nonlinear model for five consecutive steps

for all nine individual specimens.

2.3 Results

The peak and equilibrium stresses for all specimens show a nonlinear stress-strain relationship
(Figure 2-2). As each specimen was displaced 0.7 mm, variations in gauge length provide a more
continuous stress-strain graph than if each specimen was strained at identically discrete intervals.
Using a nonlinear optimization algorithm in MATLAB proved to be an excellent approach to fit
experimental data both visually (Figure PaBid by numerical analysis (Table 2-2), with both

low percent error values and fit values close to the optimal value of 1. The optimizing process
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also showed an excellent ability to fit both the peak response as well as the shape of the
relaxation behavior. The optimization procedure was successful for both the linear model fit to
individual zeroed stress relaxation steps (Figure 2-3A and Table 2-2) as well as the nonlinear

model fit to five consecutive steps (Figure 2-3B and Table 2-2
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Figure 2-2: Stress-strain data for all peak (black diamonds) and equilibrium (red circles) data

from all nine samples. Note the nonlinear behavior for both peak and equilibrium responses in

addition to the dispersed strain values.

Table 2-2: Numerical optimization results for the linear Prony series fit to each normalized
individual step and the fully hyperviscoelastic model optimized to all nine specimens.

Linear Model Nonlinear Model
Mean or (Equations 2-3) Isolated (Equations 4-10) Full
Statistical Measurement| Coefficient of a Steps
L Steps , .
Variation L (9 specimens with 5
(45 individual steps)
steps each)
Complete Response Mean (%) 2.73 4.93
Error CV 0.45 0.28
Peak Response Error Mean (%) 2.53E-5 6.65
Only CV 1.28 0.25
. Mean 0.967 0.999
Fit Value cV 0.022 7.6E-4
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Figure 2-3: Viscoelastic Prony fitting to five isolated stress relaxation steps of a single specimen
(A), with loading and initial relaxation shown inset. Arrow indicates curves go from lowest strain
level on bottom to highest on top. Nonlinear hyperviscoelastic fitting to mean experimental data
(B) with initial steps shown inset for clarity.

Prony series relaxation coefficients and the instantaneous modulus for all five steps of all nine
specimens were plotted (45 total) were plotted against Green strain to provide visual inspection
of the dependence of modulus and relaxation behavior on strain level (Figure 2-4). Here a
positive slope corresponds to increases with increasing strain, while a negative slope conversely
suggests a decrease. The general linear model analysis of all Prony series coefficients showed
that muscle relaxation behavior exhibited strain dependence (Figure 2-4), as changes in
relaxation parameters were observéggositive slope, p<0.0005 ard, negative slope,

p<0.0005) with increasing strain level. The instantaneous moduylalso had a positive slope
(p<0.0005). Alternatively, the analysis showed no changes ihdletaxation parameter

(p=0.157) rate parameters (p=0.184, p=0.205, and p=0.15% fog and i, respectively). The

mean values (and coefficients of variation in percent) for the rate parameters were found to be

0.109 (0.060) seconds, 5.29 (0.44) seconds, and 108 (0.54) seconds. The relaxation ratio showed
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no dependence on strain (p=0.777) and had a mean value of 0.211 with a coefficient of variation

of 0.18.
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Figure 2-4: Viscoelastic Prony series coefficients which were found to have a significant
dependence on deformation level. The second relaxation paramgéBrhad a positive slope
(p<0.0005), while the third relaxation parameter(C) had a negative slope (p<0.0005). The
instantaneous modulus, (D) also increased with strain (p<0.0005).

The mean data fit yielded a single set of constitutive parameters (Table 2-3), which can be
utilized in computational modeling efforts. This single optimization resulted in a 2.97% error
between the mean data and model, with a fit value of 0.999 and mean peak errors of 2.40%
(Table 2-4). Multiplying initial parameters by 50% and 200% did not significantly affect either
the model fit or optimized parameters. A visual representation of the model tangent stiffness

provides a useful method to highlight the dependence of material behavior on both strain level

and relaxation time (Figure 2-:5
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Table 2-3: Optimized hyperviscoelastic constitutive parameters fitted to mean experimental data
with coefficient of variation percent in parentheses.

SED Relaxation CoefficientsEn Rate Coefficients 2

kPa] 6.62 S 0.641 | 0.124] 0.114 S 0.202] 12.2 [ 262
B (0.52) | 23211 0.089)| (0.53)| (0.47)| %3 (0.25)| (1.2) | (2.1)

kPal 3820 227 | 367 [ 146 | o -9.78| 116 | -5.25
& (0.85) L23 1 26) | 2.7) ]| (8.6) 23 1 (1.1) | (2.8) | (3.3)

Table 2-4: Fitting comparisons between linear and nonlinear models, showing overall mean
error, mean error of the five peak values, and the normalized mean square error goodness of fit.

Fully HTEEY Nonlinear Fully
Statistical ) Instantaneous, .
Nonlinear . Instantaneous, Linear
Measurement Nonlinear . X )
Model ) . Linear Viscoelastic Model
Viscoelastic
Complete Response
Error (%) 3.20 151 4.08 33.0
Peak Response
Error Only (%) 3.39 18.3 5.58 106
NMSE Fit Value 1.00 0.984 0.999 0.937

Modulus (kPa)

1 1.05 1.1 1.15 1.2 1.25
Stretch
Figure 2-5: Tangent modulus behavior for the implemented fully nonlinear hyperviscoelastic
constitutive model. This model exhibits dependence on both stretch level (x-axis) as well as
relaxation time (various curves). The instantaneous response (circle markers, t=0 s) and
equilibrium behavior (triangle markers, t=1,000 s) along with intermediate times are shown,
highlighting the evolution of modulus behavior over time.
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The model justification results (Figure 2-6 and Table 2-4) show that the fully nonlinear model
(FNM) far outperformed others using a linear instantaneous response. The fully linear model
(FLM) failed to capture any sufficient material behavior with an error of over 30% (Table 2-4).
The two models combining linearity and nonlinearity (linear instantaneous nonlinear viscoelastic
- LINV and nonlinear instantaneous linear viscoelagtNILV) did an improved job predicting
experimental behavior overall, particularly the NILV model (Table 2-4, ~4% overall error). The
discrepancies between the FNM model and the LINV model can be observed within the first

stress relaxation step (Figure R-6

Figure 2-6. Comparison of various linear and nonlinear models fitted to averaged experimental
data with only the first fifty seconds of the first step shown. Initial loading and relaxation (from
0-2 seconds) is further highlighted on the left.
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2.4. Discussion

2.4.1 Experimental Data Analysis

The experimental data shown in this work provides a more continual stress-strain relationship
(Figure) when compared to studies for which each specimen is strained to identical discrete
values. This allows for a more detailed investigation of the effect of strain level on passive
skeletal muscle mechanics. The analyzed experimental data from this work can be ctonpared
previously published works which studied the time dependent behavior of skeletal muscle in
tension [9,12,24]. These investigations similarly showed a large portion of the relaxation occurs
over a short time period, after which the tissue slowly transitions into an equilibrium state.
Abraham et al., (2013) comparably investigated stress relaxation of excised New Zealand White
Rabbit tibialis anterior, albeit it at a single 10% strain step and observed a steady state modulus
of roughly 70 kPa for excised tissue comparedrtequilibrium modulus value of around 20 kPa

at 10% strain from our raw data. The fully nonlinear hyperviscoelastic model similarly predicts

an equilibrium tangent modulus of 24 kPa at 10% strain from our data.

Data from Takaza et al., (2013) and Morrow et al., (2010) suggest a stress level of between 5 and
40 kPa at 10% strain in constant rate testing loaded at 0.05%/s. Best et al., (1994) show a stress
level of ~350 kPa at 10% strain, at a much higher strain rate (667%/s), which certainly
contributed to higher stress values. Our data shows stress values of roughly 5-10 kPa for peak
and 2-3 kPa for equilibrium stress at 10% strain. However, as Meyer et al., (2011) showed with a
single muscle fiber that superposition does not hold and consecutive stress relaxation cycles
result in stresses lower than a single cycle, this may account for the discrepancies between our

data and other literature. Specifically, the increased stiffness observed by Abraham et al would
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be a result of a single stress relaxation step at 10% strain, compared to 3-4 smaller steps of
roughly 3% strain, while the constant rate elongation tests would see a compounding effect,

resulting in increased stresses.

2.4.2 Linear Prony Series Viscoelasticity

Analyzing the optimized linear Prony series coefficients as well as the relaxation ratio provides
insight into the transient performance of skeletal muscle as a function of strain (Figure 2-4).
Outside of a study by Meyer et al., (2011) who investigated viscoelasticity of single fibers, there
is limited published data to compare with our data. The first result to note is that the relaxation
ratio exhibited no dependence on strain level, which appears to agree with the findings of Meyer
et al., (2011) under consecutive stress relaxation steps on single fibers. The strong increase in
instantaneous modulus with strain further supports the well-documented tensile hyperelasticity of

skeletal muscle in the fiber direction [7,8,42].

The changes observed in Prony series coefficients with strain shows the course under which this
relaxation occurs differs as a function of material strain. Specifically, the increases in the second
relaxation coefficient coupled withdecrease in the third relaxation coefficient implies that with
increasing strain the total rate of relaxation is increasing. This is simplified by the fact that the
rate parameters did not change with strain level. These findings differ from Meyer et al., (2011)
who found increasing stress relaxation steps resulted in a slower relaxation rate. However, the
highly collagenous extracellular matrix [2,43,44] supports a large portion of muscular force
transmission [3,20,45] and as such could certainly affect the relaxation behavior of the tissue.

Previous studies have suggested that collagen fibers play a role in the time dependent response of
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the meniscus [46] and cartilage [47], thus it is no surprise that the viscoelastic behavior of

muscle differs between the fiber and tissue level.

2.4.3 Fully Nonlinear Viscoelastic Model

7R WKH DXWKRUYV EHVW NQRZOH G Jriénlivéat bype/RdddNasid) HVHQ WV
model of tissue level skeletal muscle under tensile strain. Previous works have evaluated the
viscoelastic nonlinearity of a single muscle fiber [9,22], have utilized a linear or quasi-linear
viscoelastic response [10,26,27], or investigated other biological tissues such as spinal ligaments
[48], the spinal cord [32]and skeletal muscle in compression [15]. Meyer et al., (2PY1)
investigation of single fiber viscoelasticity was very effective in capturing the strain dependent
viscosity of the mouse single fiber. We chose to employ a hyperelastic model as fiber bundle
behavior exhibits nonlinear stiffness when compared to individual fibers or groups of fibers [20].
This SED based hyperelastic relationship (Equation 3) is also advantageous over stress based
functions [9,15,32] which must be integrated to calculate strain energy within an analysis [28].
Thus, this constitutive formulation provides a simpler model to incorporate in finite element
analysesThe fully hyperviscoelastic model exhibited not only the robustness to match various
strain levels, but the accuracy to capture both the peak responses (average error of 3.29% for the
five peaks) and the relaxation shape (302erall error ané 0.999 total fit value). This novel
formulation is capable of combining a technically sound continuum mechanics based

hyperelastic SED function (Equation 3, which is polyconvex and positive definite) and a flexible
exponential viscoelastic definition (Equations 6 and 7). The optimized coefficients (Table 2-3

can be directly incorporated into analyses in which the fully nonlinear behavior of the tissue is of

43



importance, such as repeated loading simulations or analyses involving inhomogeneous

deformation.

As this hyperviscoelastic model was applied numerically, there remains the mathematical
possibility for a negative modulus based on the constitutive parameter values, which is clearly
not physically reasonable. This can be investigated by identifying the role of each parameter
within the constitutive model. Thegand = parameters describe the nonlinear behavior of the
strain energy density function, and as such can be related to a stiffness or modulus tddgm. The
terms behave similarly to the; terms from Equation 3, where they reduce a certain amount of
the modulus over time, corresponding to each time constant, which are largely described with the
&4 terms. The remaining) and fi; terms characterize the strain dependence ofkrand &4

terms, respectively, through an exponential function (Equations 7 and 8). We can see that
positive U, and fi4 values result in increases in relaxation with increases in stretch level, while
negative U, and fi4 values conversely result in decreases in relaxation with increases in stretch
level. Figure 2-5 highlights the tangent moduli values for this model as a function of relaxation
time and strain level, showing that the model does not implement a negative modulus, which

would not satisfy thermodynamic equilibrium.

A three term Prony series was selected for this work as it provides an excellent fit to
experimental data while minimizing the total number of parameters. While increasing the
number of Prony series terms increases the fitting potential, this is offset with computational
capabilities, as minimizing the total number of parameters improves the accuracy of the

optimization procedure [36]. However, some studies have employed higher order series
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[14,15,32,49] with good success. Conversely, lower order Prony series have also been utilized
effectively in studies of biological tissues [50,51]. However, the third order series allows for rate
parameters dispersed at decade values (roughly 0.1s, 1s, and 18Q<fsle 2-3), which are

able to capture the short term, intermediate, and long term relaxation behavior of the tissue. It is
uncertain exactly how increasing or decreasing the Prony series order would affect the model,

but the effectiveness of the utilized approach remains clear.

This highly nonlinear tangent modulus (Figure 2-5) further supports the well documented
nonlinear response of skeletal muscle in longitudinal tension [7,8,13}&2honlinear shape

also continues throughout relaxation, as highlighted by the various curves at increasing
relaxation times, suggesting that skeletal muscle tensile non-linearity exists both in the
instantaneous and equilibrium state. Figure 2-5 also provides further evidence of a short and
steep initial relaxation phase, as from zero relaxation (circle) to 0.1 seconds (aaterisk)
significant portion of the tangent modulus is reduced. This is then followed by a more drastic
decrease from 0.1 to 1 second (square), particularly at lower stretch values. Conversely, the
changes in material behavior occurring between 10 (x) and 1000 seconds (triangle, when the
material has reached equilibrium) represent a similar reduction in modulus, yet this occurs over a
much longer time period. Furthermore, the fact that this modulus remains positive throughout
complete relaxation and over a range of stretch values confirms the notion that the numerical

application of this model obeys natural physical conditions.

The model justification study (Figure 2-6 and Table 2-4) highlighted the improved fitting of the

fully nonlinear model ovethe fully linear and LINV approaches. Specifically, the models
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incorporating linear instantaneous behavior had inferior agreement, while the NILV (also known
as quasi-linear viscoelasticity or QLV) modedsable to produce a very strong overall fit to the
data as well (~4% error, Table 2-4). Discrepancies between quasilinear and fully nonlinear
modeling were observed at lower strains as the first step saw over 15% total error and over 20%
peak error (Figure 2-6). However, the use of a quasilinear formulation or fully nonlinear
formulation will likely depend on utilization as the ~1% difference between these two
approaches is functionally quite small. Current utilization of fully nonlinear viscoelasticity
requires a generous amount of computational powemey thus the use of QLV is likely

appropriate. As finite element analyses naturally develop more complex constitutive
formulations and discrete physiological components to improve clinical significance, the

inclusion of a fully nonlinear response may one day be a standard approach.

2.4.4 Study Limitations and Improvements

While this study effectively explores the strain-dependent changes in the temporal response of
muscle tissue, further studies will be needed to establish a full understanding of tissue behavior.
Specifically, single cycle load-relaxation studies over a range of strain levels and rates are

needed to completely assess the extent to which muscle tissue does not adhere to the principle of
superposition and to identify strain rate dependence. These data could also be used to validate the
proposed hyperviscoelastic model. It should also be noted that this work represents the response
of a single muscle (in this case the New Zealand White Rabbit tibialis anterior with a sample size
N=9) and that further experiments to identify nonlinear viscoelastic muscle behavior for different

muscles would greatly aid in the confirmation of the proposed model. It remains unclear how
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muscle curvature, pennation angle, possible changes in fiber type among other physiological

characteristics may affect the viscoelastic response.

As this work only proposed an isotropic model, future studies should be performed to identify
the viscoelastic behavior in the transverse direction as muscle is anisotropic [8,13]. However,
from a computational standpoint, a simplified isotropic model allows for good global accuracy
while minimizing computational cost [53]. Muscle studies in compression have identified
transverse anisotropy under carefully controlled conditions [17] in addition to differences
between the time dependent behavior as a function of loading orientation [14,15,18], yet it is
unclear how these properties translate, if at all, to tension. Development of data sets including
shear and volumetric loading conditions would provide a full picture of passive muscle behavior
in tension. These data could then be incorporated by expanding the SED function from Equation
3 and subsequently applying independent viscoelastic behavior for each term. This would
broaden the current implementation to include transverse isotropy in addition to shear and

volumetric behavior for use in a more complex three dimensional finite element model.

Additionally, the ability of the utilized hyperviscoelastic constitutive model to predict any strain
rate dependence remains unclear. The inclusion of any plastic strain, such as non-recoverable
changes in length undar vitro tensile conditions, could also be added to improve finite element
implementation. While there may be some concern over the use of seconliRiblzff stress

over Cauchy stress, all data analysis was performed in the reference configuration and a push-
forward operation could be performed to more closely reflect the local material behavior if

desired [39]. Finally, while the employed stretch level viscoelastic dependence (Equations 6 and
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7) proved very effective at matching experimental data, a different formulation could possibly

improve this model.

2.5 Conclusion

This study shows that the viscoelastic response of skeletal muscle has a statistically significant
dependence upon strain level as evaluated by comparison of the relaxation response of five
consecutive load-relaxation cycles. Furthermore, a novel fully nonlinear model including both an
explicit hyperelastic strain energy density function and a strain dependent viscoelastic
formulation provided an excellent fit to experimental data. However, the use of quasilinear
viscoelasticity (QLV) was also able to capture material behavior to a high degree. Thus, for most
models of skeletal muscle a QLV approach is appropriate although future work to reduce

computation time would make fully nonlinear modeling an attractive approach.
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CHAPTER 3:
HOW DOES TISSUE PREPARATION AFFECT SKELETAL MUSCLE TRANSVERSE

ISOTROPY?

3.1Introduction

The human body relies on skeletal muscle, supported by other orthopaedic tissues, for
locomotion and posture. Passive properties of muscle are governed by two components of the
tissue: the protein titin at the sarcomere level which gives muscle fibers passive stiffness [1,2],
and the collagen rich extracellular matrix which organizes muscle fibers in a hierarchical
structure and dominates passive stiffness at the tissue level [3,4]. In the case of skeletal muscle
these passive properties have a multifaceted purpose: allowing for the transmission of internal
force generated at muscle fibéogendons [5,6], storing energy during locomotion [7,8], and
maintaining proper resting length for maximum force generation [9]. Muscle fiber alignment
results in tissue transverse isotropy 18] as the material properties of the aligned fibers differ

from those of the organized extracellular matrix [3].

Finite element analyses of biological soft tissues provide important insight into tissue behavior
for clinical recommendations and observations. However, inaccurate constitutive models could
present erroneous data, thus hampering clinical relevance. Some modeling studies of passive
skeletal muscle assume the longitudinal direction is stiffer than the transverse directiof].[14

While this is supported by some experimental work [11], there is also data which identifies a

This chapter has been published as a Short Communication in the Journal of Biomechanics (49,
12, 2016). All content has been adapted with permission from Elsevier.
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stiffer transverse response as compared to the longitudinal direction [10,18]. These differences
may be the result of disparities in experimental protocol and anatomical or species variations,
although they are more likely the result of rigor mortis, which results in a stiffening of the tissue
[13,19]. As rigor mortis is a complex phenomenon related to the actin-myosin complex [20,21],
it most likely influences the longitudinal mechanics to a greater extent than in the transverse
direction. Thus, it is hypothesized that the large observed differences in passive transversely
isotropic skeletal muscle behavior is a function of non-fresh testing conditions and/or
experimental protocol. Data supporting this hypothesis would provide two important
recommendations for future studies of skeletal muscle: 1) all mechanical testing should be
conducted on fresh, never frozen tissue, and 2) computational models of passively stretched
muscle should reflect the true transverse isotropy in that the longitudinal direction is less stiff

than the transverse direction.

The goals of this work were thus to evaluate the effects of orientation and post mortem handling
on the material properties of skeletal mus8e&S HFLILFDOO\ ZH DLP WR DQVZHU W
does tissue preparation affect the transversely isotropic stiffness and time dependence of skeletal

PXVFOH"’

3.2Methods

Six Giant Flemish Rabbits were obtained with Colorado State University Institutional Animal
Care and Use Committee approval. Following euthanasia, whole tibialis anterior muscles were
isolated from each hind limb and stored in a refrigerator for either fresh testing (left or right limb

randomly) or to allow for the onset of rigor mortis (contralateral limb). As rigor mortis begins 6-
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8 hours post mortem [13,19] fresh muscles were tested within four hours to reduce these effects,
while the contralateral muscle was subject to non-fresh testing followingza-thesv cycle

(Figure 3-1A). Each tibialis anterior yielded two samples, one longitudinal, and one transverse
(Figure 3-1B. As the pennation angle of the New Zealand White Rabbit is very low (Lieber and
Blevins, 1989), the longitudinal direction was assumed to be parallel with the axis of force

transmission.

Figure 3-1: (A) Specimen groupings and testing timeline, showing the fresh testing group and the
group subject to non-fresh conditions and a freeze/thaw cycle. Each of these groups yielded
longitudinal and transverse samples for a total of four groups. (B) Dissection orientations show
that each muscle yielded two samples, one in the longitudinal direction and one in the transverse
direction.

Tensile tests were conducted on a servo hydraulic material test system (MTS, Eden Prairie, MN).
Cross sectional area and gauge length were measured optically with a 1.4 megapixel

monochrome camera and ImageJ software (National Institutes of Health, Bethesda, MD).

Graphite powder was used to track strain with digital image correlation (DIC) software (Matlab,
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Mathworks, Natick, MA) on a region of interest (ROI) (Figure 3-2A). Samples were obtained

from the muscle midbelly such that they were free of aponeurosis, tendon, and epimysium. A
custom fabricated drop cutter with high profile histology blades spaced 4mm apart was used to
slice samples into ~16 nfneross section (Table 3-1). To ensure no dimensional differences
occurred between longitudinal and transverse samples which could potentially influence sample
behavior, paired equivalence tests were performed. These tests evaluated whether or not the
mean cross sectional area or mean gauge length was superior for either longitudinal or transverse
samples compared to the other group (p<0.05). The results showed that superiority was not
established for either group (longitudinal nor transverse) for both cross sectional area and gauge

length (p>0.05 for all tests).

Table 3-1: Specimen dimensions (mean and standard deviation in parenthesis) for
longitudinal and transverse samples.

Sample Direction | Cross Sectional Area (mr) | Gauge Length (mm)
Longitudinal 17.25 (2.75) 18.14 (3.24)
Transverse 15.93 (1.71) 17.70 (1.51)

Tensile tests were conducted with a 9 N load cell (Futek, Irvine, CA). A pair of thin film grips

was utilized to clamp all specimens to reduce grip slippage (Figure 3-2A). Specimen width and
thickness were measured with image analysis at three locations along the length of each sample,
while gauge length was measured as the grip to grip distance following a 0.1 N pre-load (Figure
3-2A). Specimens were kept moist during testing with phosphate buffered saline (PBS) spray
[10,11]. All specimens underwent an initial ramp phase of 10% strain at 10% $dotioded

by 300 seconds of relaxation and finally a constant ramp pull at 1% skentidspecimen

failure (Figure 3-2B). Cauchy (true) stress and Euler strain were converted from force-
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displacement data and used to calculate tangent moduli. Data were smoothed with a third order
Savitsky-Golay filter to reduce noise [22]. The Cauchy (true) axial stress component associated
with loading direction () was calculated using Equation 1 [23], whé¥is first corresponding
Piola-Kirchoff (engineering) stress component aad Hare the deformed and initial specimen
lengths, respectively. The mechanical correlate to the Cauchy stress is Euler strain. The axial
component of the Euler strain associated with the loading dire€iandiven in Equation 2.

Tangent moduli () were calculated according to Equation 3.

B

eLz (1)
AlZds F—rf@?h )
"L (3)

Tangent moduli were calculated at the initial peak, end of the relaxation phase, and at 20%
stran, which is the higher end of the physiological range for the rabbit tibialis anterior [24,25].
Relaxation ratio was calculated as the fraction of stress relaxation over three separate time
periods following the initial ramp: 0-5 seconds, 5-50 seconds, and 50-300 seconds. The raw
relaxation data were fitted to a power law equation (Equation 1, wdisr€auchy stressis
relaxation time, and=and >are constants which characterize the relative stress level and rate of
relaxation, respectively) for identification of relaxation rate.

g L=pP (4)
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Figure 3-2: Specimen testing procedures. A: Experimental setup showing speckled sample with
gauge length (black arrow), three width measurement locations (white arrows), and digital image
correlation region of interest (DIC RQilight blue dotted box). B: Testing outline (not to scale)
highlighting initial ramp phase, relaxation phase, and final ramp phase to failure (strain of 0.3
given as an example), with representative stress shown as solid black line and strain in dotted
gray line.

Mean and standard deviations for all data were calculated, including raw stress-strain and stress-
time data as well as moduli, relaxation ratios, and powerdavms (Equation 1). A one-way
$129% ZDV SHUIRUPH G podt-WoK abalysis KpEO.g5) to identify differences in

moduli, relaxation ratios, and power lasparameter across all four groups.To identify the

ability of the power law equation (Equation 1) to fit the relaxation data, the normalized root

mean square error (NRMSE) was calculated for each specimen (Equation 5 0x¢ne total

number of data pointsTare the experimental data ¢ tldre the model data from Equation 1).

. §AY 518816
04/5 LT (5)
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3.3Results

All data passed the Anderson-Darling normality test (p>0.05), suggesting the data were normally
distributed. This supported the use of an ANOVA to identify statistical differences between
groups. Visual inspection of raw data and calculated moduli values show the peak modulus for
longitudinal fresh samples is lower than all other groups (p=0.044, p<0.0005, and p=0.014 for
transverse fresh, longitudinal rigor, and transverse rigor, respectively), while longitudinal rigor is
higher than both transverse groups (p=0.008, p=0.027 for transverse fresh and rigor,
respectively) (Figure 3-3A and 3Equilibrium moduli for longitudinal fresh was lower than all
other groups (p=0.006, p=0.004, and p=0.001 for transverse fresh, longitudinal rigor, and
transverse rigor, respectively), while values calculated at 20% strain during the constant rate
phase again showed the longitudinal fresh group was lower than all other groups (p=0.001,
p=0.004, p=0.015 for transverse fresh, longitudinal rigor, and transverse rigor, respectively)
(Figure 3-3). The longitudinal fresh samples showed a highly nonlinear shape compared to the

other groups (Figure 383.
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Figure 3-3. (A) Raw data results showing stress relaxation step stress-time data with standard
deviation. The loading phase and initial relaxation are highlighted for clarity on left with no
standard deviation. (B) Quasi-static testing stress-strain data with standard deviation. (C) Moduli
values with standard deviation for all four groups at the peak of the stress relaxation step, at
equilibrium of the stress relaxation step, and at 20% strain of the quasi-static testing phase (*
denotes statistically different from longitudinal fresh samples and # denotes different from
longitudinal non-fresh samples, p<0.05).

Longitudinal rigor samples showed faster initial relaxation rate visually, as characterized by the

power law >coefficient (p=0.017, p<0.0005, and p<0.0005 for transverse fresh, longitudinal
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rigor, and transverse rigor, respectively), and when comparing the initial relaxation phase (0-5
seconds, p=0.029, p<0.0005, and p<0.0005 for transverse fresh, longitudinal rigor, and
transverse rigor, respectively) (Figure 3-4). The power law equation was able to fit the relaxation
data very well, with a mean NRMSE value of 1.16E-2% and a standard deviation of 6.0E-3% for

all samples.

Figure 3-4. (A) Logarithmic plot of the mean relaxation behavior for the four experimental
groups. (B) Mean and standard deviation power faxalues for all four groups (# denotes
significantly different than longitudinal non-fresh samples, p<0.05). (C) Mean and standard
deviation relaxation ratio for all four groups between 0-5 seconds, 5-50 seconds, and 50-300
seconds (# denotes significantly different than longitudinal non-fresh samples, p<0.05).

3.4 Discussion
The increased tangent moduli values and increase in relaxation rate of longitudinal non-fresh

samples show that post mortem handling plays a key role in the alteration of muscle mechanical
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properties, which agrees well with previous experimental data on muscle properties as a function
of rigor mortis [19]. However, it remains unclear how the mechanical properties of skeletal

muscle are affected separately by rigor mortis and a freeze/thaw cycle. To the authors knowledge
this work represents the first investigation of both transverse isotropy and time dependence of
skeletal muscle as a function of post mortem handling. As rigor mortis is a complex biochemical
phenomenon [20,21], it remains unclear exactly which mechanisms are contributing to these
particular results. While this study employed a relatively small sample size (n=6), the statistical

significance and observable differences were quite clear despite the sample number.

While skeletal muscle tensile studies are common [10,11,15,22,26,27], separate investigations
have determined the tissue to be stiffer in the longitudinal direction [11] or the transverse

direction [10]. Our data for fresh samples agree well with Takaza et al for both transverse
isotropy (transverse stiffer than longitudinal) and in terms of general stress-strain shape
(longitudinal is nonlinear, transverse appears linear). Takaza et al show higher stress values at
similar strain levels when compared to our data, as they reported ~100 kPa versus ~50 kPa
reported here at 30% strain for longitudinal fresh samples and ~110 kPa versus ~25 kPa for
transverse samples at 15% strain. However, this may be due to variations in species, anatomy, or
experimental protocol, as stress values at the end of the relaxation phase from the data presented
here were very low (<4 kPa) and Takaza et al did not incorporate a relaxation phase. Data from
Morrow et al appears more linear in the longitudinal direction, which agrees fairly well with our
longitudinal rigor samples, but is again stiffer than our samples. Unfortunately there is poor
agreement between transverse samples, as Morrow et al found the transverse direction to be less

stiff and more extensible (~60 kPa at 25% strain here vs ~25 kPa at 100% strain).
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The observed differences between the data presented here and Morrow et al may be due to four
main disparities in experimental protocol. The first is the freeze/thaw timing post mortem, which
was done quickly by Morrow et al and after six hours of refrigeration as presented above.
Despite the best efforts of Morrow et al to minimize the effects of rigor mortis, the true extent of
post mortem stiffening to those samples remains unknown. The delayed freezing for our samples
was done to ensure the onset of rigor mortis affected muscle samples [13,19]. Secondly, Morrow
et al utilized whole muscle samples with the epimysium and aponeurosis removed, which may
have led to a smaller aspect ratio for transverse samples compared to the aspect ratio of our
samples at roughly 4:1 (Table 3-1). Additionally, our tests utilized a relaxation period during
which longitudinal samples decreased from a higher stress level than all other samples at a faster
rate, while Morrow et al performed a single ramp test. Finally, Morrow et al studied the extensor
digitorum longus, which has a higher pennation angle and a shorter fiber length than the tibialis
anterior [28], which may influence the apparent transverse isotropy of the tissue. To identify
possible causes for these discrepancies, further experimental work should be performed under
carefully controlled conditions. Specifically, these tests should identify transversely isotropic
modulus values of skeletal muscle under various freeze/thaw times post mortem and as a
function of different specimen aspect ratios. Also, performing these tests on a single tissue would

greatly reduce variability which may result from anatomical differences.

The data presented here can be utilized to improve constitutive modeling efforts of skeletal
muscle, as some studies in the past have assumed muscle is stiffer in the longitudinal direction
[14 A7]. Future studies should model muscle as stiffer in the transverse direction similar to other

works [2982].
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3.5Conclusions

The transversely isotropic mechanical properties of skeletal muscle were evaluated with a
specific focus on post mortem handling. While it remains unclear exactly how a non-fresh
conditions and a freeze/thaw cycle independently affect the tensile transverse isotropy of skeletal
muscle, to prevent any alterations in mechanical properties muscle tissue should be tested prior
to the onset of rigor mortis without a freeze/thaw cycle. These data should be utilized to improve
future modeling efforts for skeletal muscle with a specific focus on the anisotropic constitutive

formulation.
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CHAPTER 4:
A CASE FOR POROELASTICITY IN SKELETAL MUSCLE FINITE ELEMENT

ANALYSIS: EXPERIMENT AND MODELING

4.1 Introduction

In addition to muscle fibers and extracellular matrix, skeletal muscle consists of approximately
75% fluid [1]. Thus, it can be characterized as a biphasic material, consisting of both a solid and
a fluid phase. Other biphasic biological tissues such as cartilage [2] and meniscus [3] utilize fluid
content to distribute under loads compression. However, the biphasic properties of muscle,
specifically permeability, are not known. The role which permeability plays in skeletal muscle
mechanics, known as poroelasticity, is unclear [4]. In computational models of skeletal muscle,
time dependence is often neglected [5] or approximated using viscoelastic modeling [6,7]. The
goals of this work were to 1) characterize skeletal muscle permeability by direct experimental
measurement, and 2) identify how various permeability implementations affect skeletal muscle

models in compression.

4.2 Methods
Four New Zealand White Rabbits ~2.5 kg in weight, were euthanized with Colorado State
University Institutional Animal Care and Use Committee approval. One biceps femoris muscle

from each animal was harvested from the left or right hind limb. All procedures were completed

This chapter has been published as a Rapid Innovative Communication in Computer Methods in
Biomechanics and Biomedical Engineering (2016). All content has been adapted with permission
from Taylor & Francis.
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within 6 hours post mortem to reduce the effects of rigor mortis [5]. Cylindrical samples (4 mm
height and 8 mm diameter) were removed from the muscle mid-belly using a drop cutter and a
biopsy punch. As skeletal muscle exhibits transversely isotropic passive behavior [8,9], samples

were obtained in the longitudinal and the transverse directions.

The permeability of each sample was directly evaluated using a permeation test device similar to
previously published work [10]. In short, this device applied a known flow rate (0.5 mL/min)

with a syringe pump to phosphate buffered saline across a tissue sample while measuring the
pressure difference across the sample (Figur@)4-Additionally, since permeability is typically

a function of tissue strain [10], samples were compressed axially (12.5% and 25%) to replicate
transverse or longitudinal compression or compressed laterally (25% and 50%) to simulate
longitudinal stretch (Figure 4-1B). Pressure D), flow rate (3), specimen dimensions §{and

#), and strain ¥ were measured to calculate the permeability of the tissue [10] (Equation 1). A
paired t-test was utilized to compare permeability values between longitudinal and transverse
samples and a general linear model was utilized to determine if permeability varied with strain

level (p<0.05 for both analyses).
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Figure 4-1. A) Permeability testing apparatus, where fluid (blue) at a pressurize@ passdes
through the specimen (red) at a flow r&eacross an are# and along alength L .,:s E Y
B-D) Specimens were compressed axially to simulate B) transverse and C) longitudinal

compression or laterally to simulate D) longitudinal tension.

G g ®

A 3D finite element (FE) model representing midbelly muscle tissue was developed using FEBio
(febio.org with 270 hexahedron elements. This model simulated a 4x4x20 mm cuboid using two
planes of symmetry and had muscle fibers aligned parallel to the length of the cuboid. The
cuboid was compressed in the transverse direction under stress relaxation (20% strain at 10%
second followed by a 300 second relaxation) before compression to 50% strain at 1%°second

A poroelastic ellipsoidal fiber reinforced coupled (compressible) Mooney-Rivlin constitutive
model was implemented. Strain-dependent permeability was implemented as a function of the
volume ratio ,, the undeformed void rati® 4 (0.19 for skeletal muscle [1]), and material

propertiesG, / , and U(Equation 2) [10].

G,;LQ@%A +5 B0 F siC @)
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To study how various permeability assumptions affects model behavior, four separate

formulations were utilized in separate simulations: a solid analysis only as a basdiReQ B G~

constant, isotropic permeability for a simfieL SKDV LF P R G H,@nd3&dRsEPerAleXied W -

RI (TXDWLRQ WR H[SHULPHQWDO GDWD WR JHQHUDWH DQLYV
., DQG 3)(TaMle4-1). Fit | was a conservative strain dependent formulation while Fit Il

was a case of highly nonlinear strain dependence similar to other tissues [10]. Additionally, the
3&RQVWDQW" PRGHO zZDV FRPSDUHG DJDLQVW WZR PRGHOV L«
phase through a Prony series [7], one with both poroelasticity and viscoelasticity, and one with
viscoelasticity only. The mean Cauchy stress in the direction of compression was compared

between models.

Table 4-1. Parameter values for the three utilized permeability formulations.

ko (M*N-s) E-11 M (-) ()
Permeability Model
Long Trans Long | Trans | Long | Trans
Isotropic Constant 41 N/A N/A N/A N/A
Fit | 11 4.2 0.63 0.16 0.1 0.97
Fit Il 50 5 10 1 2 15
4.3 Results

The mean permeability value for all samples was 7.41%a6/N-s with a standard error of

2.2x10'" m*N-s. There was no statistical effect of either strain level (p=0.398) or orientation

(p=0.158) on skeletal muscle permeability (Figure 4BA-

70




Figure 4-2. Experimental permeability raw data (x standard error of the mean), Fit I, and Fit Il
curves for A) longitudinal samples and B) transverse samples. Cauchy stress outputs for the
various biphasic analyses for C) initial 20% compression ramp and relaxation and D) 45-50%
compression and for the viscoelastic comparisons for E) initial 20% compression ramp and
relaxation and F) 45-50% compression.
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Table 4-2. Mean Cauchy stress values for all analyses at compressive strains of 20% (peak

response) and 50%.

Mean Cauchy . . : Visco Visco-
Stress in kPa Solid | Constant| Fitl Fit Il Only Poro
20% Strain Peak -1.01 -1.52 -1.71 -1.66 -1.74 -2.32
50% Strain -5.66 -5.91 -5.96 -6.10 -6.95 -7.19

Utilizing a biphasic approach affected tissue behavior particularly under transient conditions
(Figure 4-2C-D and Table 4-2), while variations in strain dependence and anisotropy played less
of a role than poroelasticity itself. A combined visco-poroelastic model differed drastically from

all other analyses, including the viscoelastic only model (Figure 4-2E-F and Table 4-2

4.4 Discussion

This work providles WR WKH DXWKRUVY EHVW NQRZOHGJH WKH ILUVW
muscle permeability. The observed values from this work show an increase of 4-5 orders of
magnitude over other biological tissues such as cartilage or ligament [2,10]. This is not

surprising since low muscle permeability would greatly resist muscle deformation, thus reducing

contractile capabilities.

Model calculated stresses had good agreement with previously published experimental work
under compression [5,8] which gives greater confidence in these results. Statistical results
showed no dependence of permeability on strain level or orientation, while modeling results
indicated strain and orientation dependence played less of a role than even a simple poroelastic
model versus a solid model. Additionally, the viscoelastic comparison data suggest

viscoelasticity alone may not always be appropriate for skeletal muscle modeling in
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compression. Thus, a simple biphasic analysis (isotropic, constant permeability) combined with
viscoelasticity could be appropriately utilized for skeletal muscle models involving highly

transient compressive conditions such as impact.
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CHAPTER 5:
A VALIDATED MODEL OF PASSIVE SKELETAL MUSCLE TO PREDICT FORCE

AND INTRAMUSCULAR PRESSURE

5.1 Introduction

Skeletal muscle, which composes roughly one third of the human body by mass [1], provides
locomotion and maintains posture. The well-known force-length relationship of skeletal muscle
dictatesin vivo muscle function under a wide range of conditions [2]. Maintaining appropriate
muscle resting length is a concern for surgeries involving detachment and reattachment such as a
tendon transfer procedure [3,4]. Understanding the passive behavior of skeletalisnuscle
essential to properly employing these surgical procedures. Additionally, the passive properties of
muscle play a key role in force transmission throughout the tissue [5]. Intramuscular pressure
(IMP) has shown good correlation to muscle force under both active and passive cof@l#ions

8] and can be directly measured with a pressure microsensor [9]. This link between IMP and
muscle force could provide a direct and minimally invasive clinical measurement of individual
muscle force, which is currently not possible. Thus, the development of a strong relationship

between passive muscle force and IMP is of significant clinical concern.

Muscle, like other biological soft tissues, is a fibrous material saturated with a high fluid content

(roughly 80% fluid by volume [10]) that exhibits both tensile and compressive highly nonlinear

This chapter has been published as an Original Paper in Biomechanics and Modeling in
Mechanobiology (2016). All content has been adapted with permission from S$pringe
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[11 46], transversely isotropic [11,27], and time dependent [12,16#£8] behavior. While

these mechanical properties have been implemented using finite element analysis amongst a

wide range of studies [280] WKH UROH RI IOXLG FRQWHQW LV RIWHQ LJ(
in mechanical behavior [31]. Furthermore, as intramuscular pressure is typically identified as a
measurement of fluid pressure [83], including interstitial fluid contributions in skeléta

muscle finite element models could provide a valuable link between muscle force and IMP.

Many of these works have chosen the New Zealand White Rabbit tibialis anterior for study based

on the ease of access and low pennation angle [36].

Previous finite element analysis of skeletal muscle force and IMP was successfully utilized using
a simplified geometry [37]. However, this approach did not incorporate any time dependency or
fluid content and failed to capture whole muscle behavior. These omissions should be
reconsidered as they are likely more important than previously thought during tendon transfer
surgeries, as whole muscle is passively elongated and held at a constant length, where relaxation
typically occurs. Thus, there is a need to develop a muscle finite element model which accurately
incorporates whole tissue behavior and time dependency. This work outlines the development
and validation of a whole muscle continuum mectemodel which will for the first time use

the roles of fluid content and time dependence to accurately predict both intramuscular pressure

(IMP) and muscle force under passive stretch conditions.
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5.2Methods

5.2.1 In Situ Testing
The first experimental data set utilized in this study was conducted at the University of

California San Diego with Institutional Animal Care and Use Committee approval. In short, the
distal tendon of one tibialis anterior (TA) of eight (n=8) New Zealand White rabbits (average
rabbit mass and standard error of mean of 3.6 + 0.04 kg) was transected and attached to a load
cell and servomotor similar to previous studies (Figuré&p{®,8]. Animals were anesthetized

during testing and euthanized post completion. Each muscle was passively stretched across a
range of physiological lengths in 0.05 muscle fiber strain increments at <0f@fosved by 180
seconds of relaxation. Eleven strain increments which recorded greater than zero reaction force
were used for this modeling study, where 0.2 strain was observed as the length at which
maximum isometric force was generated. Intramuscular pressure was recorded using a fiber optic
pressure transducer [38] (Model FOP-M260-20, Fiso Technologies Inc, Ville de Québec,

Canada) within the muscle midbelly (Figure A}1Each transducer was inserted through a 22-
gauge catheter and anchdin the tissue with barbs built into a nitinol housing. Muscle stress

é

. where (is force measured at the load cell and PCSA is the

was calculated a$ LE

physiological cross-sectional area calculated from Equation 1, wdisrmuscle volume
calculated based on measured muscle mass and desgsgyennation angle of 2.5° [36]4 is
measured muscle length with calipers, apdis muscle to fiber length ratio [36].

I Ua mkggo

29%5 #-5 o (1)
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Figure 5-1. Muscle specimens for experimental protocols and the corresponding finite element
models. A)in situ experimental testing with microsensor insertion (arrow). B) Finite element
model forin situcomparison, with muscle tissue (red) and aponeurosis (gray). C) Stress
relaxationin vitro testing, with digital image correlation graphite powder coating and region of
interest (dotted box) as well as specimen gauge length (black arrow). D) Finite element model
for stress relaxation comparison with muscle tissue (red) and aponeurosis (gray).

5.2.2 Stress Relaxation Testing

Four (n=4) New Zealand White rabbits were euthanized with Colorado State University
Institutional Animal Care and Use Committee apptoVhe tibialis anterior muscles from both
hind limbs were dissected out and stored in phosphate buffered saline soaked gauze and
refrigerated for tensile stress relaxation testing (total of 8 muscles). All testing was completed
within four hours to reduce the effects of rigor mortis [17,39]. Each whole muscle was subject to
tensile stress relaxation in a hydraulic material testing system (MTS Bionix 370, Eden Prairie,
MN) with a 2 Ib load cell (Futek LSB200, Irvine, CA) by clamping the proximal and distal ends
of the muscle in thin film grips, leaving a specimen with no distal aponeurosis in the gauge
length and only a portion of the proximal aponeurosis in the gauge length (FigGyePxtr to

testing, optical measurements of muscle width and depth were performed using a 1.4 MP

monochrome camera (Point Grey Research, Inc., BC, Canada). Image analysis software
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(ImageJd, NIH, Bethesda, MD) was used to calculate cross sectional area as is common in tensile
testing studies of skeletal muscle [23,15,14,40] based on the assumption of an elliptical cross-
sectional shape [18]. All muscles were pre-loaded with a steady-state force of 0.01 N for each

test, which is below 0.05% of the failure stress of muscle in the longitudinal direction [14].

Similar to width and depth, the specimen gauge length was measured optically for displacement
and rate calculations and each muscle was coated with graphite powder for digital image
correlation analysis of tensile strain [18] (Figure 5-1C). One muscle from each animal (either the
right or left) was subject to two consecutive ramp-relax steps of 0.05 strain at-Ovifiile the
contralateral muscle was subject to two separate single ramp-relax steps of 0.1 strain at strain
rates of 0.2°$ or 0.005 ¥ with fifteen minutes between tests (Figure 5-2). The fast rate falls

within the range of physiological rates observed during some phases of gait, while the slow rate
accounts for possible prolonged stretching eithetvo or during surgical intervention [41]. All

testing was conducted in a 10% phosphate buffered saline bath in room temperature conditions to
ensure hydration of the tissue. The engineering stress was calculﬁedfaahere( is

reaction force andtis measured cross sectional area.
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Figure 5-2. Experimental protocol schematics for stress relaxation testing. A) One muscle from
each rabbit was subject to two consecutive stress relaxation steps of 0.05 strain at® @ids
C) The contralateral muscle was subject to two separate stress relaxation steps of 0.1 strain at 0.2
st and 0.005$ with fifteen minutes between each test. The order of tests in B and C was
randomized.
5.2.3 Constitutive Model
5.2.3.1 Skeletal Muscle
To properly characterize the complex passive behavior of skeletal muscle, a hyper-poro-
viscoelastic constitutive model was implemented. The total stress within this material can be
decoupled into contributions from the solid and fluid phase as follows (Equation 2), Wisere
the total Cauchy stress tensd®is the Cauchy stress tensor of the solid phase drigythe
scalar fluid pressure, ands the identity tensor 7KLV I1OXLG SUHVVXUH LV GULYHQ
(Equation 3, where;,is the Grad operator) through a porous medium, whésdluid flow rae
vector, ‘ is material permeability tensor, aréds the fluid viscosity.

ILI®F Lu (2)

_LFelL A3)
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The stress within a strained elastic solid can be characterized using hyperelasticity, which
incorporates a strain energy density funct@Equation 4, where is the volume ratioy is the
deformation gradient tensor between the reference and spatial configurationsLaer is the
right Cauchy Green deformation tensor). For this study, a coupled (compressible) transversely
isotropic hyperelastic strain energy density (SED) formulation was utilized (Equation 5, &here
is the total strain energy density of the solif! %4 the isotropic component, argi Y 0G4 the
anisotropic component modeled with reinforcing fibers). Heend 4 are the first and second
invariants of oand + are pseudo invariants defined as the square of the stietclz ® o ® z
any directionz in the reference configuration (drin the spatial configuration) within the
material.
‘IaeLt,?E’r!!—;ri 4)

2: 448, a4 alr2V2&4a.4 EWNOZag 4 (5)
Unlike other fibrous materials such as tendon [42], ligament [43], meniscus [44], and meniscal
attachments [45], muscle is less stiff in the longitudinal direction than in the transverse plane
(Mohammadkhah et al., 2016; Takaza et al., 2012; Wheatley et al., 281§pjcal
transversely isotropic model, which consists of an isotropic matrix and a single set of reinforcing
fibers [4649], would not be appropriate for skeletal muscle as it would have a higher stiffness in
the longitudinal direction. Thus, a formulation was utilized which included an isotropic ground
matrix reinforced with fibes oriented in an ellipsoidal distribution, which allows for modulation
of the fiber stiffness based on direction, resulting in transverse isotropy of the tissue [50,51].
Specifically, an isotropic Mooney-Rivlin formulation was used for the ground matrix (Equation
6, where 2, %, and G are parameters which can be interpreted loosely as the isotropic

tensile/compressive modulus, isotropic shear modulus, and isotropic bulk modulus of skeletal
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muscle). To allow for fluid movement throughout the tissue, Equation 6 is a coupled
formulation, which models the volumetric response of this isotropic matrix as compressible.
While nearly-incompressible material models are common amongst skeletal muscle studies
[25,27,46,52,53], they are not appropriate when utilizing a poroelastic approach as an
incompressible assumption results in zero fluid flow after a deformation.

20R84c6,L 2% 4 F UE 3% 14 F UF 1% E 13824 B2 12436 (6)
The strain energy contribution from the ellipsoidal fibers includes two parametric funetidns
and U:” ;which are implemented to form a continuous three-dimensional power function
(Equation 7, wherese” ;and U:” ; are fiber material constants). With the assignmernizof the
muscle fiber direction andg and J; in the transverse plane, this decomposes the formulation
such that the constantg L &g s8nd U L 5 s gharacterize the tensile behavior in the
longitudinal direction, whilesg L a2 L agsoand U L U L U 50 £haracterize the tensile
behavior in the transverse plane. Bati ;and U:” ; are described by the same function
(Equation 8, whereis the angle between the first and second primary directions of the local
coordinate systemi, is the angle between the third primary direction and its perpendicular plane,
and all aan be replaced withJfor the equation to describe:” ;), which results in a continuous
transition of elastic behavior between three orthogonal unit vectors (in this case the fiber
direction unit vector and two perpendicular unit vectors in the transverse plane).

2UU00g.+ | &4 Fs (7)

&L @m'qggi qu'l ggi Earﬁq A (8)
N X /

The final component of the utilized constitutive model was viscoelasticity of the solid phase.

Skeletal muscle exhibits a time dependent passive response (Van Loocke et al., 2008; Wheatley
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et al., 2016a, 2016b), and while fluid content in a biphasic model can account for much of the
time dependence under compressive conditions5l tensile time dependence is generally the
result of inherent viscoelasticity of collagen [57]. This time dependent response was applied
using a relaxation function : P (Equation 9, whereHs time andPis an integration variable).

This relaxation function was defined through a Prony series shown in Equation 10,0nkere

the number of terms in the serigg;are the viscoelastic relaxation parameters, gjade time

constants.
I:RLIS, ) PFBl@P ©)
~ I?—Bp
):P; L s BfggA ¢ (10)

5.2.3.2 Aponeurosis and Tendon

Similar to the solid phase of muscle, the aponeurosis and tendon elements were modeled using a
transversely isotropic strain energy density function and viscoelastic Prony series [58158].
longitudinal direction of aponeurosis and tendon is stiffer than the transverse [42], an uncoupled
transversely isotropic Mooney-Rivlin strain energy density function was implemented (Equation
11, where+&nd +&re invariants from the deviatoric right Cauchy Green deformation tensor,

and ?50, ?60, and Gare similar parameters from Equation 6 but for aponeurosis and tendon).
The fiber contribution in this model utilized the deviatoric stre#@md the stress can be

described by Equation 12, wheﬁkﬁoand ?Sodescribe the nonlinear tensile stiffness of these

fibers in the toe region?gois the modulus once fibers have exited the toe reg?:d?maintains
continuity between the linear and toe region, &gds the stretch at the end of the toe region.

This decoupling of the invariants and fiber stretch from the volumetric response allows the

aponeurosis and tendon to be easitydleled as nearly incompressible [48].
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5.2.4 Finite Element Model Development

An isolated New Zealand White Rabbit tibialis anterior muscle was scanned using micro

FRPSXWHG WRPRJUDSK\ 6FDQFR &7 6FDQFR OHGLFDO $* ¢
P YR[HO VLIH 7KH UHVXOWLQJ LPDJHV ZHUWarePSRUWHG LQ

(3DSlicer,www.slicer.org to generate a three dimensional muscle surface. This surface was

meshed with manual hexahedral meshing software (TrueGrid, XYZ Scientific Applications, Inc.,
Pleasant Hill, CA) to create a tibialis anterior muscle mesh. The physiological area of
aponeurosis tissue was visually measured and applied to the mesh in the form of an additional
layer of three dimensional hexahedral elements (thickness = 0.2 mm to approximate the behavior
of shell elements) which share nodes with the muscle geometry. The elements on the proximal
and distal faces were identified as tendon and were considered to have the same material
properties as the aponeurosis elements. The final three-dimensional mesh thus included two
materials (muscle and aponeurosis/tendon) for the isolated rabbit tibialis anterior (Figure 5-1B)
and was implemented in the nonlinear finite element analysis software FEBio [60]. For all
analyses, the nodes of the proximal face were pinned (displacement in x=y=z=0), the distal face
nodes were displaced in the z-direction (along the length of the tissue from proximal to distal),

and the tissue boundary was modeled as impermeable.
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A mesh convergence study was completed on the muscle model in the form of five meshes, each
with increasing mesh density with the above constitutive model. Each mesh was displaced to 0.4
engineering strain along the muscle length at a constant rate of 0J0Tsedotal reaction force

at the distal nodes, mean fluid pressure for the midbelly elements, and the computation time were
evaluated to determine the appropriate mesh to be utilized. Specifically, these values for each of
the first four meshes were compared to the densest mesh at four points: 0.1, 0.2, 0.3, and 0.4
strain and the average percent difference was calculated. The third mesh from the convergence
study was selected as it demonstrated less than 0.15% difference from the densest mesh while
maintaining a low computation time relative to the other meshes (Tal)le 5-1

Table 5-1. Mesh convergence for five various mesh densities. Each mesh was compared against
the densest mesh. Mesh 3 (bold) had very low differences (<0.15%) in both total reaction force

and fluid pressure from mesh 5, while considerably reducing computation time. Mesh 3 has a
mean element size of 0.59 mm

Mesh | Elements Cqmputaﬁon C_omputati_on Reactior} Force| Fluid Pressure
Time (min) | Time % Diff % Diff % Diff
1 572 1.6 97% 1.85% 0.60%
2 1596 8.6 83% 1.06% 0.46%
3 5408 12.4 76% 0.15% 0.13%
4 19152 16.9 67% -0.02% 0.08%
5 46400 50.5 - - -

To simulate experimental conditions, the distal end of the model was displaced over a short ramp
phase (1 second in this case) to generate 0.05 fiber strain increments and allowed to relax over
180 seconds. This was completed a total of eleven times for a total of 0.55 maximum fiber strain.
The reaction force at each of the distal nodes (142 in total) was summed to generate a total
reaction force for the entire muscle. This force was then used to calculate the muscle fiber stress

for in situexperimental comparison. Passive muscle stress was calculated by dividing reaction
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force by the PCSA (Equation 1), which was calculated based on the volume of the8nodel

(3363 mnimeasured computationally), the length of the mage(56.1 mm measured
computationally), and the pennation angég(2.5°) and fiber length to muscle length ratig4

(0.67) from literature similar to the experimental protocol [36]. Intramuscular pressure was
interpreted as the mean fluid pressure for six midbelly elements, which were located around the

center of the mesh similar to pressure microsensor location in the experimental protocol.

For simulation of stress relaxation testing, the proximal and distal ends of the model were
removed to simulate how the experimental setup gripped the muscle (~40 mm gauge length,
Figure 5-I), leaving 3522 hexahedral elements (Figure 5-1D). Stress relaxation conditions were
applied by pinning the proximal end of the tissue (x=y=z=0 displacement) and after applying a
pre-load of 0.01 N identical to the experiment, displacing the distal end according to the

measured digital image correlation strain of each specimen. This resulted in multiple stress
relaxation outputs for each loading protocol, with slight variability in applied strain as a result of
the measured experimental strain. The cross section of the muscle was measured using the same
procedure as the experimental protocol and the total reaction force on the distal face was used to

calculate the engineering stress in the same manner as the experiment.

5.2.5 Optimization and Validation Procedures

The first step in model implementation was to determine material parameters (Table 5-2) which
were not optimized. These included tRg 7%, and Ghyperelastic parameters for both muscle and
aponeurosis (Equations 6 and 11), the viscoelastic parameters for both muscle and aponeurosis

(Equation 10), and the fiber parameters for aponeurosis (Equation 12). The viscdgjastic

86



parameters for skeletal muscle were determined by fitting the relaxation curve of specimens from
the single fast ramp stress relaxation test (Figure 5-2B), using decade time constant values of
igL rasassas rrseconds (Troyer et al., 2012; Wheatley et al., 2016a, 2016d). The hydraulic
permeability of muscle was assumed to be a constant value of 741xiN-s, based on

previous experimental and modeling research suggesting the assumption of a constant, isotropic
permeability is appropriate for skeletal muscle (Wheatley et al., 2016c). As skeletal muscle is
stiffer in the transverse direction (Mohammadkhah et al., 2016; Takaza et al., 2012; Wheatley et
al., 2016a), the transverse stiffness was fixed relative to the longitudinal stiffness as follows:
®Bs0ake ST U & s (Wheatley et al., 2016a). Finally, as the transverse tensile behavior of

skeletal muscle exhibits nearly linear behavior (Mohammadkhah et al., 2016; Takaza et al.,
2012; Wheatley et al., 2016b), thé 5 5 parameter was fixed df 3 6 ske U The muscle?

parameter was determined based on the low modulus of muscle in compression [%/], the
parameter was utilized from previously published literature [27], andfa@ameter was chosen

to maintain compressibility of the solid matrix in a poroelastic material [49]. With the exception

of & [27], dl aponeurosis parameters were implemented to ensure model behavior was in
agreement with experimental studies from literature [586B Finally, it is important to note

that ? from Equation 12 is calculated based on the other parameters to satisfy continuity [27].
Table 5-2. Constitutive material parameters for skeletal muscle and aponeurosis which were

utilized within the finite element model, excluding the reinforcing fibers from skeletal muscle.
These parameters were fixed during the optimization process.

%0 % ‘ l. e % Y0 % | A
(kPa)| (kPa)| (kPa)| (seconds) () (kPa)| (-) | (kPa)| (-)

0.1, 1, 1.3, 0.48,
Muscle 0.05| 0.5 5 10, 100 0.29, 0.17 - - - .

0.33,47.5,| 0.20, 0.13,

2500 0.19 50 | 40 | 1E5 | 1.08

Aponeurosis| 1E4 | 500 | 5E5
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The whole muscle finite element model was fit to experimentsitu stress data using the

nonlinear least squares algoritisgnonlinin Matlab (The Mathworks, Inc., Natick, MA). This

solver was utilized as it allows bounds to be applied to constitutive parameters while fitting
nonlinear data. Model stress was calculated as reaction force at the distal face divided by PCSA
in the same manner as the experiment. The residual between muscle fiber stress from the model
and experimental data at the eleven strain increments (0.05-0.55) was optimized per Equation 13,
where 52, are the experimental stress values &id are the model stress values at tHeime

point.

~ iPoj@ . 6
NAOE@Q@%}@E%OC (13)

This method of fitting only muscle stress directly allowed for simple validation of intramuscular
pressure data. Similar to stress, intramuscular pressure at each strain increment (0.05-0.55) was
compared against model midbelly fluid pressure. Specifically, the fits of stress and pressure were

evaluated using theoodnessOfFifunction in Matlab (Equation 14, Whellé?’uand V3 o

correspond to the experimental stress/pressure and model stress/pressure, respectively). Here a
perfect fit yields a value of one, where experiment and model data are identical, and the worst
possible fit yields a value of negative infinity. For validation of muscle stress, the model was
compared against experimental stress relaxation data using Equation 13. The mean experimental
stress relaxation curves and mean model stress relaxation curves were compared with a single fit

using Equation 14.

. ‘DA’_)‘Q’A 6
BEP L SAF@W h (14)
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5.3 Results

The optimization procedure, which fit model stresmtsitu experimental stress, was highly
successful both through visual inspection (Figure 5-3A), and through statistical analysis (NMSE
fit value of 0.993). Similarly, the validation of model fluid pressurm tsitu experimental
intramuscular pressure showed a very good fit both visually (Figure 5-3B) and statistically
(NMSE fit value of 0.955). Final optimized parameters (Table 5-3) show the well-observed
nonlinear passive tensile behavior of muscle in the longitudinal direction (Takaza et al., 2012;

Wheatley et al., 2016a; Wheatley et al., 2016b).

Figure 5-3. A) Model fit tan situ experimental stress (standard error bars) data using nonlinear
optimization. The inset image shows a highlight of the same data at lower strain levels. The
NMSE fit value for these data is 0.993. B) Model validatioimtsitu experimental

intramuscular pressure data with similar inset image of lower strain levels. The NMSE fit value
for these data is 0.955.
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Table 5-3. Muscle ellipsoidal reinforcing fiber parameter values. The longitudinal parameters
were optimized using the nonlinear algorithm (denoted with *), while the transverse parameters
were fixed as followsags o abe STU @gad8nd U soalke U

Ellipsoidal Fibers | E.». (kPa) | E-;-4kPa) | Ya.r. (-) | Ya-4-4)
Muscle 3.299* 32.99 7.34* 3

The measured digital image correlation strain values frormthigro stress relaxation tests were
0.102 = 0.30 (mean + standard error of the mean). All samples showed the typical stress
relaxation behavior previously observed for skeletal muscle under tensile conditions (Wheatley
et al., 2016a). Validation of muscle stress for the three stress relaxation curves was also
successful, as visual inspection shows a high level of overlap of model and experimental
standard error (Figure 5-4). The NMSE fit value of 0.860 for these three curves further supports
these findings. Note that the variability in model output shown with standard error bars is the
result of matching finite element model boundary conditions to variation in experimental

specimen strain as tracked with digital image correlation.
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Figure 5-4. Model validation fan vitro experimental stress relaxation data for A) two step

stress relaxation, B) single slow step stress relaxation, and C) single fast step stress relaxation
with initial ramp and relaxation highlighted on right for clarity. The NMSE fit value for this
validation is 0.860 with standard error bars shown.

5.4 Discussion

7R WKH EHVW RI WKH DXWKRUVY NQRZOHGJH WKLV-ZRUN SUH
poro-viscoelastic approach to model skeletal muscle. While previous studies have employed
hyperelasticy [17,24,27,37,46,52,6&8] or hyper-viscoelasticity (Gras et al., 2013; Khodaei et

al., 2013; Lu et al., 2010; Van Loocke et al., 2009, 2008, Wheatley et al., 2016a, 2016d) to

model skeletal muscle under a wide range of conditions, poroelasticity is not typically
incorporated. These models utilize viscoelasticity alone to describe the time dependent relaxation

of the tissue. However, poro-viscoelastic theory has been applied in studies of other tissues such

as meniscus [49], bone [71], and cartilage [57,72]. Furthermore, evidence suggests fluid content
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in skeletal muscle plays a role in the time dependent behavior of the tissue [31]. The
permeability value used in this study was determined experimentally through direct
measurement, with subsequent finite element analysis suggesting anisotropy and strain
dependence playing a minor role in passive muscle mechanics (Wheatley et al., 2016c). While
the contribution of fluid pressure to relaxation in tension is most likely minimal [57], we chose to
implement it for two reasons: 1) poroelastic theory allows for the interpretation of fluid pressure
as intramuscular pressure, and 2) this formulation could be utilizedmvam model of

skeletal muscle, which may be subject to compressive conditions where fluid content plays a key

role in biological tissue behavior [57,73,74].

The utilized optimization approach required the varying of only two parameters out of a total of
nineteen used: the stiffness and nonlinearity of the longitudinal reinforcing fibers (Equation 7).
This greatly simplified the approach by eliminating parameter optimization which could result in

a non-unique set of final parameters [49]. Additionally, this makes translation from rabbit to
human muscle more streamlined, as it would require minimum changes to only these parameters,
not the whole constitutive model. Future modeling analysis should be completed to evaluate the
accuracy of the parameters utilized in this study in predicting human muscle mechanics and how

this model behaves under compressive conditions.

The model presented here also provides the only whole muscle analysis to predict both passive
muscle stress and intramuscular pressure. Previous work correctly identified muscle stress and
intramuscular pressure of muscle in an idealized geometry [37]. While our work utilizes fluid

pressure as an interpretation of intramuscular pressure, Jenkyn et al used solid pressure, which is
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calculated from the Cauchy stress tensor of the solid constituent. While it remains unclear

exactly what the physiological mechanism for intramuscular pressure is, it is clear the sensors
measure fluid pressure and have been designed to reduce contact between the sensor diaphragm
and any solid constituents within the tissue [38]. Thus, it is unlikely the utilized sensors are
capable of accurately measuring solid pressure. Additionally, the model presented here
incorporates time dependency of the tissue which Jenkyn et al did not model. Stress relaxation or
creep is an important physiological mechanism in soft tissue behavior and could greatly affect

the identification of muscle resting length during procedures such as tendon transfer surgery.

The constitutive model implemented for aponeurosis from this study is based on the anisotropic
behavior observed experimentally [64] and is consistent with previous finite element approaches
[52,53]. Specifically, this formulation provides an isotropic nearly-incompressible ground matrix
with a single set of reinforcing fibers which support tension only. With the exceptian ttie

specific parameters were modified from previously utilized values for tendon and aponeurosis
[27] to ensure agreement with experimental data. Previously published works suggest
aponeurosis strain values of ~0.08 at maximum contraction [ZBB3wvhich is similar to the
maximum stress from this study [6]. Thus, the observed ~0.08 maximum Lagrange strain found

in this work (Figure 5-5), suggests the constitutive model utilized here was accurate.
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Figure 5-5. Aponeurosis Lagrange strain in the direction of stretch at (denoted with black arrow).
The maximum observed value of roughly 0.08 corresponds well to experimental studies of
aponeurosis strain[29,685].

One potential limitation of this work was the difficulty of developing of a constitutive model in
which the transverse direction is stiffer than the longitudinal direction in tension, which is
consistent with previously published literature (Mohammadkhah et al., 2016; Takaza et al., 2012;
Wheatley et al., 2016b). Further complicating the scenario is that the longitudinal direction
exhibits a high degree of tensile nonlinearity, while the transverse direction alternativaly has
more linear tensile response (Takaza et al., 2012; Wheatley et al., 2016b). Thus typical
orthotropic models such as a Fung Orthotropic materiai[7por an orthotropic linear elastic
material [78] would not accurately characterize the tissue transverse isotropy, as they do not
account for variations in spatial linearity. In this scenatétransversely isotropic material

where the plane of isotropy is stiffer and more linear than the first primary diretdion
implementation of true transverse isotropy would require a unique set of invariants [79].
6SHFLILFDOO\ WKHUH ZRXOG EH QR Idbav/&3trheRiBdctional QYDULD Q\
dependence. As this type of a response is not common in biological tissues, these constitutive

models are typically not common in finite element analysis. Thus, to closely simulate muscle
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transverse isotropy, an isotropic coupled Mooney-Rivlin strain energy density (SED) function
was utilized with three-dimensional ellipsoidal reinforcing fibers. This formulation allowed for
the muscle fiber direction to exhibit a high level of tensile nonlinearity, while keeping the
transverse direction relatively linear and with a higher stiffness. The drawback from this method
is the isotropic tensile/compressive response of the SED equ&itsarG Equation 6) was

simply given a low parameter value of 0.05 kPa.

While the validation method from this work shows excellent agreement to experimental data
under uniaxial tension, this represents only one loading condition. The transversely isotropic
optimized muscle constitutive model can thus be compared against previously published
experimental data on skeletal muscle under tensile conditions for further validation. In short, an
idealized geometry was implemented into two finite element models to determine the model
Cauchy stress in the direction of deformation under quasi-static (strain rate of 305% s
longitudinal and transverse tension. This simulated tensile testing of excised samples similar to
experimental studies. When comparing against the data summarized by Mohammadkhah et al.
2016, there is good agreement for both orientations, though our model predicts a larger toe
region than observed experimentally. Specifically, our model predicts 100 kPa of Cauchy stress
at approximately 0.41 strain compared to the observed values of roughly 0.3-0.4 strain under
longitudinal tension [14,46,80]. For transverse tension, our predicted strain level at 50 kPa is
roughly 0.26 strain compared against experimental values of roughly 0.07-0.2 [14,40,80]. These
small differences could be the result of differences in testing protocol versus simulation or

anatomical and species variations.
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One important distinction to make is the definition of zero strain from this work compared to the
in situdata. In some cases, muscle resting length was identified by locating the length at which
isometric force was greatest. For this study, which focused on passive stretch only, zero strain
was identified by determining the point at which passive tension was recruited. This resulted in a
difference of 0.2 strain between what was identified here as zero strain (passive tension was first
measured) and as optimal length (maximum isometric force). This toe region of 0.2 strain
showed relatively low stress values (<1 kPa), yet increased in nonlinear fashion with strain and

as such was identified as an important region to accurately model.

Future work will incorporate muscle activation, as active muscle force is also correlated with
intramuscular pressure (IMB§ 8]. Additionally, in vivogeometry, including contact between

muscle and surrounding tissue should be studied. These additions would significantly strengthen
the physiological relevance of this model by expanding to clinical conditions where active and
passive muscle force could be measured. As there exists no current clinical technique to measure
muscle forcen vivo, the use of a pressure microsensor to evaluate IMP and thus estimate muscle
force could provide an impactful and novel clinical tool. A validated finite element model which
predicts both muscle force and IMP could provide important insight into the force-IMP

relationshipn vivo.

5.5Conclusions
This work presented a novel finite element model of skeletal muscle, which was the first to
implement fluid behavior through poroelastic theory and the first whole muscle model to

accurately predict intramuscular pressure (IMP). It was independently validated against both
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IMP and passive muscle force, exhibited aponeurosis behavior consistent with physiological
observations from literature, and used a novel constitutive approach to accurately characterize
the tensile transverse isotropy of the tissue. This model could be utilized to guide surgeries such
as a tendon transfer procedure, where skeletal muscle is passively stretched to a new tendon
insertion location. Future work should include muscle activation ama\amo environment to

increase clinical relevance.
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CHAPTER 6:
MODELING SKELETAL MUSCLE STRESS AND INTRAMUSCULAR PRESSURE: A

WHOLE MUSCLE ACTIVE-PASSIVE APPROACH

6.1 Introduction

Healthy skeletal muscle provides stabilization and locomotion for the human body. The robust
contractile function and complex mechanical behavior are driven by the active and passive
properties and structure of skeletal muscle [1,2]. Skeletal muscle structure facilitates force
transmission from contractile muscle fibers to the skeletal system [3]. Thus, understanding the
physiological role of skeletal muscle requires studying muscle function as both a contractile

tissue and a passive structure.

In the case of skeletal muscle, a validated finite element model could provide the necessary
correlation between muscle force and intramuscular pressure (IMP), thus enabling pressure
microsensors to estimate muscle force. Previously, a finite element model of skeletal muscle was
developed which accurately predicted both muscle force as well as intramuscular pressure under
passive stretch [4]. This model characterized the complex passive response of the tissue by
incorporating hyperelasticity, viscoelasticity, poroelasticity, and anisotropy. This work presents
further development of this muscle model to incorporate muscle activation through
inhomogeneity and validation of IMP under active conditions. The goals of this work were to

identify how fluid pressurization is distributed within active skeletal muscle to potentially
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identify ideal microsensor insertion location and to gain further insight into what conditions

dictate this pressurization.

6.2 Methods

6.2.1 Experiment

Experiments and detailed analyses are currently under peer review [5]. Briefly, eight New
Zealand White Rabbit muscles (n=8) were pasgisretched and stimulated under isometric
conditions at a total of fifteen different muscle lengths. Experiments were conducted on
anesthetized animals with the approval of the University of California San Diego Institutional
Animal Use and Care Committee by isolating and attaching the distal tibialis anterior tendon to
an actuator and load cell. Active isometric contraction involved maximal stimulation of the
peroneal nerve. Muscle stress was calculated as force measured by the load cell from stretch or
activation divided by the physiological cross sectional area [6]. Intramuscular pressure was
measured with pressure microsensors [7] inserted into the muscle midbelly in two orientations:
in the longitudinal direction (parallel to muscle fibers) and in the transverse direction

(perpendicular to muscle fibers).

6.2.2 Constitutive Model

6.2.2.1 Skeletal Muscle

Two similar constitutive models were simultaneously utilized for skeletal muscle in this study,
representing the components of the tissue whick&tl¢ FLWDEOH™ EXW VWLOO VXSSRI
and those thatarRQO\ DEOH WR VXSSRUW .3®thetiksuétle@eRgassive 3SDVVLY |

properties of skeletal muscle are attributed to both the active actin-myosin c¢é&ilek and
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the extracellular matrix [11,12], it is difficult to elucidate exactly how to assign properties to

these constituents. Thus, for both previous modelling efforts [4] and the current thedel,

passive responses from the extracellular matrix and contractile elements are coupled. Previously,
passive skeletal muscle was modeled as a hyper-visco-poroelastic material with an anisotropic
compressible solid phase [4]. For the current model, the assumption was made that the excitable
constituent did not contain a fluid component. Thus, the constitutive approach éacitable

and the passive constituents is very similar, with the only exception being that the excitable
constituent did not include poroelasticity. Thus, it is assumed that the contractile tissue is
comprised of solid material only, and the excitable constituent was a compressible hyper-
viscoelastic material [18.6], while passive was modeled as compressible hyper-visco-

poroelastic material [17]

While the full constitutive approach has been previously outlined [4], in brief, an isotropic,
compressible (or coupled) Mooney-Rivlin strain energy density function was utilized for the
ground matrix [18] and viscoelastic effects were modeled using a three-term Prony series [19].
Tensile anisotropic and nonlinear properties of passive muscle were largely dictated by three-
dimensional tension-only reinforcing fibers with an ellipsoidal fiber distribution (EFD) [20].
Previously, the longitudinal EFD properties were optimized to experimental data and the
transverse EFD parameters were fixed based on the assumption of an increase in modulus of one
order of magnitude over longitudinal properties [21]. While this formulation yielded excellent
model validation to both muscle stress and intramuscular pressure under passive conditions [4],

they were altered in this study for improved agreement with experimental data under both
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passive and active conditions. A constant, isotropic hydraulic permeability was assumed based
on prior experimental and finite element analysis of skeletal muscle [17].
Table 6-1. Constitutive model parameter values for skeletal muscle. Note that the excitable and

passive constituent have the same constitutive model and parameters with the exception of
poroelasticity, which was only utilized for the passive constituent.

. Prony Series L . o y
Mooney-Rivlin SED Viscoelasticity Ellipsoidal Fiber Distribution Permeability
C1 C2 k | | (mm*N-s)
. (- - ong ong trans trans g
kPa) | (Pa) | kPa) | 9O | 2O | wpay | () | kPa) | () (passive)
ourg, | 0L
0.05 | 0.5 5 0'295’ 1, 10,| Optim | Optim | 15 3 0.074
0.167 100

The total stress within a biphasic finite element model which includes an active component can
be decomposed into active strds© ¢ Yp&ssive stress within the porous sdli 28 4nhd fluid
pressureL (Equation 1, wherais the identity matrix). Muscle activation was modeled using
prescribed uniaxial contraction (Equation22]. Here , is the Jacobian or volume rati6, is
the maximum activation stres8; P, is a load curve which defines the stress as a function of time,
and ” is the unit vector which dictates the direction of active contraction, which is the
physiological pennation angle. The load curXé’ was chosen to replicate the increase of force
of fully fused isometric skeletal muscle [2].

jeacOR jOOcUEG=aB x| (1)

iOOQUE'Q,?564?:P’n T (2)

106



6.2.2.2 Aponeurosis and Tendon

Aponeurosis and tendon were modeled as nearly incompressible hyper-viscoelastic with a
transversely isotropic Mooney-Rivlin strain energy function [23] and a Prony series viscoelastic
formulation [24] (Table 6-2). This formulation is outlined in greater detail in [4].

Table 6-2. Constitutive model parameter values for tendon/aponeurosis. These parameters are
identical to previously utilized values [4].

o Prony Series
e Viscoelasticity
C2 C4 max (.
c1 (kPa) (kPa) k (kPa) () cs (kPa) ) k (kPa) 0i (-) 2(s)
0.203, 0.133 0.33,
10000 500 50 40 | 100000 | 1.03 500000 ' 0 Zi.91 47.5,
' 2500

6.2.3 Finite Element Model

To represent the longitudinal contractile structure of skeletal muscle, inhomogeneous geometry
of the New Zealand White Rabbit tibialis anterior and the human tibialis anterior were

developed. The excitable and passive components of the tissue were connected directly through
mesh structure, along with aponeurosis and tendon tissue. Thus, no boundary contact conditions
were necessary between these three constituents. As skeletal muscle is comprised of roughly
80% fluid [25], the excitable constituent was assumed to be approximately 20% of the total
volume of the tissue. As the mesh is comprised of solely hexaleeiments, this was achieved

by denoting one of out every five longitudinal string of elements as excitable (Figure 6-1).
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Figure 6-1. Inhomogeneous finite element geometry of skeletal muscle, showing excitable (dark
red), passive (light red), and aponeurosis/tendon (gray). A) Whole New Zealand White Rabbit
tibialis anterior muscle model and B) cross sectional view of the rabbit tibialis anterior model.

The finite element geometry for the rabbit tibialis anterior is outlined elsewhere [4], but in short
LW zZzDV GHYHORSHG E\ VHIPHQWDWLRQ DQGInKit¢NeM\HGUDO PH\
Zealand White Rabbit tibialis anterior. The pennation angle of 2.5° [6] was applied globally by
specifying the orientation of the constitutive model. Stress was calculated by summing the total
reaction force at the distal nodes and dividing by physiological cross sectional area of the model.
This approach was the same for both active isometric and passive conditions. Model pressure
was calculated as fluid pressure from 90 midbelly elements of the passive constituent. Again, this
output did not change between active and passive simulations. The muscle mesh utilized in this
study (18646 elements) was compared against a denser mesh (46400 elements) under active
isometric conditions to ensure mesh density convergence. Isometric activation was simulated
using an active stress of 500 kF& from Equation 2, determined based on applied active stress
from the results) for the denser mesh and for the same reaction force using the less dense mesh,
only a 0.8% difference of mean fluid pressure between the two models was observed atd w

seconds.
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6.2.4 Verification of Transverse Stiffness Parameters

To investigate the role of transverse fiber stiffness in model behavior, with an emphasis on fluid
pressure, variations in transverse ellipsoidal fiber distribution (EFD) parameters were applied.
The model stiffness is largely dictated by these tension-only EFD parameters by design, as
skeletal muscle tensile stiffness is roughly two orders higher in tension versus compression
[21,2629]. While the longitudinal fiber parameters were determined through nonlinear
optimization, the transverse parameters were not specifically fit to experimental data. Previous
finite element modeling of passively stretched muscle utilized a value of ~33kRafdased

on the assumption of the transverse orientation being one order of stiffness higher than the
longitudinal [4]. However, the reported values for transverse tensile linear modulus of skeletal
muscle from literature range from roughly 20 kPa to nearly 800 kPa [21,30]. Additionally, there
remains uncertainty to the role of transverse stiffness in model fluid pressurization. To study this,
a direct comparison of model behavior was made betweenitwgarameter values: 33 kPa

from the previous study and 15 kPa utilized in this study.

A simplified finite element geometry of 2560 cubic hexahedral elements using the same
inhomogeneous nature as presented in Figure 6-1 was developed to compare model behavior to
experimentally analyzed excised muscle samples [21]. The mean Cauchy stress in the direction
of elongation (transverse) was compared to the experimentally calculated Cauchy stress.
Experimental samples underwent 0.1 tensile strain at a rate of faflosved by a 300 second
relaxation period, and finally a constant rate pull step to 0.25 tensile strain at OV@hik this
highlighted differences in parameter agreement to specific experimental data, the goal of this

work was to identify how these values affect fluid pressurization within the model. The above
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whole muscle finite element model was thus employed with each of these two parameters under
active contraction at three muscle lengths to investigate the role of transverse stiffness in model
fluid pressure. The three lengths include one on the ascending limb (-0.2 fiber strain from
optimal length), optimal length, and one on the descending limb (0.2 fiber strain from optimal
length). The specified contractile internal stress (Equation 2) will remain the same for both
conditions, although changes to the constitutive approach may result in differences in reaction

force at the model boundary.

6.2.5 Optimization and Validation

To ensure that passive model behavior was still consistent with passive experimental data
following changes to the constitutive model and geometry, the same optimization approach [4]
was used to generatgngand iong parameters. In short, the model stress was fit to the passive
experimental stress at increments of 5% fiber strain over a total of eleven points and the model

pressure was compared against experimental data.

Active isometric stress from the FE model was optimized to experimental data by varyifig the
parameter from Equation 2. This was done for each of the fifteen experimental data points under
active isometric contraction. For each fit, the muscle was p&gsiretched to the

corresponding experimental length followed by 300 seconds of relaxation to reach steady-state
[19,31] before activation was applied per the activation curve. Active model stress and fluid
pressure were calculated by subtracting the steady-state stress and fluid pressure values from the
maximum stress and pressure during contraction. Experimental and model pressures were

compared for an independent validation. Statistical analysis of agreement between model outputs
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and experimental data were completed by calculating the root mean square error (RMSE,
Equation 3, wherdPare experimental data antd® are model data) and normalized root mean

square error (NRMSE, Equation 4).

5-1 13 Do D
415" L W A3)
04/5' L— &% (4)

ade&ibrava®

6.3 Results

The optimized passive parameters for longitudinal EFD properties showed a highly nonlinear
longitudinal stiffness, which is consistent with previous investigations of skeletal muscle
longitudinal tensile behavior [19,21,28,32,33] (Table) 6ctimized applied stressf from
Equation 2) in the excitable constituent for isometric activation varied for each data point and
ranged from 229 to 604 kPa. These values were expected to be higher than the whole muscle

specific tension as the excitable constituent comprises only a fraction of the total muscle volume.

Table 6-3. Optimized longitudinal ellipsoidal fiber distribution (EFD) parameters.
Ellipsoidal Fiber Distribution

long (kPa) long (')
2.76 10.9

Model optimization to experimental stress data under both active and passive conditions was
confirmed visually (Figure 6-2A and 2D) and resulted in small statistical error values (NRMSE
values less than 1%, Table 6-4). The model was able to match experimental intramuscular
pressure readings under passive tension for both the longitudinal and transverse sensor insertion

directions by visual analysis (Figure 6-2B, 3C) and through statistical measures (~5-10%
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NRMSE, Table 6-4). Under isometric active conditions, the model produced superior statistical
agreement with experimental intramuscular pressure data with the longitudinal sensor insertion
(NRMSE of 48%) in comparison to transverse orientation (NRMSE of 115%). Visually, model
pressures decreased with increasing stretch similar to transverse sensor insertion, while
longitudinal sensor insertion did not exhibit this trend (Figure 6-2E and 2F). The model
agreement with transverse data was stoagmuscle lengths which ocauarvivo (Figure 6-Z

inset, NRMSE of 37%) in comparison to longitudinal data (Figure 6-2F, NRMSE of 111%)

[34,35].
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Figure 6-2. A) Model fit to experimental stress under passive stretch conditions. The
corresponding passive experimental and model predictions for intramuscular pressure are shown
for B) longitudinal sensor insertion and C) transverse sensor insertion. D) Model fit to
experimental stress under active isometric conditions. The corresponding active experimental
and model prediction for intramuscular pressure are shown for E) longitudinal sensor insertion
and F) transverse sensor insertion. Physiologicaivo muscle lengths are highlighted in the top

right inset of E, showing model predictive capabilities. All experimental data presemein

and standard deviation.
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Table 6-4. Statistical analysis of model agreement to experimental data of sensor insertion in the
longitudinal or transverse orientations. Root mean square error (RMSE, Equation 3) and
normalized root mean square error (NRMSE, Equation 4). Note that for passive and active stress
the model was fit to experimental data (hence the smaller errors) and that all pressure
comparisons are independent validation.

Passive Passive Active Active

Statistic Insertion Stress Pressure Stress Pressure
(kPa) (mmHQg) (kPa) (mmHgQ)

Longitudinal 3.53 35.3

REE Transverse 1.26 2.12 0.119 68.2
Longitudinal 0 11.7% 0 48.1%
N2 Transverse 0.765% 5.64% 0.0786% 115%

Intramuscular pressure exhibited inhomogeneity within the model (Figure 6-3). Fluid pressure
was highly transient in the distal region (which has a larger aponeurosis), which had pressure
gradients of nearly 100 mmHg across less than 15 mm (Figure 6-3A). While the proximal region
also exhibited pressure gradients, they was not as drastic (Figure 6-3B, ranging from 0 mmHg to

~30 mmHg). Fluid pressure gradients decreased with time as pressure equilibrated.

Figure 6-3. Color maps of fully activated finite element model at optimal length after one second
of maximum contraction. A) Image of two dimensional sagittal midbelly slice of the model
showing fluid pressure distribution. B) Image of two dimensional coronal midbelly slice showing
fluid pressure distribution. The distal region exhibited the highest variability in fluid pressure.

The transverse stiffness parameter comparison showed that current modeling approaches (a value

of 15 kPa for wans) had a stronger agreement to experimental tensile stress data than previous
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approaches (33 kPa fofans) (Figure 6-4). This was observed both under stress relaxation

(Figure 6-4A) (NRMSE of 3.8% for the current approach versus 22% for the previous approach
as well as constant rate pull (Figure 6-4B) (NRMSE of 8.3% for current versus 26% for

previoug. Additionally, transverse parameter stiffness affected fluid pressurization within the
model under active contraction, particularly at short muscle lengths. Specifically, increases in
transverse stiffness lead to increases in fluid pressure in excess of 20% on the ascending limb for

the same active stress generation (Table 6-5).

Figure 6-4. Comparison of two models to experimental data (mean with standard deviation in
gray) of rabbit tibialis anterior muscle subject to transverse extension. The current model
assumes arans Value of 15 kPa while previous modeling utilized 33 kPa. A) Stress relaxation

step of 0.1 strain ramp (shown left) and 300 seconds of relaxation (shown right). B) Constant rate
pull to 0.25 strain at a rate of 0.0t s
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Table 6-5. Comparison between the previous modeling appraashof 33 kPa) and current
approach (rans of 15kPa) at three muscle lengths: the ascending limb (strain of -0.2), optimal
length (zero strain), and the descending limb (strain of 0.2). Fluid pressure increased with
increases in transverse stiffness, particularly on the ascending limb, yet measured whole model
stress had only little dependence on transverse stiffness.

, Stress (kPa) Pressure (mmHg)
Strain
from Ex Current | Previous| Model % Ex Current | Previous| Model %
Lo P Model Model | Difference P Model Model | Difference
-0.2 | 192 192 190 1.1% 56.7 95.6 117 23%
0 237 237 236 0.19% 36.8 38.0 40.3 6.0%
0.2 | 184 184 184 0.17% 19.6 16.5 17.2 4.2%

6.4 Discussion

This work presents the first whole muscle finite element model to accurately predict both
intramuscular pressure and muscle stress under active contraction conditions. Previous modeling
efforts either did not include activation [4] or used an idealized 2D geometry and lacked time
dependent effects [36]. This work has developed the foundation for future endeavors to evaluate
intramuscular pressure distributions within skeletal muscle, study how disease and degradation
affect muscle force and intramuscular pressure, and how variations in geometry or activation
affect force and IMP. Based on the agreement with experimental data, this work suggests use of
sensors inserted longitudihain contrast tatransverse insertion. Although the NRMSE error
value of 48% for longitudinal active data may seem quite high, experimental standard deviations
are similarly ~50%. Additionally, the model showed excellent predictive capability for data from
-0.15 to 0.2 strain (Figure 6-2E inset), which are muscle lengths likely experianged[34].

While it remains unclear exactly why the IMP data in this study diffased on sensor insertion
technique, it is likely the result of anchoring within the tissue, which is critical to proper sensor

utilization [7].
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The inhomogeneous approach in this work was chosen based on the portion of tissue comprised
of solid muscle fibers in contrast to extracellular matrix and fluid content [25,37]. Previous finite
element modeling efforts of skeletal muscle have utilized similar three dimensional
inhomogeneous assumptions about contractile constituents [38,39], homogeneous assumptions
[13,16,23,36,4@45], and a combination of three dimensional and one dimensional elements
[35,46,47]. While the approach used in this work clearly does not replicate the complete
structure of skeletal muscle, it does provide further insight into the inhomogeneous behavior of
the tissue, particularly for intramuscular pressure (Figure 6-3). While it remains to be seen
exactly how other approaches, such as a passive three-dimensional mesh reinforced with one-
dimensional contractile elements are able to model intramuscular pressure behavior, this current
approach shows strong predictive capabilities, especially in the physiological range of strain.
Future work to investigate the role of muscle weakness, fibrosis, fatigue, and isotonic

contractions on fluid pressurization would benefit the IMP field.

Model fluid pressure exhibited a high level of spatial dependence during immediate contraction
(Figure 6-3). While this variability decreased with time even during contraction, the combination
of transience and inhomogeneity manifests in a highly dynamic pressure distribution. This could
support previous experimental findings noting the difficulty with repeatability of intramuscular
pressure measurements [48], particularly under dynamic conditions when sensor movement
occurs [49]. Under steady-state conditions, fluid can equilibrate and thus the model pressure
distribution is more uniform. However, it remains unclear if this modeling observation is
physiologically accurate, as current experimental intramuscular pressure studies do not provide

the necessary spatial measurements to correlate with a finite element model. Future work to

117



experimentally investigate regional IMP in muscle simultaneously would provide valuable
insight into this spatial fluid distribution and provide strong validation data for this model.
Additionally, dynamic muscle conditions are critical to praperivo function [2] and thus

should not be neglected for the sake of simplicity.

The length-dependency of the model fluid pressure output suggests that variability of
intramuscular pressure mayvivo may be dependent on more physiological conditions than
muscle force alone. Additionally, the transverse stiffness of the model affects fluid pressurization
under active conditions (Table 6-5). From a modeling perspective, it is not surprising that the
fluid pressure behaves in such a manner. When muscle is passively stretched, the transverse
direction compresses due to the Poisson effect, which results in fluid pressurization. When
muscle actively contracts, the transverse direction expands, again due to the Poisson effect. In
this case, the longitudinal compression causes fluid pressurization. Thus, these two conditions
enact opposing deformations as a result of the Poisson effect, which when combined result in a
small volumetric deformation (Figure 6-5). From a modeling perspective, as the muscle is
lengthened, contraction must overcome larger and larger deformations to pressurize the fluid.
Thus, the observed decrease in fluid pressure with muscle stretch is expected within a finite
element model of continuum muscle. Further experimental work to identify exactly how muscle
length and activation level contribute to intramuscular pressure readings would elucidate the

accuracy of this modeling approach.
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Figure 6-5. A) The deformations resulting from passive stretch and active contraction both enact
the Poisson effect, where the longitudinal strain (black arrows) results in opposite strain in the
transverse plane (red arrows). As these deformations oppose each other, the result is a smaller
final volumetric deformation, which results in low fluid pressurization. B) Model trarsvers

strains (x and y directions, as elongation occurs in the z direction) for three time points when
stretched to optimal length, after initial ramp elongation, at the end of stress relaxation, and at
maximum contraction. Passive elongation results in negative transverse strains, which is then
counteracted by shortening due to active contraction.

While passive stretch daf vitro whole skeletal muscle is largely dictated by longitudinal
mechanical properties) vivo muscle fibers are connected through fascia to surrounding muscle
fibers and other tissues. As a result, force generation is transmitted laterally throughout skeletal
muscle [3]. Thus, while the transverse tensile properties play a limited raleitro passive

muscle stiffness, they contribute to the mechanical function of skeletal nmusole. From a

modeling perspective, the transverse tensile stiffness also plays a key role in fluid pressurization
(Table 6-5). This was particularly evident on the ascending limb when muscle is at short lengths,
as there is no pre-stretch to overcome and thus transverse tensile strains are larger. Stiffer fibers
would result in less expansion and thus more fluid pressurization. However, at longer muscle

lengths the role of transverse stiffness seems to be less important to fluid pressurization (Table 6-

5 7KLV DSSHDUV WR EH GXH WR WKH IDFW WKDW FRQWUDFW

119



(Figure 6-5), resulting in small transverse tensile strains and thus less of a contribution from the
transverse fibers. The agreement between experiment and model data for transverse muscle
stiffness (Figure 6-4) is thus critical for future applications of this woik tavo modeling and

to the use of this model for clinical recommendations.

6.5 Conclusions

This work presents the first whole muscle finite element model of skeletal muscle which predicts
both intramuscular pressure and muscle force. This work also edat#ive skeletal muscle

with a hyper-poro-viscoelastic constitutive approach, utilized inhomogeneity, and @ahfirm
physiological accuracy in regards to choosing parameter values. Muscle stress and intramuscular
pressure data under passive and active conditions were modeled, and the use of a pressure
microsensor inserted longitudinally into skeletal muscle was suggested. The transverse tensile
stiffness was shown to play a key role in fluid pressurization at short muscle length. At longer
lengths, passive stretch and muscle contraction enacted opposing Poisson effects, which led to
low fluid pressurizations. Future use of this model to study spatial distribution of fluid pressure
within skeletal muscle will guide the clinical use of the pressure microsensors for accurately
measuring intramuscular pressure. Further model development to include more complex muscle

activation as well as the effects of muscle weakness or disease would also be highly beneficial.
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CHAPTER 7:
MODELING INTRAMUSCULAR PRESSURE IN THE HUMAN TIBIALIS ANTERIOR

WITH FINITE ELEMENT ANALYSIS

7.1 Introduction

The correlation between muscle force and intramuscular pressure[{INBP provides an

opportunity to utilize IMP measurements as a clinical approach to interpret muscle fokee
However, regional variations in IMP [6] and difficulties with reproducibility from muscle to
muscle and patient to patient [7] make this interpretation rather difficult. It remains unclear
exactly why intramuscular pressure measurements are highly variable yet still correlate strongly
with muscle force. Chapter 6 presents a finite element model of the rabbit tibialis anterior which
suggests sensor location and muscle length may play a role in fluid pressurization within the
tissue. However, it remains to be seen if this is observed experimentally and if variations in
muscle architecture, boundary conditions, and measurement location manifest in pressure

variations.

Previous finite element modeling of skeletal muscle characterized both muscle stress and
intramuscular pressure under active and passive conditions (Chapter 6). That work provided
insight into spatial distribution of fluid pressure within the model, suggested the use of
longitudinal pressure microsensor insertion, identified the role transverse stiffness plays in fluid
pressure in contracting muscle, and suggested that muscle length may influence IMP. However,

there is some concern in utilizing an approach developed in an animal model (New Zealand
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White Rabbit tibialis anterior or TA) for human application. Additionally, it remains unclear how
the developed constitutive approach can translate to muscles with variations in architecture. The
New Zealand White RabbRtA is a unipennate muscle with a low pennation angle of roughly

three degrees [8]. This simplifies the geometry and force transmission from a modeling
standpoint as the muscle fibers are nearly aligned with the whole muscle. TheTAinaan

bipennate structune thus architecturally different from the rabbit TA in that it has both external
aponeuroses and an internal tendon/aponeurosis [9]. While the constitutive approach was
developed and implementatithe tissue scale, use of that model in only one muscle limits the

confidence in application to human studies without further validation.

Previous fluid pressure validation was also completed for singular time points in a highly
transient system. Specifically, model outputs were compared against isometric muscle stress and
intramuscular pressure data under maximum contraction only. For passive stretch data, steady-
state pressure comparisons were made. While the agreement in Chapter 6 between model and
experiment suggests an effective computational approach, there is concern in using this model to
study dynamic muscle conditions, which are criticahteivo muscle function [10]. The force-
pressure relationship under sub-maximal conditions would be of interest as normal gait and daily
function typically do not occur at maximum contraction [10]. Validation of model behavior

under various contractile levels would greatly strengthen the applicability of this model.

Thus, there are three goals of the work presented here: 1) investigate variability in model fluid
pressure and evaluate the efficacy of the previously utilized constitutive model in predicting
intramuscular pressure behavior for 2) different muscle architecture (in this case a bipennate

structure) and 3) variations in contractile level.
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7.2 Methods

7.2.1 Experimental Data

Previous experimental analysis of isometric contractile behavior of the human tibialis anterior
was completed [11]. Eight (n=8) healthy young adults were recruited for the study, which
involved simultaneous measurement of dorsiflexion force and intramuscular pressure. For each
subject, the ankle was placed at a neutral position (90° angle with the leg) with the knee between
45-60° of flexion and dorsiflexion force was measured with a force transducer. Intramuscular
pressure was measured with a pressure microsensor [12] inserted longitudinally (along with the
muscle fibers) into the muscle midbelly using a 22 gauge catheter. Each subject contracted to
50% maximum voluntary contraction (MVC) at three contraction rates: 5% per second, 10% per
second, and 15% per second. Each contraction rate test was repeated for a total of fifteen trials
per rate per subject, or 45 trials in total per subject. Dorsiflexion force was normalized for each
run and intramuscular pressure was zeroed to produce IMP-%MVC data. To simplify and
combine the results, IMP-%MVC data points were identified in intervals of 2.5% MVC from 0-

50%. Intramuscular pressure was averaged over a 0.1 seconds at each interval to reduce noise.

7.2.2 Constitutive Model

The constitutive approach utilized in this study was previously developed and validated against
experimental data of the New Zealand White Rabbit tibialis anterior (TA). The details of this
material model can be found in [13] for detailed explanation of passive behavior and in Chapter
6 for detailed explanation of active behavior. In short, the passive constitutive approach utilized
hyper-visco-poroelastic theories to characterize the complex passive function of the solid

constituents of skeletal muscle. The tensile nonlinearity and anisotropy were modeled using an
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isotropic hyperelastic Mooney-Rivlin strain energy density function [14] reinforced with
exponential tension-only fibers [15]. This formulation allows the utilized approach to

characterize the unique transversely isotropic behavior of skeletal muscle, where the longitudinal
or fiber direction has a highly nonlinear tensile response, while the transverse or cross fiber
direction has a more linear and stiffer response [16]. To model the time dependent relaxation of
skeletal muscle in tension, a viscoelastic Prony series was employed [17] and fluid content was

modeled with poroelasticity [18].

For active muscle, a formulation which dictates active stress as a function of time was
incorporated, allowing for the ramp behavior of maximally contracting muscle to be

appropriately simulated [10]. An inhomogeneous approach was developed which specified two
different muscle constituents: passive only muscle and muscle which generated contractile stress
and supported passive deformation. Due to the complexity of the structure-function relationship
of passive muscle, including the fact that muscle passive behavior is a manifestation of both
ECM and fiber stiffness [19,20], both constituents were given identical passive properties, with
the exclusion of poroelasticity for the active-passive constituent. As seen in Chapter 6, this
approach yielded good agreement between IMP and model pressure for maximally stimulated
isometric contraction at various muscle lengths, particularly for the physiological operating

range.

7.2.3 Finite Element Geometry
An idealized finite element geometry of the human tibialis anterior (TA) was developed (Figure

7-1). Based on literature data [21], the total muscle length was 260 mm, pennation angle was
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9.98°, and muscle fibers were 68.5 mm. The bipennate structure of the human TA requires an
internal aponeurosis or tendon in addition to external aponeuroses (Figure 7-1A). Similar to
previous finite element modeling of skeletal muscle (Chapter 6), an inhomogeneous geometry
was employed in which 20% of the total muscle volume was defined as contractile. Due to the
structure of this inhomogeneous approach, the hexahedral mesh lines must follow the muscle
fiber orientations. This makes modeling the full geometry of the human tibialis anterior a
challenge, which is why this idealized approach was implemented. The model represents a slice

of the human TA 1mm thick, midway between the lateral and medial sides of the tissue.

Figure 7-1. Idealized geometry of human tibialis anterior finite element model. A) Model

without mesh lines to highlight various constituents, including active-passive (dark red), passive
only (light red), and aponeurosis (gray). B) The same geometry with mesh lines and elements
highlighted in yellow (black arrow) which were utilized for fluid pressure output.

To simulate isometric activation of the human TA at neutral flexion (the ankle joint at 90
degrees), the distal end of the muscle was displaced towards the proximal end and pinned prior
to contraction, enacting muscle shortening. This is because the human TA is slack at neutral
ankle flexion and does not support significant passive loads until nearly ten degrees of
dorsiflexion [22]. After a 300 second relaxation phase [17,23], 50% maximum voluntary

contraction (MVC) was applied through a ramp of active stress generation within the model with
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a linear slope. This contraction was applied at three rates: 5% MVC per second, 10% MVC per
second, and 15% MVC per second to match experimental trials [11]. With both the proximal and
distal ends of the tissue pinned, the specific tension of the model was determined by summing
the reaction force as the distal nodes and dividing by the physiological cross sectional area of
33.35mn?. Intramuscular pressure was interpreted as the mean fluid pressure of six elements
within the model which were chosen to due to experimental location of pressure microsensors
(Figure 7-1B) [11]. Model pressure was zeragthe beginning of contraction, which occurred

after stress relaxation as a result of passive deformation.

7.2.4 Variations in Boundary Conditions and Model Parameters

To study the effect of muscle length as well as contractile force on model fluid pressure,
variations in pre-contraction displacement and specific tension were applied. For the pre-
contraction displacement, previous experimental work has shown that the human TA is slack
when the ankle is neutral, and that the difference in muscle length between this neutral position
and ten degrees of plantarflexion when passive tension is recruited is roughly 3.5% [22,24].
However, the previously developed and validated constitutive model employs a wide toe region
[13], thus there is some concern over the proper pre-contraction displacement, as the low
stiffness within this toe region may be difficult to observe experimentaihyo versusn vitro.

To investigate the role of pre-contraction shortening on the model fluid pressure, four different
displacement lengths were applied to the distal end of the tissue resulting in muscle shortening,
4.5 mm, 6 mm, 7.5 mm, and 9 mm (experimentally calculated value). These will be referred to as

SORGHO ° PP S20RGHO ° PP S30RGHO ° PP DQG 30R
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Specific tension of human musdatevivo cannot be directly measured, as experimental analysis
requires measurement of torque and back calculations using anatomical and muscle structural
measurements [25]. Fukunaga et al. found that the human TA generates roughly 85 kPa at
maximum voluntary contraction [24], while Maganaris et al. others determined a value of 155
kPa [26]. Thus, for 50% maximum voluntary contraction, two specific tension values were

utilized in this study: 42.5 kPa and 77.5 kPa.

7.2.5 Statistics

Similar to Chapter 6, the root mean square error (RMSE, Equation 1, Whare experimental

data and U* are model data) and normalized root mean square error (NRMSE, Equation 2) were
utilized to evaluate model fit to experimental data. Model fluid pressure output was compared
against experimental intramuscular pressure data at 2.5% MVC increments up to 50% MVC.
Total NRMSE for each model to all three contraction rates was calculated as the square root of

the sum of the squared NRMSE values for each contraction rate.
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7.3 Results

Model fluid pressure showed a nonlinear increase as a function of contraction level (Fiyure 7-2
similar to experimental data. Statistical agreement between models and experimental data ranged
from less than 7% NRMSE to 95% NRMSE for individual pressure-contraction curves (Table 7-
1). For Model 3 with an applied specific tension of 42.5 kPa, the best overall fit to experimental

data was observed at 23% NRMSE (Table 7-1). Both muscle length (Model #) and specific
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tension affected model fluid pressure visually (Figure 7-2) as well as statistically in terms of
agreement to experimental data (Table).AHbwever, the differences in fluid pressure were
larger because of the variations in boundary conditions versus variations in specific tension

(Figure 7-2).

Figure 7-2. Comparison between experimental data (standard error bars) and modeling outputs.
All model curves show specific tension values for both 77.5 kPa (top curves) and 42.5 kPa
(bottom curves). A) Contraction rate of 5% per second. B) Contraction rate of 10% per second.
C) Contraction rate of 15% per second.
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Table 7-1. Statistical analysis of agreement between model outputs and experimental data. Fluid
pressure behavior was dictated by both pre-contraction length as well as specific tension. Model
3 with a specific tension of 42.5 kPa was found to have the overall strongest agreement to
experiment at NRMSE of 23%.

Specific 5%/s 10%l/s 15%/s Total
Model # | Tension RMSE RMSE RMSE
NRMSE
kP2) | (kpa) NRMSE (kPa) NRMSE (kPa) NRMSE
42.5 66 62% 107 69% 91 47% 104%
Model 1
77.5 51 48% 91 59% 75 39% 85%
42.5 31 29% 70 45% 55 28% 60%
Model 2
77.5 11 10% 46 30% 35 18% 36%
42.5 15 14% 24 16% 21 11% 23%
Model 3
77.5 43 40% 10 6.7% 39 20% 45%
42.5 67 63% 36 23% 60 31% 74%
Model 4
77.5 101 95% 70 45% 97 50% 116%

The fluid pressure distribution within the model shows highly variable pressure values at the
proximal and distal ends, with a more consistent distribution within the muscle midbelly (Figure
7-3A). This was confirmed both by plotting fluid pressure as a function of distal to proximal
location (Figure 7-3B) and by evaluating the statistical distribution of fluid pressure in four
regions (Table 7-2). Specifically, when the pressure-location data from the model in Figire 7-3
are divided into four equal sized element groups (distal, middle near distal, middle near
proximal, and proximal), the lowest standard deviations (4.5 and 7.5 mmHg for the superficial
and deep data, respectively) and ranges (similarly 13 and 26 mmHg) are observed in the middle-
distal region and the highest (21-71 mmHg for standard deviation and 67-187 mmHg for range)

are observed in the distal and proximal regions.
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Figure 7-3. Fluid pressure distribution at 50% MVC for Model 3 after contracting at a rate of
10% per second. Figure shown for muscle model contracting at a specific tension value of 77.5
kPa (smallest NRMSE at 6.7% from Table 7-1). A) Pressure color map within finite element
model. B) Plot of model pressures as a function of distal to proximal location. The two curves
are shown for element rows located at the corresponding arrows from A. The model in A is
aligned with the x-axis of the plot in B for comparison. The proximal (left) and distal (right) ends
of the muscle showed highest spatial variability in fluid pressure.

Table 7-2. Statistical analysis of regional fluid pressure variation within the model. Data from
Figure 7-3B grouped into four sets by distal to proximal location (distal, middle near distal,
middle near distal, and proximal). The distal-proximal region exhibited the lowest standard
deviations and ranges, while the distal and proximal regions exhibited the highest.

Superficial Pressure
St (mMmHg) Deep Pressure (mmHgQ)
Average | StDev | Range| Average | StDev | Range
Distal 159 33 92 102 57 147
Middle-Distal 194 4.5 13 192 7.5 26
Middle- 182 | 17 | 49 205 | 12 | 41
Proximal
Proximal 99 71 187 181 21 67
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7.4 Discussion

The contractile stress values utilized in this study are below the 50% of the maximum voluntary
isometric specific tension of skeletal musEt&00 kPa) [10]. This is likely due to the fact that

the human TA is on the ascending limb of the isometric force-length curve with the ankle in a
neutral position [24]. While specific tension values played a role in the pressurization of fluid
within the model (Figure 7-2 and Table 7-1), muscle length had a larger effect on model fluid
pressure as presented here (Figure 7-2). However, this is certainly dependent on the exact
boundary conditions and specific tension values utilized in this study. The variations in pre-
contraction muscle length were identified by utilizing physiology studies to estimate
approximate muscle length with the ankle at a neutral position [22,24]. Yet the long toe-region
exhibited by the utilized constitutive model [13] sugg@stavo detections of muscle stiffness

may be difficult at low strain levels and thus passive tension could occur closer to the neutral
position than reported. Thus, it is not surprising that Model 3 exhibited the strongest correlation
to experimental data (total NRMSE of 23%, Table 7-1), as it requires some muscle shortening,

but not the full 9mm as calculated from literature.

As muscle length decreased (going from Model 1 to Model 4), pressure values increased (Figure
7-2). This agrees with findings from Chapter 6, which shows model pressures on the ascending
limb were higher than at optimal length, which were higher than those on the descending curve.
While it remains to be seen exactly how muscle length and intramuscular pressure are related in
humanin vivo studies, this work suggests that muscle length contributes to variability in

intramuscular pressure. This could partially explain why experimentally measured intramuscular
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pressure values are fairly consistent for the same muscle and patient, but less so for different
muscles or patients where architecture and/or anatomy are vqriddle

Intramuscular pressure values from this study (~100-250 mmHg) are comparable to or higher
than those from the Chapter 6 study (~25-150 mmHg), despite the fact that this work was
conducted at 50% MVC while Chapter 6 was under 100% MVC. These differences in fluid
pressure could be due to differences in muscle architecture, as the utilized constitutive models
are the same and both studies simulated contraction at short muscle lengths. Specifically, the
human TA is bipennate with a pennation angle of roughly 20° while the rabbit TA is unipennate
and has a very low pennation angle of only 3° [8,21]. In fact, despite the massive differences in
size, the fiber length of the human TA is less than twice that of the rabbit TA (68 mm vs 38 mm)
[8,21]. Thus, the agreement between model and experimental data exhibited for both the rabbit
TA in Chapter 6 and here for the human TA provides strong evidence that the utilized

constitutive approach is a robust model for skeletal muscle at the tissue level.

This work also presents the first finite element simulation of both muscle force and intramuscular
pressure for human muscle contracting across a range of voluntary levels, specifically from 0%

to 50% MVC. Previous work from Chapter 6 compared model and experimental pressures at
maximal stimulation only, similar to early finite element work of muscle force and IMP [27].

The nonlinear shape of model pressure-contraction outputs is similar to that of the

experimentally gathered pressure-contraction data, particularly for Model 3 compared to 10% per
second contraction rate data (Figure 7-2). This approach is also unique in the fact that the passive
constitutive model incorporates viscoelastic and poroelastic theories, which means time

dependent variations in fluid pressure e result of solid constituent relaxation, fluid flow,
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and contraction level. Thus, the agreement between model and experiment further supports the

use of this constitutive approach as a robust method to simulate the behavior of skeletal muscle.

Regional variation of fluid pressurization within the model showed the least variable pressure
readings in the muscle midbelly, but large spatial variations at the proximal and distal ends by
inspection of both a color map and plotted pressure-location data (Figure 7-3). Statistical analysis
of variability within the four model regions (distal to proximal) supported these findings (Table
7-2). From a modeling perspective, this suggests IMP readings from pressure microsensors
would be most consistent if placed in the muscle midbelly, away from large IMP gradients. This
also suggests variations in experimentally measured IMP could be the result of improper sensor
insertion, as small changes in insertion location could manifest in large changes in pressure
readings in the proximal and distal regions. However, this must be either confirmed or rejected
experimentally, as clinical recommendations cannot be made in confidence before regional
validation within the model is completed. Model behavior could also be validated against three
dimensional strain calculations utilizing magnetic resonance imaging [28] to improve confidence
in interpreting spatial results. Thus, this work proposes the use of Figure 7-3 and Table 7-2 data
in implementing further modeling studies or experimental analyses of intramuscular pressure to
either confirm or reject the hypothesis that the muscle midbelly is the ideal location for sensor

insertion.

While this work presented novel insight into skeletal muscle function from a modeling
perspective and strengthened the case for the use of a hyper-visco-poroelastic approach to

modeling skeletal muscle, there are certainly some potential weaknesses along with future work
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to be completed. First, the utilized finite element geometry from this study represents only an
idealized version of the human tibialis anterior. A full geometry would require either alterations
to the inhomogeneous approach for muscle activation or highly complex meshing, as the
hexahedral mesh lines must follow the orientation of muscle fibers. While this would provide
further insight into global IMP behavior, tirevivo environment of the human TA would require
careful assumptions regarding boundary conditions. This is particularly evident given the current
study, which highlights how boundary conditions can affect model fluid pressure. The effects of
muscle weakness and disease such as fibrosis [29] could also be studied to evaluate how fluid
pressure changes with impaired function. Finally, the constitutive approach for muscle activation

should be improved to include the dependence of muscle force on velocity.

7.5 Conclusions

This work presented the first finite element model of human skeletal muscle which modeled
various contraction levels and simulated both muscle force and intramuscular pressure.
Simulating a bipennate muscle under variable contractile conditions provides further confidence
in utilizing a constitutive model developed for a unipennate geometry under maximum voluntary
contraction only. This model provides evidence that muscle length, specific tension, sensor
insertion location, andrehitecture may account for variability of intramuscular pressure

readingsn vivo. Finally, while the model suggests that the midbelly of the tissue is ideal for
sensor location, this must be either confirmed or rejected using further modeling or experimental
analysis. Future work to study impaired muscle and more advanced contractile conditions would

greatly increase the clinical application of this work.
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CHAPTER 7:

CONCLUSIONS AND FUTURE WORK

In summary, this work presents the development and implementation of a finite element model

of skeletal muscle to study intramuscular pressure. Constitutive model development was based
on three experimental analyses of skeletal muscle which investigated 1) the viscoelastic response
of muscle in tension, 2) the anisotropic and hyperelastic response of muscle in tension, and 3) the
hydraulic permeability of the tissue. These data were utilized to create and implement a novel
transversely isotropic, hyper-visco-poroelastic constitutive approach to model the passive
behavior of skeletal muscle. Muscle activation was incorporated through an inhomogeneous
approach. Model validation was completed against experimental data of muscle stress and
intramuscular pressure, and simulations of both rabbit muscle and human muscle were

completed.

Experimental studies identified critical phenomena at the tissue level for the development of a
robust finite element model. The tensile viscoelastic behavior of skeletal muscle was studied to
determine if muscle exhibited linear or nonlinear viscoelasticity. While statistical analysis
suggested strain level dependence of stress relaxation, only marginal increases in modeling
accuracy were observed in a fully nonlinear viscoelastic model versus a quasilinear viscoelastic
model. Thus, the use of quasilinear viscoelasticity was chosen for this work. Future studies
incorporating fully nonlinear viscoelasticity into a finite element model of skeletal muscle would

shed light on how viscoelastic assumptions affect whole muscle behavior from a computational
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standpoint. Transversely isotropic tensile testing of skeletal muscle under fresh and non-fresh
(subject to a freeze-thaw cycle) conditions confirmed previous findings that the transverse
orientation exhibited stiffer and more linear behavior than the longitudinal orientation, while
conflicts in literature were likely the result of post-mortem stiffening. All future experimental
studies of skeletal muscle should be completed under fresh conditions, before the effects of rigor
mortis (~4-8 hours). Finally, muscle hydraulic permeability was directly measured and muscle
compression was simulated with various strain dependent and anisotropic assumptions. While
tissue relaxation in tension is generally attributed to inherent viscoelasticity of solid constituents,
poroelasticity may play a role in stress relaxation under compressive conditions. Further work to
identify how well poroelastic theory can explain stress relaxation of muscle in compression may

result in modeling approaches with greater physiological accuracy.

The developed constitutive model was validated using a finite element approach for passive
stretch, activate contraction, and in two muscle geometries. This robust approach supports the
use of this model for variations in physiological architecture and both passive and active
conditions. The model suggested that in addition to activation level, muscle length and
architecture contribute to variability of intramuscular pressure. Additionally, the use of
longitudinal sensor insertion yielded experimental data which more closely agreed to model
output versus transverse insertion. Spatial variability was observed from a modeling perspective
but must be confirmed experimentally before strong clinical recommendations about sensor

insertion location can be made.
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While this work has presented the development and implementation of a model of skeletal

muscle to study the behavior of intramuscular pressure (IMP), future work should be completed

to strengthen the use of IMP as a clinical measurement. Firstly, finite element analysis of human

in vivo muscle geometry should be completed for greater clinical impact. While accurate whole
muscle geometry was simulated for the rabbit tibialis anterior, the creation of a human mesh
entails some difficulty due to architecture and orientation. The approach presented here should
also be validated spatially using data gathered through experimental analysis. This could include
both intramuscular pressure measurements at various spatial regions throughout the tissue as well
as imaging modalities such as magnetic resonance imaging to evaluate regional stnaioof

muscle.

Additionally, further developments of muscle activation from a constitutive standpoint would
greatly expand the impact of this model. Specifically, this includes isotonic contractions, where
muscle is actively shortening or lengthening, as is common in gait and locomotion. Modeling
clinical conditions such as muscle weakness, increases in stiffness as a result of fibrosis, or
decreases in muscle mass could also shed light onto the role of intramuscular pressure in
impaired muscle. While this work has provided novel insight into muscle function through
experimental and computational analyses, there remains an opportunity to build upon this work

and make a greater clinical impact.
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