Ethiopia Ecological Forecasting

Mapping Four Decades of Fire History for Targeted Conservation in the South-Central Highlands of Ethiopia

Stephen Chignell (Project Lead)
Kelly Hopping

Chandra Fowler
Darin Schulte
Community Concerns

- **Positive** effects of intentional burning on social-ecological system functioning
- **Negative** effects of increased fires on wildlife habitat and soil erosion
- **Negative** consequences of forced burning cessation

- **Efficacy** of past and future conservation efforts
- **Limited** capacity and data availability
Objectives

- **Quantify** fire extent and distribution on the Bale-Arsi massif over a 42-year time period
- **Provide** land managers with the most current and complete record of fires in the region
- **Compare** patterns of burning to observed land changes
- **Demonstrate** a reproducible methodology

Image Credits: Stephen Chignell
Methodology
Data Acquisition
- MSS, SRTM
- TM, ETM+
- OLI
- MODIS burned area

Data Processing
- LandsatLinkr
- Gap-filling & Normalized Burn Ratio
- Aggregation

Analysis
- Tasseled Cap Compositing
- Thresholding
- Landsat Validation

Results
- Time Series Visualization
- Fire extent
- Burn Frequency
- Land Cover Assessment
Earth Observations

- Terra/Aqua
 MODIS

- Shuttle Radar Topography Mission (SRTM)

- Landsat 1, 3
 Multispectral Scanner (MSS)

- Landsat 5
 Thematic Mapper (TM)

- Landsat 7
 Enhanced Thematic Mapper (ETM+)

- Landsat 8
 Operational Land Imager (OLI)
Data Acquisition & Pre-processing

- Landsat imagery
- Atmospheric correction
- Cloud mask
- Georegistration
- Spectral calibration

Graph showing the number of images per year for different Landsat satellites.
Tasseled cap visualization (1973-2015)

Brightness + Greenness + Wetness
Burned area mapping (1995-2015)
Gap-filling burned areas
Detecting burned areas with clouds
Post-processing

- **Aggregate** burned areas within each year
- **Clip** to areas higher than 3000 m
- **Sieve** out burned areas < 1 hectare (11 pixels) to eliminate noise
- **Remove** erroneous burned areas detected on Tulu Deemtu
Results
Time series visualization
Landsat & MODIS spatial extents

- Landsat NBR: 274 km²
- MCD45A1: 260 km²
- MCD64A1: 222 km²

Additional note:
- MODIS MCD45A1: Potential burned area covered by clouds (86 km²)
Landsat and MODIS time series
Spatial patterns of burning

(Photo credits: Johansson et al. 2012 Ecology and Society)
Vegetation types burned

- Erica shrub: 71.6%
- Alpine shrub: 14.7%
- Grasslands: 3.7%
- Herbaceous: 6.3%
- Deciduous: 0.5%
- Sparse veg.: 3.0%
Vegetation types burned

- Erica shrub: 71.6%
- Alpine shrub: 14.7%
- Grasslands: 3.7%
- Herbaceous: 6.3%
- Deciduous: 0.5%
- Sparse veg.: 3.0%
Ericaceous shrub burned

Bale Mountains National Park

- Green: Erica shrubland
- Red: Burned inside park
- Blue: Burned outside park
Wildlife habitat burned

- Mountain nyala
- Ethiopian wolf

Habitat area (km²)

- Burned
- Unburned

Image Credits: Paul Evangelista
Discussion
Errors and uncertainties

- Gaps in the Landsat record for the region.
- Scan line interpolation.
- Potentially omitted fires due to cloud cover.
Conclusions

- **35% of ericaceous vegetation burned** in the Bale Mountains between 1995-2015, but **few areas experienced repeated fires**.

- **LandsatLinkr expedites pre-processing**, but data gaps and cloud cover remain challenging for time series analysis in remote, tropical alpine regions.

- **Final products for partners:**
 - Spectrally comparable and composited tasseled cap time series (1973-2015)
Future work

Density analyses

Galama Mountains

Sentinel 2 data

Incorporate field data
Acknowledgements

Advisors

Dr. Paul Evangelista, Natural Resource Ecology Laboratory, Colorado State University

Partners

The Murulle Foundation
Natural Resource Ecology Laboratory, Colorado State University

Others

Nicholas Young, The Murulle Foundation and Natural Resource Ecology Laboratory, Colorado State University
Justin Braaten, Oregon State University
Brian Woodward, NASA DEVELOP
Dr. Amanda West, Colorado State University

This material is based upon work supported by NASA through contract NNL11AA00B and cooperative agreement NNX14AB60A.