

Ethiopia Ecological Forecasting

Mapping Four Decades of Fire History for Targeted Conservation in the South-Central Highlands of Ethiopia

Stephen Chignell (Project Lead) Kelly Hopping

Chandra Fowler Darin Schulte

Bale-Arsi Massif, Ethiopia

Community Concerns

- Positive effects of intentional burning on social-ecological system functioning
- Negative effects of increased fires on wildlife habitat and soil erosion
- Negative consequences of forced burning cessation

Image Credits: (top) Rod Waddington, (bottom) Stephen Chignell

- Efficacy of past and future conservation efforts
- Limited capacity and data availability

Objectives

- Quantify fire extent and distribution on the Bale-Arsi massif over a 42-year time period
- Provide land managers with the most current and complete record of fires in the region

- Compare patterns of burning to observed land changes
- Demonstrate a reproducible methodology

Image Credits: Stephen Chignell

Methodology

Earth Observations

Terra/Aqua MODIS Shuttle Radar Topography Mission (SRTM) Landsat 1, 3 Multispectral Scanner (MSS)

Landsat 5 Thematic Mapper (TM) Landsat 7 Enhanced Thematic Mapper (ETM+) Landsat 8 Operational Land Imager (OLI)

Data Acquisition & Pre-processing

Tasseled cap visualization (1973-2015)

Brightness + Composites + Wetness

Burned area mapping (1995-2015)

Gap-filling burned areas

Detecting burned areas with clouds

Post-processing

- > Aggregate burned areas within each year
- Clip to areas higher than 3000 m
- > Sieve out burned areas < 1 hectare (11 pixels) to eliminate noise
- Remove erroneous burned areas detected on Tulu Deemtu

Time series visualization

Landsat & MODIS spatial extents

Landsat NBR

QUOTELISONI CEERSONI S

ModentsionConservat burned area covered by clouds (86 km²)

Landsat: 274 km² MCD45A1: 260 km² MCD64A1: 222 km²

Landsat and MODIS time series

Spatial patterns of burning

Vegetation types burned

Vegetation types burned

Ericaceous shrub burned

Erica shrubland

Burned inside park

Burned outside park

Wildlife habitat burned

Discussion

Errors and uncertainties

- Gaps in the Landsat record for the region.
- Scan line interpolation.
- Potentially omitted fires due to cloud cover.

Conclusions

- 35% of ericaceous vegetation burned in the Bale Mountains between 1995-2015, but few areas experienced repeated fires.
- LandsatLinkr expedites pre-processing, but data gaps and cloud cover remain challenging for time series analysis in remote, tropical alpine regions.
- Final products for partners:
 - Maps and spatial data of fire extent and frequency (1995-2015)
 - Spectrally comparable and composited tasseled cap time series (1973-2015)

Future work

Density analyses

Sentinel 2 data

Galama Mountains

Incorporate field data

Acknowledgements

Advisors

Dr. Paul Evangelista, Natural Resource Ecology Laboratory, Colorado State University

Partners

The Murulle Foundation

Natural Resource Ecology Laboratory, Colorado State University

Others

Nicholas Young, The Murulle Foundation and Natural Resource Ecology Laboratory, Colorado State University
Justin Braaten, Oregon State University
Brian Woodward, NASA DEVELOP
Dr. Amanda West, Colorado State University