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ABSTRACT

THE ECOLOGICAL LEGACIES OF DROUGHT, FIRE, AND INSECT DISTURBANCE IN

WESTERN NORTH AMERICAN FORESTS

Temperate forest ecosystems are subject to various disturbances incladoi@gents,
drought and fire, which can have profound effects on the structure of the ecosystemyfor ma
years after the event. Impaadkdisturbance can vary widely, therefore an understanditigeof
legaciesof an eventre critical in the interpretation of contemporary forest patterns anddhose
the near future. The primary objective of this dissertatiastwinvestigate the ecological
legacies of drought, beetle outbreak and ensuing wildfire in two different éaosyA
secondary objective of my researdata developmeniyas motivated by lack of available data
which precludectcologicalinvestigation of each disturbance.

| studied the effects of drought on deciduous and coniferous forest along a forest-
shrubland ecotone in the southern portion of the Wyoming Basin Ecoregion. The results show
that forests in the region have experienced high levels of cumulative drought retatality
over the last decade. Negative trends were not consistent across forestigpated
randomly across the study area. The patterns oftlermgtrends highlight areas of forest are
resistant, persistent gulnerable to severe drought.

In the second thread of my dissertation, | used multiple lines of evidence to
retrospectively characterize a landscape scale mountain pine beetle disténdrartbe 1970s in
Glacier National Park. The lack of spatially explicit data on this disturbaasewnajor data
gapsincewildfire had removed some of the evidence from the landscape. | used this information

to assesthe influence of beetle severity tre burn severity of subsequent wildfires in the



decades after the outbreak. Although many factors contribute to burn severityuhsy res
indicatethat beetle severity can positively influence burn severity of wildfire. iSHikely due

to the change iforest structure in the decades after the outbreak and ndiirastaesult oftree
mortality from the outbreak. The lorigrm perspective dhis study siggestghat ecological
legacies of high severity disturbance may continue to influence subsegtartance for many
years after the initial eventhis work also provides insight on future disturbance interactions
associated with the recent mountain pine beetle outlineakas impacted tens of millions of

hectares in western North America over st two decades
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CHAPTER 1: I ntroduction

1.1DISTURBANCE IN FOREST ECOSYSTEMS

A disturbance is considered a relatively discrete event that changes the resource
availability or physical environment and in turn disrupts the structure of an emosys
community or population (White and Pickett, 1985). Such an event can be abiotic (e.g. drought,
desiccation stress), biotic (e.g. insect or fungal agent) or some combinatientwbt(e.qg. fire),
and result in punctuated killing, displacement or damaging of one or more individuals of an
ecosystenfSousa, 1984). The spatial and temporal dynamics of disturbances over a period of
time that affect a given area or ecosystem are known as the disturbance(Tegimeg 2010).

The disturbance regime inclesl characteristics of multiple disturbances such as the spatial
distribution, frequency, return interval, rotation period, as well as characteosindividual
disturbances such as size, intensity and severity (Sousa, 1984; Turner, 2010).

Disturbances are key drivers of spatial and temporal heterogeneity asverades
because thegan alter ecosystem components and subsequent trajétiongr, 2010)The
ensuing landscape pattern influences the rate and pattern of energy flomt ytriieg,
wildlife and human responses, and susceptibility to subsequent disturbance (Turneleand Da
1998; Veblen et al., 1994). Disturbance can result in changes in species compositimiare ec
boundaries (Allen and Breshears, 1988) accelerate potential transitions teamalog
communities in the futur@Villiams and Jackson, 20Q07uch changes could have large
implications on the quantity, quality and distribution of habitat leading to impacts cespe
biogeography (Turner, 2010).

Large, infrequendlisturbances are a key mechanism for landscape pattern in forests

(Turner and Dale, 1998) due to the enduring legacies of physical and biologicairstruc

1



produced from such disturbances (Foster et al., 1998). In addition to the area impaaéed by t
disturbance, the biotic remnants or disturbance residuals contribute to the vegeteronrpat
forested landscapéBebi et al., 2003; Turner and Dale, 1998). Much of the literature focuses on
large disturbances, but legacies can persist at some level regardlesszef tdrequencyf

the disturbance (Turner et al., 1998). An understanding of specific disturbance impat¢ion pat
and legacy forms the foundation of basic landscape ecology research (1988

Furthermore, this information becomes critical when evalgatharacteristics of ecosystem
recovery from different types of disturbance (Foster et al., 1@88¢n that legacies can persist
for decades to centuries, past disturbance is important in explaining the predscdpe.
However, contemporary and recent disturbancepled with global climate change will likely

be key mechanisms of ecological dynamics well into the fifftuener, 2010).

Temperate forest ecosystems are subject to various disturbances such ag@misc
drought and fire (Allen, 2009; Foster et al., 1998; Logan et al., 2003). These disturbances
contribute to ecological legacies that can have profound effects on the stafdlue ecosystem
for many years after the evdiiiurner and @le, 1998) However, impacts and legacies of
disturbance can vary widely in extent, duration and severity over space an8upeeimposed
on this concept is global climate change which is expected to increase ratestoditurbance
(Dale et al., 2001; Overpeck et al., 1990). Therefore an understanding of disturbamseaede
legacies are critical in the interpretation of contemporary forest pattevater et al., 1998) and

those of the near future (~ 50 years).

1.2CLIMATE CHANGE AND DISTURBANCE EVENTS
Global climate change is expected to impact temperature and precipitation regimes and

increase the frequency of extreme evéiREC, 2007) Global mean surface temperature has



risen by 0.74 °C (+/- 0.18 °C) over the last 100 years; with the wamaiegver the last 50
years nearly double that of earlier in the century. However, warminghatesnot been steady
nor uniform spatially (different locations) or temporally (differentseea).Variability in global
precipitationhas not been uniform, and changes have been observed in the amount, intensity,
frequency and type of precipitatidRadiative forcing affectsvaporation and sensible heating
rates which influencéhe amount, frequency, intensity, duration, and type of precipitation of a
localized aregqTrenberth et al., 2003). Extreme events (values exceeded 1, 5, or 10% of the time)
are an expression of increased climate drig leading to changes in the frequency and
intensity of events. Decreased land precipitation and increased tempehatteeshhanced
evapotranspiration and the intensity, duration and spatial extent of drought hasthcreas
(particularly in the lastiree decadeg)PCC, 2007) The Palner Drought Severity Index
(Palmer, 1965) indicates that very dry areas have more than doubled since th@®&b&0al.,
2004) The El Niio — Souther®scillation(ENSO) was responsible in part for ghreecipitation
decrease in the early 198@sit surface warming is cited as the primary cause after the mid
1980s(Dai etal., 2004). In the late 1990s and early 2000s, over half of the coterminous United
States experienced moderate to severe drought conditions with f@coehsrecord)breaking
precipitation deficits throughout the western part of the country (Cook et al., 2004)véhis e
brought attention to drought vulnerability in the send western United Statéa/arming
accelerates land surface drying which increases drought po{#@#t, 2007)therefore an
increase in warming could result in elevated aridity in western North Aa(&ook et al.,
2004).

Regional climate models (RCMs) project that all of North America is likely to warm

during this century, with annual mean warming surpassing the global meanf wermng in



most area$§lPCC, 2007). Global and regional simulations predict that a 1 to 2.5 °C increase in
temperature by midentury will have a strong impact on snowpack in the western United States
(Leung et al., 2004 s a esult of delayed autumn snowfall, earlier spring snowmelt and changes
in precipitation form(IPCC, 2007) Even small changes in temperature and precipitation can
magnify impacts to snowpack and runoff on monthly and seasonal time scales due to various
surface hydrimgical and laneatmosphere feedback procesfe=ung et al., 2004). RCMs using

the A2 emission scenario project that the increase in atmospheric conoesatadtyreenhouse
gases will result in a dramatic increasextreme heat events, decreases in extreme cold events
and increases in extreme precipitation evédienbaugh et al., 2005). Although largeale

climate dynamics govern these chas, finescale climatesystem modifiers will also play a part,
especially in the topographically complex terrain of the western UniteesStaiffenbaugh et

al., 2005).

Many disturbances have a significant climate forcing and research overttbeulple of
decades has demonstrated that disturbance regimes are in a phase of rapid@ ahagg010).
Three major disturbance types that are of interest for my research are berlobibeeaks,
severe drought and fire. Bark beetles (Dendroctonae) are directly vuineral$ruption by
climate change due to impacts on developmental timing, cold tolerance and haisiticticts
(Bentz et al., 2010; Hicke et al., 2006; Logan et al., 20@8)rect effects of climate include
hostiree vigor and other community associgisntz et al., 2010). Severe drought in the early
part of the last decadcontributed to stress, dieback and mortality across diverse forest types
(Allen, 2009; Breshears et al., 2005; Gitlin et al., 2006; Michaelian et al., 2011). The frequency
of large fires in the western United States has increased due to warmingatengseearlier

snowmelt, and longer fire seasdhgtell et al., 2009; Westerling et al., 2006&uture



predictions indicate that fires may become more frequent and severe, leaungltbre-
climatevegetation relationships (Lutz et al., 2009; Westerling et al., 2&REeRearch on
interactions among disturbances has increased in recen{S$eaesd et al., 2011)yet

understanding interactions remains a key challenge in ecology (Turner, 2010).

1.3RESOURCE MANAGEMENT AND FOREST DISTURBANCE

Climatic means and variabilighape patterns in vegetation through the seabataice
between energy supply anwbisture(Stephenson, 1990Climaie exerts topdown control on
ecosystem pattern and processl vegetation is vulnerablew@ter stresfrom drought and
warm temperature@llen, 2009). If water for growth is not available, the energy acts to heat and
stress the plar{Stephenson, 1990%evere drought in the early part of the last decade was the
mechanism for disturbance through tree stress, dieback and mortality across fdikest types
(Allen, 2009; Breshears et al., 2005; Gitlin et al., 2006; Michaelian et al., 2011). Drought has
indirect effects on other disturbances including bark beetles and fire. Dredgles hostree
vigor whichincreases insect attack probabiliBentz et al., 2010). Drought contributes to
flammability of fuels and decreased snowpack, resulting in longer firerssastell et al.,
2009; Westerling et al., 2006). Therefore in this framework, drought is considered both an
indirect mechanism for other disturbance types as well as a disturbanceavsterdsought
circumstances.

Current forest managers are faced with increasing levels of uncertaitythat future
landscapes will likely be different from both the past and present (Milkdr, 2007). The use
of historical range and variability (HRV) hafien been employed by land managers (Keane et
al., 2009), but this idea may no longer be appropriate where future, no-analog communities do

not reflect historic conditions (Williams and Jackson, 2007). A contrasting appmgain



insight into future landscapes uses predictive models. Predictive models have prolidbbva
information on future impacts, but have been criticized in the use of assumptions amtl limite
knowledge (Sinclair et al., 2010). The study of recent events falls somewhererbétR¥ and
predictive models and has the potential to reduce levels of uncertainty as we mave into t
future. Analyzing recent events may provide resource managers thesalssicrview of

landscapes over the next 50 years.

1.4REMOTE SENSING OF FOREST DISTURBANCE

Remote sensing is the collection of information about an object, wilieing indirect
contact with the object. Disturbance alters ecosystem structure by both abngpticuous
change and by gradual, slow change over some period ofSirde.impacts allow remote
sensing to capture the pre- and post-disturblmmscapeand in some cases, the duration of the
event.Theneedto measure change over spaceléar, but the ability to measure change over
time isparamount to remote sensing of forest disturbance. Consideration of spatial anéitempor
scale isa prominent theme in the work presahin this dissertatiomisturbance such as
wildfire or land cover change may occur very quickly and result in conspicuous change.
However,the impact oflisturbances such as drought or insect outbreaks may not be realized
until thetimeframe ofstudy is expanded.

The remote sensing archive is a great resource for my warkieh of the research
presented in this dissertatibas a focusn retrospective analysis of events that occurred over
the last 40 year#\vailable imagery represents tradeoffs between spatial, temporal and spectral
resolution.Multispectral imagergombined with temporal trend analysis provides high utility to
assess impacts forest vegetation from drought, fire, and insect damage. Aerial photography is

a valwable research tool that provides detailed records of forest landscapes overtthlk las



century. Although limited in spatial extent, such records can provide a snapshot bbdictuat
one or multiple points in time. This information can be scaled up to lower spatial ie@sdbuit
increased spatial extent of satellite imagery. Scale is an integral part of eabtegearch

(Levin, 1992), and the ability to scale up from logeadas to regional landscapes is critical to our
understanding of ecosystems (Turner, 2010; Wilson et al., 2010).

Various types of open or freely shared remotely sensed data are utilizesd in thi
dissertationtraditional landscape photos, digital and hardcopy aerial photos, and a number of
satellite imagery platformd.&ndsat Multispectral Scanner (MSEandsat hematic Mapper
(TM), Landsat Bhanced Thematic Mapper{i+), LandsaOperational Land Image©O(l),
Systeme Pour I'Obseationde la TerrdSPOT5), and Moderate Resolution Imaging
SpectroradiometeMODIS)). The value of historic records should never be underestimated and
the opportunistic scientist might find value where others do not. Had it not been herdie
actions of one &k Service employee during an office cleanupeay importanset of aerial

photos would have been discarded and never found its way into Chapter 4 of this dissertation.

1.5RESEARCH MOTIVATION AND OBJECTIVES

Numerous studies highlight thelua of spatially explicit research dssturbance impacts
are not uniform over time and space. For example, the 1988 fires in Yellowstone Nati&nal Pa
burned a very large area50,000 ha) but 75% of the burned area was less than 200 m from
unburned forest which has large implications for gimstregeneration(Turner et al., 1994)n
northernNew Mexico,the ecotone between ponderosa pine forest and pinyon-juniper woodland
seen on the landscape today shifted by upwards of two kilometers following a drought in the
1950s. Such information is valuable to a wide audience spanning local resource nanagers

national policy makersgvly work aims tocontribute to this field through several lines of research



addressed in this discussidrne overall goal of this dissertatieto uncover the ecological
legacies thatecentdrought, insect outbreaks and fire havdarestedecosystemslhese
disturbances are major issues in the two regions of study and will continue to denav&vinto
an uncertain future. It is my hope that teeearcltontributes to an ecological understanding of
the subject matter, but also provides a framework for retrospettislg of ecosystem
disturbance than can be applied to other ecosystems. My research is furtheteohbiradack

of available data thdimit investigationof these questions. | use a combinattbremote

sensing, geospatial and statistical analysdeteelopdatasets that can then be useohvestigate
largerecological questions. The twoajor threads of mglissertation resear@re summarized

below.

Drought in the ForestShrubland Ecotone- Little Mountain Ecosystem
What are the spatial and temporal effects of recent drought in a forested ecosystem expected to
be vulnerable to climate change?

In the southern part of the Wyoming Basin Ecoregion, referred to as the Little afount
Ecosystem (LME), relatively small patches of deciduous and coniferowss ém@ir on moist
sites in a matrix of sagebrush steppe. Multiple entities have identified the regiquriarity
area for conservation given the important habitat it provides many wilgiiges. The ardaas
experienced a relatively dry periothige 2000, punctuated by two years of extreme drought.
Lack of aspen regeneration due to high rates of herbivory is a local conceittieyatténtion
has been given to the effect of top down controls on the condititwe fafrest across the region.
Recent droughtelated mortality of aspen has been documented in western North America
(Michaelian et al., 2011; Worrall et al., 20@8)d nmultiple studies have also documented an

increase in mortality rates of coniferous species throughout the westerd Btates over the



later part of the 2@century(AIIen and Breshears, 1998; Breshears et al., 2005; van Mantgem et
al., 2009) Theseevents are driven by increased water deficit associated with drought, but
secondary agents such as bark beetle outbreaks have also contributed to mnostatie areas
(van Mantgem et al., 2009). Mortality has been observed in the LME, but the extentiagd tim
has not been documentdde effects of climate change are expected to be most rapid and
extreme at ecotones in searid areagAllen and Breshears, 1998; Gosz, 19829 the current
climate profile for several of the dominant tree species are predicted tedtky ¢imited omo
longer present over the course of the next century (Crookston et al., 2010; Relzie| &0€9).
Ecotones are important barometers of climate ch@g©N, 2000) and stress, dieback and
mortality are expected to accompany severe drought in this arid landscape. ®eeatatudies
have found the use of a temporal remotely sensed data to be effective in monitoring drought
induced changes in arid forests (Lloret et al., 2007; Maselli, 2004; Vogelmann et al., 2009;
Volcani et al., 2005)My primary objective is to quantify the spatial and temporal effects of
drought on the forests of the Little Mountain EcosystB&gional climate is mediated by local
topography, and Ira alsointerested in the influence of thesettom-up controls during drought
periodsacross theomplex terrain of this senrairid area. Howeverggional land cover datadd
not provideadequate detailsn forest cover to address our objective. Therefaganitial

objective was to develop new data which accurately portrayed the amoyp#tterd of forest
cover inthe areawhich | used to adass the primary objective.

Mountain Pine Beetle Outbreak and Wildfire — Glacier National Park

Did the severity associated with the 1970s mountain pine beetle outbreak affect the burn severity

of subsequent wildfiresin Glacier National Park?



The influence of mountain pine beetle on past fire activity (Lynch et al., 2007) and future
fire probability (Simard et al., 2011) has been explored in Yellowstone NationalriRhaditreer
areas of western North America, yet similar work has not been conducsatier National
Park(GNP) The 1970s mountain pine beetle outbrea&MPwas a high severitglisturbance
that covered 1400 kh{28% of the park) by the end of the decade. However, the aerial survey
data from that time did not containyameasur®f severitysowe cannot determine
heterogeneity of the disturbande.the decades after the outbreak, fire was frequent on the
landscape as 27% of the forest in the park burned between 1984 andI20CG&:k of spatially
explicit data on the beettmitbreakrepresents a major data gap amtabits our ability to
investigae the influence of beetle severity on subsequent fire. Recent research has garnered
positive results tracking the recent (~1996-209tleoutbreak using temporal Landsat TM
data(Goodwin et al., 2008; Huang et al., 2010; Meigs et al., 208 h)ajor challengef this
analysis is t@econstruct the extent of a disturbance in which most of tiderse has been
erased through subsequent disturbance. The initial objective was to reconstruarharekt
severity of the beetle outbreak. In the second phase of analysis, | used the model akoutbre
severity developed in tHest phase to assesstinfluence of beetle severity on the burn severity

of succeeding wildfires.

1.6 DISSERTATION LAYOUT
This dissertation consists six chapters. This chapterh@pterone) introducethe
concept of ecologidalisturbance in forest ecosystems. Further discussion outlines the influence
of climate change on forest disturbance and implications to resource manageméne traaut
utility of remote sensing in forest disturbance researatthe motivationbehindmy dissertation

researchThere are twandysis chapters devoted to each geographic afetudycovered in

10



this dissertation. The first chapter (two and four) of each geographicas@agnimary focus on
modeling an ecological variable of interdsn the new datasets are usedddressheprimary

ecological questiongf eachstudyarea(chapters three and five).

In Chaptertwo, | present framework that incorporates aerial photos and satellite
imagery to model dominant forest cover at local scales across adbrebtand ecotone in the
southern portion of the Wyoming Basin Ecoregféssal et al 2015).I developed probability
of occurrence models fdorest type and¢ombined the outputs into a synthesis map that captures
the functional type, size, and distribution pattern of forest cover in a spat#dgogeneous
landscapeThe output addressed an important research need and provides managers with an
important tool to support conservation and monitoring efforts across management unit
boundariesTo explore the utility of my findings, | compared my results with basitiosef
forest covederived from several regional land cover datasetss information is presented in
Appendix Aof the dissertationin the third chapter,dssessed the relationship between remotely
sensed indices arittld measuredorest characteristic§ hen | usedhteindexin trend analysis
of a longterm satellite dataséb uncover the location, direction and timing of fordsirge
associated with drought. Tlaaalysis identifies spatially explicit patterns of lebegm trends
anchored with ground based evidencaitghlight areas of forest #t are resistant, persistent or
vulnerable to severe drought. The results provide atemg-perspective for the resource
management of this area and can be applied to similar ecosystems througiteut Werth

America.

Thefourth chapter and fifth chapters are devoted to questions related to mountain pine
beetle and wildfire disturbance in Glacier National Phrichapter four, | presemh approach

that incorporates multiple lines e¥idence to retrospectively characterize the landscape scale

11



mountain pine beetle disturbance of the late 1970s and early 1980s (Assal et al., 2014). Then
use thiddatasetn chapter five taetermine if beetle severity had a measureable influence on
burn severity in wildfires in the ensuing decades after the outbreak. Theelomgerspective of
thestudyshowsthat ecological legaciesf a prior high severitpeetle outbreakay continue to
influence subsequent disturbance for many years after the initial everiindings of he

dissertatiorare summarized in chapter six.
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CHAPTER 2: Mapping Forest Functional Type in a ForestShrubland Ecotone using
SPOT Imagery and Predictive Habitat Distribution Modeling*

2.1SUMMARY

The availability of land cover data at local scales is an important component in
forestmanagement and monitoring efforts. Regional land cover data seldom provide
detailed information needed to support local management needs. Heresert a
transferable framework to model forest cover by major plant functional typg asrial
photos, multi-date Systéme Pour I'Observation de la Terre (SPOT) imaggkry, a
topographic variables. We developed probability of occurrence models for deciduous
broadleaved forest and needkeaved evergreen forest using logistic regression in the
southern portion of the Wyoming Basin Ecoregion. The model outputs were combined into
a synthesis map depicting deciduous and coniferous forest cover type. \Maaxvéhe
models and synthesis map using a field validated, independent data source. Resetts show
strong relationships between forest cover and model variables and the syntipesissma
accurate with an overall correct classification rate of 0.87 anérCokappa value of
0.81. The results suggest our method adequately captures the functional type] size a

distribution pattern of forest cover in a spatially heterogeneous landscape.

1 A version of this chapter was publishedRemote Sensing Letterson 21 August 2015,
available onlinehttp://www.tandfonline.com/doi/full/10.1080/2150704X.2015.1072289
Assal, T., Anderson, P., Sibold, J., 2015. Mapping forest functional type iast for
shrubland ecotone using SPOT imagery and predictive habitat distribution madelling
Remote Sens. Lett. 6, 755-764. doi:10.1080/2150704X.2015.1072289
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2.2 INTRODUCTION

Land cover data provides the foundation for a widkeety of geographical analysis and
science applications. There have been several national and regional land coweg mapp
initiatives over the last two decades, most notably the National Land Datedsase (NLCD)
(Jin et al, 2013) LANDFIRE (Rollins, 2009) and ReGARDavidson et al., 2009 hese
products have provided tremendous utility in studies documenting land cover ¢Radgé&off
et al, 2005) effects of climate chand&Vylie et al, 2014) vegetation chang@radley and
Fleishman2008) and conservation planni(®toms 2000). However, in some heterogeneous
ecosystems, they lack the spatial resolution needed to adequately charaderxterthand
juxtaposition of land cover. In the Wyoming Basin ecoregion, small areas of doedfsiund
within sagebrush shrubland at higher elevations which are difficult to adeqciadescterize
using regional land cover data.

Plant functional types (PFTs) are groups of species that share simitanistl, physiological
and phenological traits (Barboet al, 1999). PFTs provide a framework to consider how
species utilize resource availability and respond to environmental change anemamiad\t
the stand scale, multispectral remote sensing can be used to delineate thehgldietween
vegetationstructure and physiology of PFTs, linking biophysical properties to ecoltigezay
(Ustin and Gamon, 2010predictive habitat distribution modeling offers the potential to assess
the current extent of species as well as effects of global climateechadgther change agents.
However, a challenge is to better link remote sensing data to underlyingieabtetationships
and describe the distribution of species along environmental grafifgmtmermann et a|.

2007). Incorporating remote sensing variables in the modeling process alltwsikis full
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advantage of continuous gradients to delineate biophysical properties @tveystich as leaf
shape, structure, longevity and chlorophyll content (Jones and Vaughan, 2010).

We explored the potentiaf fine-scale remotely sensed spectral data in predictive habitat
distribution modeling of forest cover type across a forest-shrubland ecotone. TheTsvofPF
interest in the study area are deciduous bteaded forest (referred to as deciduous forast)
montane needle-leaved evergreen forest (referred to as coniferous Wiesypothesized that
the delineation between forest functional type would be aided with the addition of mpdirtd
remote sensing predictors due to differences in phenology between deciduous anduonif
speciegBergen and Dronov007; Zimmermann et alR007). The major goal of the study was
to develop an operational mapping framework using aerial photos coupled wisicdiee-
satellite imagery to efficiently model donaint forest cover. The specific objectives were to: 1)
develop probability of occurrence models for deciduous and coniferous forest; and 2) to combine

model outputs into a fieldalidated synthesis map depicting forest cover type.

2.3 STUDY AREA

The study area, managed largely by the U.S. Bureau of Land Managementeis iloca
the southern part of the Wyoming Basin ecoregion, spanning parts of southwegtenmg/
northwestern Colorado, and northeastern Utah (Figure 2.1). Several prominent ridgas form
transition zone between basins and mountainous areas (Knight, W@4¢ several species of
trees exist at the xeric fringes of their respective ranges. Forests are domynaitber aspen
(Populus tremuloides) or several coniferous species, namelyadpibe fir (Abies lasiocarpa),
Douglasfir (Pseudotsuga menziesii), and lodgepole pind{(nus contorta), that occur as
relatively small patches on moist sites in a matrix of mountain sagelwisimiGa tridendata

Spp vaseyana) or mixedspecies shrublands. Scattered junidanifoerus communis var.
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depressa) and limber pineRinus flexilis) woodlands, distinct from the montane conifer forest,

are found on rocky slopes at lower elevations and small patches of man&estdstgphyl os

patula) are found irthe southern part of the study area. The area has a midlatitude steppe climate
with a substantial portion of the annual precipitation occurring as snow. Multifgeasic

federal agencies, along with the Wyoming Landscape Conservation Veitjadici.goy), have

identified the region as a priority area for conservation given the importaitdthaiprovides for

many wildlife species. Drougitelated mortality of aspen is a concern in western North America
(Worrall et al, 2008),and lack of aspen regengoa due to high rates of herbivory is a concern
locally. Active management seeks to address these concerns and locally accusaiefarapt

cover type are critical to support conservation and monitoring efforts.
2.4 METHODS

2.4.1 Explanatory Variables

We identified a contiguous area (1,088%mgreater than 2,300 m in elevation known to
encompass the forest communities of the study &igare 2.1). We explored the relationship of
topographic and muliitate remotely sensed variables to forest prestrat have had utility in
other SDMgTurner et al.2003; Zimmermann et akR007; Jarnevich et al., 2014; Engler et al.,
2013). Topographic variables were derived from a 10 m National Ele\Rdimseand remotely
sensed variables were derived from terrain corrected Level 1 T SPOT 5 HRiGsatagery,
acquired at no coguUSGS 2014) (Table 2.1). We obtained two clouele dates during leafn
(07 September 2010) and leaf-off (19 October 2010) conditions from two SPOT scenesd (KJ gri
555-267; 555-86). Each of the four images were geometrically registered to National
Agriculture Imagery Program (NAIP) aerial photos using 20-25 ground contrdkpeith a root
mean square error of less than 0.5 pixel. A toptofesphere correction was applied to each
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image to account for differences in sensor and viewing dWgléder et al. 2006; Vogelmann et
al.,, 2012; Sankey et al., 2008).

Remotely sensed spectral bands and derived vegetation indices often exhibidigybfle
collinearity (Engler et al.2013). Multicollinearity among all potential explanatory variables
was assessed prior to model calibration using the Pearson’s correlafftnierdeVariables
with a correlation coefficient greater than 0.8 or less than -0.8 were removedfieideration
within the same modélarnevich et al2014). All of the analysis was conducted using the R

statistical packagéR Development Core Team 2013).

2.4.2 Sample Data

ReGAP land cover data was reclassified into eight land cover categorieslifigcl
deciduous and coniferous forest), and we used a stratified random selection proceduresto ensur
an unbiased distribution of sample plots (10 m x 10 m, congruent with a SPOT pixel) across land
cover types. Our objective was to capture-ficale patterns in thetudy area, while minimizing
the impact of spatial dependency between observations. We used a total of 545 plots, with a
minimum distance of 250 m (25 pixels) between each plot, to develop presence and absence
records. We interpreted recent aerial phapgs (natural color and infrared NAIP) and
classified each plot as deciduous forest, coniferous forest, or non-forest. Mixad<oret
found at broad scales in the study area, and it is difficult to reliably clas&@ym NAIP plot as
mixed forest. Absence records for deciduous forest included both non-forest and coniferous
forest plots, whereas absence records for coniferous forest included non+dréstauous
forest. We extracted the values of the 19 predictor variablddd 2.} at each sane location.
The respective leadn and leabff periods for each band exhibited high collinearity. Leaf-on

bands 1, 2, and 4 were also highly correlated along with leaf-on NDVI. We opted to use leaf-on
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bands over leaf-off, although leaf-off data was incorporatedAiNf@VI (Table 2.). We
retained band 1 over band 2 since information from band 2 is incorporated into the NDVI
variable. This selection process resulted in 13 variables for consideration ZI§biacluding
longitude and latitude to accouort spatial autocorrelatiofKnapp et al.2003; Hu and Lo,

2007).

2.4.3 Data Analysis

Logistic regression is a widely used method to predict the probability of a diotnasom
variable (i.e., presence, absence of a forest cover type) that has been usedsrdseoution
modeling (SDM)Engler et al.2013; Jarnevich et al., 2014; Stohlgren et al., 2010) and other
ecological studiegTurner et al.2003; Wulder et al., 2006; Dubovyk et al., 20Me used a
multivariate generalized linear mod&@l(M, binomial distribution, logit link function) to create
independent models of deciduous (DECID) and coniferous (CONIF) forest cover in the stud
area. We modeled each cover type independently to maximize information comaimed i
continuous gradierdf biophysical characteristics of these systems. The full datasei45)
was used for model calibration. To simplify the interpretation of the logistic modelpmverted
the regression coefficients into odds ratios, then calculated the percerg ichadds(\Wulder et
al., 2006). This approach identifies the percent change in the probability of a pixel containing
deciduous or coniferous forest relative to changes in independent variables.

We tested several models for each type of forest cover, using different coorisrati
predictor variables below the acceptable collinearity threshold. For each nstdetard
stepwise selection by Akaike’s Information Criterion (AIC) was usedlézisie best subset of
independent variables and we calculatetiavee inflation factors (VIF) to ensure all model

variables had a value below(Bubovyk et al., 2013)Iin logistic regression, spatial
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autocorrelation violates the assumption that observations are independent and can cause
unreliable estimates of the nalgarameterHu and Lg 2007) We evaluated spatial
autocorrelation using the Moran'statistic on each model using Pearson residuals which are
comparable to residuals of linear regression models. The neighborhood strudterspztial
weights matet was defined using inverse distar{éessal et al.2014).

The two selected models produced a continuous surface with values between zero and one
corresponding to the probability of a pixel containing either deciduous or conifereat e
used an indpendent datas@t=321) representing coniferous, deciduous andfocest
observations to evaluate each model. The reference datsebmpiled from observations of
related studies that were visited in the field between 2010 and 2013. We randomly d€l6cte
presence and 100 absence points of the respective forest cover type for each maulgate cal
the receiver operator characteristic area under the curve (AUC). For eaeh wedelected a
threshold where the sensitivity was equal to the spawificiu et al, 2005) (i.e. the number of
false positives were equal to the number of false negatives) to convert eaclouatpdeinto a

binary map of presence and absence.

2.4.4 Synthesis Map
The binary maps from the two models were combined into a synthesis map of deciduous
and coniferous forest cover. If a pixel was predicted to contain both forest typ&s]ues from
each model above the presence threshold were linearly rescaled from 0 to 1. Thgoeowéht
the highest occurrence probatyilwas then assigned to the pixel (Engler et2813). Within
each cover type, pixels were assigned to neighbors in all eight directioeerf'g move’) to
identify contiguous forest patches. Patches of three pixels and greateetaered in order to

minimize small, likely incorrect classified areas. We used the full, validdatase{n=321) to
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build a confusion matrix to calculate the overall classification accuratahen’s kappa

coefficient on the synthesis map.

2.5 RESULTS

Forest cover typwvas best predicted by a combination of topographic and spectral variables,
and the two models included several common variables selected through the model fitting
processTable 2.2). The residuals of both models exhibited very weak or no spatial
autocorrelation (DECID; Moran’s=0.005,p=0.052; CONIF; Moran’$=0.001,p=0.38). Aspen,
the only deciduous forest type present, have a clonal growth form which producegdluste
patches of deciduous forest in the study area. Both of the models had high aatilrad¢yC
values of 0.92 for DECID and 0.99 for CONIF. The percentage changes in the odds ratio for
model variables are shown in Table.Zl'ke DECID model indicated that the presence of
deciduous forest is mainly associated with high values in the NIR band (band8)eabrth
facing slopes, and high valuesaiDVI. Deciduous forest is more likely to be found in areas
higher in elevation, particularly moderate elevations (classes 3 and 2).ote¢ aiso indicated
that deciduous forest was less likely associated with higher values in émebgired (band1l.leaf-
on) and higher TPI values, found along ridge lines and hilltops. The CONIF model indicated
presence of coniferous forest is mainly associated with high values in (ND¥il.leaf-on),
TPI and elevabn and less likely associated with high values in the NIR band (band3.leaf-on)
and areas that experience a higher HLI.

A comparison of the output maps, derived from the binary models, revealed high eaparati
between the two models. Less than 1% of iaktls in the study area were predicted to contain
both deciduous and coniferous forest. The comparison indicated satisfactory agredmamt w

overall classification accuracy of 87%aple 2.3 and a Cohen’s kappa coefficient (Cohen
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1960) of 0.81. Our synthesis map identified 61.7 kfiforest Figure 2.2). Deciduous forest
accounts for 44% (27.2 Kinof total forest cover, while the remaining 56% (34.5kis

coniferous forest. There are over 7,000 patches of deciduous forest compared to less than 2,400
coniferous forest patches, and the mean patch size is much smaller for deciduous (£).004 km

compared to coniferous forest (0.015%m

2.6 DISCUSSION

The spatial resolution (10 m) of the SPOT imagery appeared particularbpappe for
identifyingthe extent and pattern of forest cover in this highly heterogeneous ecofysfera
2.3). The models performed well and had little overlap between forest functional types
Furthermore, we considered spatial autocorrelation in our framework whicknsoviriooked
in SDMs. The inclusion of latitude and longitude in the model, as well as treatagi@heas an
indicator variable, accounted for spatial autocorrelation in the models. Caisidef plant
physiology and species traits illuminates thel@gical context of biophysical variables that were
captured with leabn and leabff SPOT imagery. Due to differences in seasonal phenology,
deciduous forests are more likely to be associated with areas that haverdNKkJebetween
leaf-on and leaf-off periods. Aspen leaves absorb more radiation (and refl¢a lgsgreen
region of the electromagnetic spectrum compared to sagebrush and grassiEn@daohes and
Vaughan 2010). Therefore, deciduous forest is associated with lower values in the green band
(bandl.leaf-on) compared to shrubland and grasslands. Coniferous forests have higher NDVI
values than grassland and shrubland, especially late in the growing seasohenbafidn
image was acquired. Although deciduous forests have a higher NDVI than conifeests, fo
NDVI was not as important in DECID, which also incluagdDVI and the NIR band

(band3.leaf-on). Coniferous forests do not reflect as much radiation as aspemfasstind,
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and sagebrush and, therefore, are more likely to be associated with lower vdtedsIR t
(band3.leaf-on).

In our synthesis map, the non-forest class had the lowest producer’s actwegmr¢entage
of reference observations correctly mappeéde to Type 1 errors (i.e. false-positives) in the
deciduous forest class (Table 2.Bhe DECID model incorrectly classified some small acdas
manzanita, non-forested riparian areas, narrow, linear bands of deciduous shrubslamg one
herbaceous wetland. There is a traffdbetween capturing small patches of deciduous forest and
incorrectly classifying some small areas with similar spéetlues to deciduous forest. In
future work, our methodology could be improved with additional information that disctesina
between herbaceous wetlands and deciduous forest. The deciduous forest class hastthe lowe
user’s accuracy (the percentage @mbocations correctly identifiedjue to several type Il errors
(i.e. falsenegatives). The higher rate of misclassification might be explainduebypen canopy
of aspen forests compared to closed, dense coniferous forest. Furthermore, spre@adpe
observed in the field had a substantial amount of canopy dieback and tree motakty. A
forests with highly reduced leaf area at the time the satellite image was adviesidwer
reflectance values and therefore tend to be mapped d@smsh Although this can be a
drawback, it highlights the value of our methodology to capture changes in asperi forest
scale imagery is available over an appropriate time pefioel CONIF model performed very
strongly as needikeaved species have a closeshopy that forms dense stands. A few
exceptions include several conifer stands dominated by Dofigthat experienced high
mortality in recent years due to infestation of the Dougtdseetle Dendroctonus

pseudotsugae).
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2.7 CONCLUSIONS

We have presged a framework that incorporates aerial photos and satellite imagery to
model dominant forest cover at local scales across a-&hagbland ecotone. Our modeling
process offers a powerful alternative to traditional image claasditand our synthesmap
provides managers with an important tool to support conservation and monitoring effasts acr
management unit boundaries. Our study highlights the advantages of using physiplogica
relevant remote sensing products in predictive modeling and addras important research
need (e.g. high-resolution remote sensing of aspen distribution, (KulakewkP013)) We
conclude that our approach is suitable to characterize the extent and juxdapuidirest cover
in a highly heterogeneous ecosystem. Furthermore, our framework utilizes opss aerial
photos and satellite data. In this way it is transferable to highly heterogeswamystems to
develop critical baseline tree cover data that can be updated at regular intervaigao time

effects of disturbance and lorigrm ecosystem dynamics.

Any use of trade, firm, or product names is for descriptive purposes only and does not imply

endorsement by the U.S. Government.
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2.9 TABLES
Table2.1. Description of the eignatory variables considered in the analysis.

Variable Description
Spectral variables
Bandl.leaf-on* Green bandQ.50 pm - 0.59 pum)
Band2.leaf-on Red band (0.61 pm - 0.68 pm)
Band3.leaf-on* Near infrared band)(79 pm- 0.89 um)
Band4.leaf-on* Short wave infrared bandL(58 pm - 1.75 pum)
Normalized difference vegetation inde| NDVI = (B3 reflectance- B2 reflectance )/(B3
(NDVI.leaf-on*) reflectance + B2 reflectanc@ousse et al., 1974)
Bandl.leafeff Green bandQ.50 pm - 0.59 um)
Band2.leafeff Red band (0.61 pm - 0.68 um)
Band3.leafeff Near infrared band)(79 pum- 0.89 um)
Band4.leafeff Short wave infrared band (1.58 pm - 1.75 um)
Normalized difference vegetation inde| NDVI = (B3 reflectance- B2 reflectance )/(B3
(NDVI.leaf-off) reflectance + B2 reflectanc@ousse et al., 1974)
ANDVT* ANDVI = NDVljeaton— NDVI eatoff
Topographic variables

Elevation* Derived fran National elevatiowlataset
Slope* Derived from National elevatiotataset
North exposure* Cosine transformation of aspect
East exposure* Sine transformation of aspect

Potential direct incident radiatioMECune and
Heat load index (HLI)* Keon, 2002; equation 3)

A measure of slope position and landform type w
Topographic position index (TPI)* respect to adjacent grid cells
Longitude* Longitude at cell centroid
Latitude* Latitude at cell centroid

Notes: Leafon variables were acquired from thé 8eptember 2010 SPOT image; le&f-

variables were acquired from the 19 October 2010 SPOT image. All variables Ipatala s
resolution of 10 m. The native resolution for band 4 is 20 m, but it was resampled to 10 m using
a nearest neighbour transformation.

*Indicates variable was utilized in the modeling process.
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Table2.2. Predictor variables used in the logistic regression models.

DECID model CONIF model
Change in Change in
Explanatory variable Coefficient | odds (%) | Coefficient| odds (%)
Soectral variables
NDVl.leaf-on - - 1.9164* 580
ANDVI 0.3327* 39 -0.2914 -25
Bandl.leaf-on -4.261* -99 - -
Band3.leaf-on 3.068* 2050 -3.7485* -98
Topographic variables
TPI -0.5016* -39 0.8194* 127
HLI - - -0.7466* -53
North exposure 0.8654* 138 -0.6963 -50
Longitude -6.866>* - - -
Latitude -1.24€"% - - -
Elevation**
Class 1 (low) - - - -
Class 2 (low to moderate) 5.053* 15549 0.3221 38
Class 3 (moderate to high) 5.591* 26700 1.7885 498
Class 4 (High) 4.409* -8119 3.5633* 3428

Notes: Estimates of the model parameters are listed for each model accotgivglyes are
significant at 0.05 or lower. **Elevation is treated as an indicator varidi#gesfore the percent
change in odds for each class can only be compared to the reference elevationadadsy.(C
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Table2.3. Confusion matrix for the synthesis forest cover map.

Classified as:

Producer’s

Deciduouws | Coniferous | accuracy
Field data Non-forest forest forest (%)
Non-forest 95 24 3 78
Deciduous forest 6 86 5 89
Conifer forest 0 2 100 98
User’s accuracy (%) 94.1 76.8 92.6 87

Note: bold values in the matrix diagonal highlight the correctly predicted samples
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2.10 FIGURES
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Figure2.1. Location of study areblote: approximately 50 kfnof nonforest were omitted from
the southeast corner of the study area due to the extent of the SPOT image.
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Legend
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Figure2.2. Results of the model outputs combined into the synthesis(ajapttle Mountain,
(b) Middle Mountain and portions of Diamond Peak, (c) Pine Mountain and (d) Cold Spring
Mountain.Note: each map panel is displayed at the same scale.
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Figure2.3. Comparison of forest type maps derived from each data source of a repuesentati
area of he landscape on Little Mountain. (a) 2009 color-infrared aerial photo (National
Agriculture Imagery Program) where dark red/black hues indicate conifien@ss, red hues
indicate deciduous forest, grey/light red/blue hues represent non-foreb) &IRI3S synthesis
map.Note: each map panel is displayed at the same scale and extent.
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CHAPTER 3: Spatial and Temporal Analysis of Drought Effects in a Heterogesous Semi-
Arid Forest Ecosystent

3.1SUMMARY

Drought has long been recognized as a driving mechanism in the forestseshvixesth

America and drought-induced mortality has been documented across geneeatiyears.

Given the frequency of these events are expected to increase in the futurgtanddey patterns
of mortality and plant response to severe drought is important to resource mabemgeyht can
affect the functional, physiological, structural, and demographic propertiesest tarosystems.
Remote sensing studies have documented changes in forest properties due to direceand indi
effects of drought; however, few studies have addressed thisahscales needed to
characterize highly heterogeneous ecosystems in the-ftmediland ecotone. We analyzed a
22-year Landsat time series (198812) to determine changes in forest in an area that
experienced a relatively dry decade punctuated by two years of extremetdvdagissessed

the relationship between several vegetation indices and field measured ciséicac(erg. plant
area index and canopy gap fraction) and applied this index to trend analysis ta timeove
location, direction and timg of change. Finally, we assessed the interaction of climate and
topography by forest functional type. The Normalized Difference Moistuiex (NDMI) had

the strongest correlation with shoetm field measures of plant area inde £70.64) and
canopygap fraction (R= 0.65). Over the entire time period, 25% of the forested area
experienced a significant (p < 0.05) negative trend in NDMI, compared to less than 10% in a
positive trend. Negative trends were not consistent across forest functianas gyfarger

amount of coniferous forest was impacted by negative trends than deciduous tutsrrs

2 A version of this chapter wasibmitted td-orest Ecology and Management.
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aspects were least likely to exhibit a negative trend and north aspects wepeavalent. Field
plots with a negative trend had a lower live density, and higher amounts of staratirende
down trees compared to plots with no trend. Our analysis identifies spatgalilsitgxatterns of
long-term trends anchored with ground based evidence to highlight areas ofhfrase t
resistant, persistent eulnerable to severe drought. The results provide atemg-perspective
for the resource management of this area and can be applied to similar ecosystiegh®tt

western North America.

3.2INTRODUCTION

Climateshapes patterns in vegetation through the balance between energy supply,
moisture and the seasonal timing of the {&tephenson, 1990). In this walge climate of a
region exerts top-down control on ecosystem pattern and process. Ecosystem desturbanc
particular brge, infrequent disturbaes(Turner and Dale, 1998jye 4so recognized askey
mechanisnof landscape pattern in forests due to the enduring legacies of physical anctchlologi
structurethat resulfrom these event@-oster et al., 1998However, disturbance also operates at
less conspicuous scales and the range of disturbance impacts are best thooighteof a
continuum (Sousa, 19843s legacies can persist at some level regardless of the size or frequency
of the disturbance (Turner et al., 1998). Drought and desiccatass stre forms of ecosystem
disturbance (Sousa, 1984), yet the spatial and temporal complexity of drougin$ rende
identification and quantification very difficu{Wicente Serrano, 2007).

Vegetationis vulnerable to climate via water stress brought on by drought and warm
temperaturegAllen, 2009). If water for growth is not available, #ergy acts to heat and stress
the plant (Stephenson, 1990). In the early 2000s, over half of the coterminous United States

experienced moderate to severe drought condiiadsecord breaking precipitation deficits
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throughout the western part of the country (Cook et al., 2004). This event brought attention to
drought vulnerability irsemtarid forests ofwestern North AmericaPortions of the

intermountain west also pgrienced severe to extreme drought in 2012 (NOAA, 2E&)ere
drought in the early part of the last decade has laeerifiedas thedriver oftree stress, dieback
and mortality across diverse forest types (Allen et al., 2010; Breshedrs2005; @lin et al.,

2006; Michaelian et al., 2011)ag effects of drought may lead to tree mortality several years
after the drought eveliBigler et al., 2007). Moreover, drought has indirect effects on other
disturbances including insect agents, pathogea$ire. For examplereducel hosttree vigor

from droughtincreases insect attack probabiliBentz et al., 2010). Drought contributes to
flammability of fuels and decreased snowpack, resulting in longer firersgadtell et al.,

2009; Westerling et al., 2006).

Dominant tree species Rocky Mountains forests including quakiagpen Populus
tremuloides), subalpine fir (Abies lasiocarpa), lodgepole pineRinus contorta), and Douglagi
(Pseudotsuga menzesii) aresusceptible to drought througtiessanddieback, whichimpact the
photosynthetic activity of the treas well as mortalityAlthough the clonal root system of aspen
may provide an advantage during periods of lower moisture, droughts of long durationlare like
to affect the growth of botbuckers and mature trees al{(kéessl and Graumlich, 20033 evere
drought in the boreal forest and parkland of western Canada resulted in a two-folgeimntrea
stem mortality and a 30% decrease in regional stem growth in persisteliHvgg<t al.,

2008). Decrease in growth is the result of high levels of twig and branch diebaclciovimes
of living trees and productivity is limited by carbon dioxide fixation imposed &fystmatal
resistance during soil or atmospheric water def{eitsgyg et al., 2000). Trees that are not killed

are susceptible to other stressors such as insects and fungal agents thatifyaarehmwblong
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the impact of drought (Hogg et al., 2008, 2005). A phenomenon known as sudden aspen decline
(SAD) has been documented in regional aspen forests (Worrall et al., 2008). Rapid and sudden
onset of mortality is primarily caused by high temperatures, acute drangisecondary biotic
agentdWorrall et al., 2008).

Multiple studies have documented an increase in mortatig @& coniferous species
throughout the western United States over the later part of‘ﬂmeﬁ@ry(Allen and Breshears,
1998; Breshears et al., 2005; van Mantgem et al., 20@9¢ases in mortality rates have been
reported across ecosystem type and elevaiimong dominant genera and tree size, and at sites
with diverse fire historie§Gitlin et al., 2006; van Mantgem et al., 2008) of these mortality
events are driven by increased water deficit associated with drought, but sg@getds such
as bak beetle outbreaks have also contributed to mortality in some (@sradantgem et al.,
20009).

Drought can induce direct or indirect tree mortality, however, less conspidiects e
such as loss of productivity can accompany drought as well. Forest response to drdedft is |
dependent on the spatial pattern of forest structure and function (Hope et al., 2014), and the
duration of the drought is a key element in plant response. Water stress can leadrease in
plant respiration (Jones and Vaughan, 2010), and plants cope with drought via stomatal clos
and reduced leaf area index (LAHope et al., 2014)A reduction in leaf area leads to a lower
photosynthetic capacity and a change in canopy structure. Collectively, theseesspoeul in
a decrease in chlorophyll and water content of plant lg@eees and Vaughan, 2010).
Successive years of declining productivity associated with severe daaughtso lead to

delayed mortality{Bigler et al., 2007).
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Disturbance alters ecosystem struethy both abrupt, obvious change and through
gradual, slow change over some period of time (Assal et al., ZR&dotesensingffers a
powerful medium to capture the pre and post disturbEmoiscape and detect changes that
might not be readily adervel, such as drought stress. Spatial, temporal and spectral scales are an
important consideration when using remote sensing in ecosystem disturbance $wdie
common multispectral remote sensing platforms used in drought studies are that®oder
Resolution Imaging Spectroradiometer (MODI@bbas et al., 2014; Bastos et al., 2014; Hope
et al., 2014pnd the Landsat satellit@duang and Anderegg, 2012; Maselli, 2004; Vogelmann et
al., 2009; Volcani et al., 2005B0oth platforms are well suited to study ecosystem dynamics at
regional scales given the large coverage area per scene. However, subtle changs in fo
structure and productivity are difficult to detect with satellite derived ohgens(Deshayes et
al., 2006). Therefore, drought studies require a long term series of observations, Washheaa
high temporal resolution of these satellites well suited for this application. AHHd@PIS has
a hightemporal resolution (16-day composite product compared ttag@evisit time for
Landsat), the lower spatial resolution (250-500 m compared to 30 m) preclude its use in highly
heterogeneous foreshrubland ecotones. Trend analysis utilizing teedes of Landsat data is
useful to identify, monitor, and assess both abrupt and subtle forest ¢@aageinski et al.,

2014; Dorman et al., 2013; Kennedy et al., 2010; Vogelmann et al., 2009).

Forest canopy reflectance is influenced by several biophysical parametedsigclu
crown closure, canopy and branch architecture, LAI, the chlorophyll and watentohleaves
as well as the understory and exposed soil properties of the stand (Deshayes et al., 2006)
Multispectral satellites have spectral bands spanning the visible and infrarekkmgths that

can be combined into vegetation indices that aratsento differences in these biophysical
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parametergJones and Vaughan, 2010). Living vegetation absorbs radiation in portions of the
visible wavelengths and reflects in the nedrared (NIR) and radiation in the shortwave-
infrared (SWIR) is absorbed byater content of leavéddones and Vaughan, 2010). The NIR

and SWIR are sensitive to variations in LAl and the SWIR band is sensitive tosivats

during periods of drought (Deshayes et al., 2006). Numerous spectral vegetation (vithie
have been used in disturbance and drought studies, many of which utilize the NIR and/or the
SWIR bands. The Normalized Difference Vegetation IndR\(I) is the most widely used
vegetation index to document and monitor drought and related impacts in (Brestsears et

al., 2005; Carreiras et al., 2006; DeRose et al., 2011; Lloret et al., 2007; Maselli, 2G4 Vol
et al., 2005; Weiss et al., 2004). However, other vegetation indices have utility in disturba
related vegetation dynamics including the Enhanceciatign Index (EVI(Hope et al., 2014;
Tushaus et al., 2014), the Normalized Difference Moisture Index (NDMI) (Gooelval., 2008;
Meddens et al., 2013), the soil adjusted vegetation index (SAVI) (Tushaus et al., 2014), and the

Tasseled CafCzerwinskiet al., 2014).

We sought to quantify the spatial and tempeftdcts ofdrought in an ecosystem that is
expected to be vulnerable taodght stress and climate changbke effects of climate change
and variability are expected to be most rapid and evdrat ecotones, especially in searid
areaqAllen and Breshears, 1998; Gosz, 1992). An understanding of the link between climate
variability and tree mortality for species near ecotones is an importdriafgnarent research
(Kulakowski et al., 2013)Recent studiefCrookston et al., 2010; Rehfeldt et al., 20p@dict
the current climate profile f@everal prominent tree species (e.g. aspebalpine fir and
lodgepole pineyvill be greatly limited or no longer present in isolated forests of tlekyRo

Mountains over the course of the next centiigotones are important barometers of climate
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changgNEON, 2000)and stress, dieback and mortality are expected to accompany severe
drought in this arid landscapdowever, regional climate can be influenced by local terrain, a
concept known as topoclimate (Thornthwaite, 1958)pe and aspect influence air temperature,
water balance, radiation, snowmelt patterns and wind exposure (Dobrowski, 2011). laythis w
topography can potentially amplify the effeof drought, particularly in arid landscap€&ke

use of temporal remotely sensed data has been effective in monitoring droughd iclthuoges

in forests and woodlands (Maselli, 2004; Vogelmann et al., 2012). A primary challenge in
spectral change analyg is to segregate lofigrm vegetation change from interannual phenology
differences in response to climatariability. We hypothesize that the ecological consequences
of drought create a landscape mosaic of drought effects and that trend anhalggetaiion

indices can be used to document these impacts across a range of séverigest al., 2007).

The gradient spans demographic (i.e. tree mortality), structural (i.en gastral dieback),
functional (i.e. reduction in leaf area), and physiological (i.e. temporary&pemmh reduction in
photosynthetic activity) properties of the forest ecosystem that will resultf@énegfit spectral
trajectoriesThis study was undertaken because little is known about baseline condition in this
ecosystem, anddow climate, in particular drought, affects ttegpographically complex
ecasystem. Finally, we are interested in providing managers with atéwngperspective of the

forest dynamics of this ecosystem with respect to variability in precipitpéitierns

Our research objectives were to:
1) Identify an appropriate vegetation index for use in temporal trend analysis ddrashe
relationship with field measured estimates of vegetation traits,
2) Analyze the spatial location, directional trend, and timing of change by fgpestand

3) Assess therivers of change by forest type and the interaction of climate on topography.
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3.3 METHODS

3.3.1Study Area

Our study area is located in the southern part of the Wyoming Basin ecoregiorningpa
parts ofsouthwestern Wyoming, northwestern Colorado and northedstein(Figure3.1).
Several prominent ridges form a transition zone between basins and mountaino(lSragéas
1994) where several species of trees are found at the xeric fringes of their respuges
Forestddominated by aspem@pulus tremuloides) and several coniferous spec{ash-alpine fir
(Abies lasiocarpa), lodgepole pineRinus contorta), and Douglagi (Pseudotsuga menziesii))
occur as relatively small patches on moist sites in a matsagegbrush steppArtemisia
tridendata spp vaseyana) or mixedspecieshrublandsScatteredyniper Juniperus communis
var. depressa) andlimber pine Pinusflexilis) woodlands, distinct from the montane conifer
forest, are found on rocky slopes at lowkavations and small patches of manzanita
(Arctostaphylos patula) are found in the southern part of the study area. Most of the area is under
jurisdiction of the U.S. Bureau of Land Management, interspersed with smalgafstate and
private land. Th area has a midlatitude steppe climate with a substantial portion of the annual
precipitation occurring as snow. Dominant land uses include livestock grazingy ergraction
and recreation. Multiple state and federal agencies, along with the Wyomandgdape
Conservation Initiative (wlci.gov), have identified the region as a priordg or conservation.
Thearea provides important habitat for many wildlife species including big gaigetary and
resident birdsas well as domestic livestock.alagement has sought to rejuvenate decadent
aspen stands and reduce conifer expansion in successional aspen stands througid firescrib

and mechanical thinning. Drought related mortality of aspen is a concerntermwisrth

45



America(Worrall et al., 2008) and lack of aspen regeneration due to high rates of herbivory is a

concern in the study area.

3.3.2 Drought Index Calculation

To understand the effects of drought at a local level, we needed to develop a localized
index of drought severity. The most widely used drought index, the standardized pregipitat
index (SPI)VicenteSerrano, 2007), was used to quantify water deficit and surplus. We used the
SPI instead of the regional Palmer Drought Severity Index to capturallieaénces in annual
precipitaion of the relatively small and isolated study area. The SPI indicates themfmbe
standard deviations the precipitation deviates from the long-term mean duringdkered
period(VicenteSerrano, 2007)The majority of the precipitation in the studsea is received in
the form of snow. The flexibility of the SPI enabled us to calculate a 12-montlodurat
equivalent to the water year (G8ept) between 1980 and 2014. We obtained 23 data
from theWestern Regional Climate Centéitp://www. wrcc.dri.edu; accessed 15 February
2015)and calculated the water year mean for a 50am®a that encompasses the forested ridges

of the study area.

3.3.3 Landsat Data

The growing season in the study area is short, with snow possible urmmedand leaf
senescence by late September. To select a consistent window of peak greenoaksilated
the average growing season phenology (2000-2012) of the forested portion of theestudy ar
using MODIS NDVI 16-day composite data (MOD13Q1). Predominantly cloeslifandsat
images were selected between July 01 and September 06 (day of year 182 to 248ap non-
years). A total of 24 Landsat Thematic Mapper (TM), Enhanced Thematic MRlyse(ETM+),

and Operational Land Imager (OLI) images (path 36, row 32) were acquired faiafan
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the USGS EarthExplorer Archive (USGS, 2014) between 1985 and 2014 (Table 3.1). The
imagery was processed to surface reflectance using the Landsat Ecosysdtethabce Adaptive
Processing System (LEDAP@lasek et al., 2006y hich has been successfully used in other
ecosystem change studiddcManus et al., 2012). We used the LEDAPS quality mask layer to
identify pixels with clouds, cloud shadows and other unacceptable pixels that wexedem
from the analysisWe calculated several vegetation indices (T&¢ using the OLI imagery to
explore relationships between eachavitl the field data. We then applied the VI that best
explained variation in the shaerm field datagee Sectio.4.3 to the Landsat time series.

In order to extend the time series beyond 2011, it was necessary to use several Landsa
ETM+ images with gaps due to the sdexe corrector problem that occurred in 2003 (Chander
et al., 2009). Landsat TM data is not available after the growing season of 2011 and we chose not
to incorporate Landsat OLI data (available beginning in June 2013) given the wéveleing
several key bands are different from earlier Landsat satellites, and a relidbitioal process
has not yet been documented. We obtained six ETM+ scenes from 2012, 2013 and 2014. We
sought to connect pixels through time (z) and not space (X, y), and therefore a tladiagea
normalization technique would not be appropriate. We conducted a sensitivity analyssrbetw
annual images using ofield plot locations 1t=52) and several vegetation indices to evaluate the
annual phenological stability between dates. The Pearson’s correlatianienefbr each index
in each of the three years was >=0.85. However, we only retained the dag0ft@as the
available images were consecutive (Aug 03 and Aug 19) and the field points gldyerélated
(Pearson’s correlation coefficient NDMI= 0.95, NDVI=0.94). A composite 2012 image
created using the earlier image as the primary value and the later image was usedriteo

pixels with no data. We also obtained a Landsat OLI scene to evaluate tlomsbigtbetween
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field data and spectral vegetation indices. The OLI image was acquired sevsriaéfiag our

field collection effort in 2014.

3.34 Field Measurements

We used a sampling approach to allow rapid collection of data to describe afrange o
conditions across the study area (Meigs et al., 2011). We conducted a prelimyeatigation
to identify areas of change and stability over tirmmg@ NDVI from several years (mi@0s, early
2000s, and 2010). We identified 52 plots distributed in coniferous and deciduous dominated
forests on each of the major forested ridges in the study area. We avoideditireabstantial
anthropogenic activity (e.g. logging, recreational sites, roads, trailg,tatuks, etc.) or fire
occurrence since 1984 (Eidenshink et al., 2007).

In 2013, we collected plot level measurements to assess tree density, Spap@sitcon
and structure, and tree mortal{tfleigs et al., 2011)We consider these measurements t@mm
data as we presume they reflect conditions for a number of years priordorereant since
there were no major disturbances in each plot. Each plot was located at thefcahi@ndsat
pixel (30 x 30 m) using a sutmeter GPS unit (Trimble GeoXT). Three, 15 m belt transects were
established from the plot center at(@ue north), 129 and 240with a variable width of two or
four meters. In each transect we quantified live and dead tree bes&bmall standing tree
species greater than 2 meters in height. We noted canopy dieback, bark damagsgeand pfe
cankers or insect damage. We also counted dead, down trees that were likely ithatezhoh
transec{Meigs et al., 2011and assigned a bark decay clasS§)&according to USFS Forest
Inventory and Analysis standards. In this analysis, we retain the lowestdiassgs (B) as

they were most likely alive in recent decades.
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In 2014 we revisited the field plots to measure canopyition via in situ plant area
index (PAI) and canopy gap fraction (CGF). We consider this shori-data as it likely reflects
recent conditions at each plot. We used a hand-held CID-110 Plant Canopy Imageemtstrum
(CID Bio-Science, Inc.) to collect haspherical (fiskeye) plant canopy images to estimate PAI
and CGF. The process relies on the gap-fraction inversion procedure (Campbell rmiath Nor
1989) to measure radiation transmission through the canopy (Martens et al., 1993). The
instrument containa selfleveling PENTAX lens that enabled images to be collected looking
vertically upward beneath the canopy at approximately one meter above the ground.
Measurements were performed under a range of sky conditions, as the stuchrelly
experiences prohged overcast conditions (Pfeifer et al., 2012). Exposure, color, and contrast
settings were manually adjusted to maximize the contrast between thedskgnopy. A
sampling grid was established within each 30 x 30 m plot and nine photo points wertedolle
(Figure 3.2) for 43 of the 52 plots (due to equipment issues). The images were dlagsifeiy
and plant components using CID software and PAI and CGF were averaged for each plot. We
use the term plant area index instead of leaf area index bebauseasurement includes stems
and branchefPfeifer et al., 2012). We opted not to subtract an estimatedastanndex

because preliminary results indicated the PAI was sensitive to mortality berelsen plots.

3.3.5 Statistical Analysis of Veget#on Indices

We used a generalized linear model (GLM, Gaussian distribution, Identity linkdapcti
to evaluate the relationship between field and satellite @atagoal was to identifthe
vegetation index with the strongest relationship to field,daiacreate a spatially explicit model
of forest characteristics (e.g. PAWe found the shoterm data had the strongest relationship

with that year’s satellite data (e.g. 2014 field data with 2014 satddifa). This was expected as
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the Landsat OLkcene was acquired just days before the 2014 field campaign. The Canopy Gap
Fraction data was letzansformed prior to the analysis to meet the assumptions of linear

regression.

3.3.6 Temporal Trend Analysis

Trend analysis was implemented on apieel basis using leastquares regression
between the vegetation index (dependent variable) and time (explanatoryeyékfdlanus et
al., 2012; Vogelmann et al., 2009). We evaluated trends for several time penmddsages and
allowed one missing observatiamY) in each pixel stack. This allowed the use of several
additional years of imagery with some cloud and cloud shadows present, while nmgithii
potential for illegitimate trend detectigMcManus et al., 2012)he slope and statistical
significance of the linear regression in the selected VI vdkessSection 3.3)were evaluated
using a Student’stest at 95% confidence level for each geographic pixel (McManus et al.,
2012).Significant temporal trends in NDMI may be interpreted as changesgetation
condition, given the relationship between field and satellite data. Pixels idémtifte
significant monotonic temporal trends% < 0.05) were mapped as positive or negative change
(Czerwinski et al., 2014)rend analysis was conductexd all eligible (no more than one
missing year due to clouds, cloud shadows, no fire) forested pixels in the studyaraaange

of time periods with at least ten observations.

3.3.7 Spatial Analysis of NDMI Trends

Positive and negative trends in NDMI between 1985 and 2012 were evaluated by
dominant forest type. We obtained a 10 m raster map of forest cover and dominangtype (e.
deciduous vs. coniferous) (Assal et al., 2015)r@sdmpled the data to 30 m using a nearest

neighbor algorithm. Thenap wa developed from 2010 SPOT imagery so we added obvious
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omissions of small aspen stands documented in the field that were missing froapttaario
recent mortality. Next, wevaluated trends in NDMI by elevation, slope and aspect to
understand how trends were distributed with respect to landscape position. Topographic
variables were derived from a 10 m National Elevation Dataskiding slopeandaspect. The
relationship between elevation, slope and aspect was analyzed with respgetitei¢DMI
trend occurrence using a binomial generalized linear model. We selected a randdenasamp
negative and no-trend observations for 10% of total observations of eac{Md®&anus et al.,

2012).

34 RESULTS

3.4.1Drought Index
The SPI for the study area (Figur&)3indicates high variability of precipitation over the
last three and a half decades with several distinct wet and dry periods. Binkyréthe 1980s
were wet along with the mid to late 1990s. There was a-ye#ti drought in the late 1980s and
early 1990s. The late 1990s had two extremely wet years (1995 and 1997), while 2002 and 2012
were classified as extreme drought years. With the exception of 2005 and 201dlysest

years), the area has been in a dry period since 2000.

3.4.2 Field Data Analysis

The field data results indicate that our sampling effort captured a wide oapiptievel
mortality. We categorized the plots into deciduous or coniferous based on theynodjré
total basal area. There were very few mixed plots, andastemajority of plots contained 70%
or more of the dominant forest type. Deciduous plots ranged from low (11%) to total (100%)

mortality. Coniferous forest plots exhibited a similar range from 5% to 95%alityarMortality
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was not consistent for small, medium and large trees (stem DBH <10 cm, 10 to 20 cm, and >20
cm, respectively). We encountered fewer small and medium dead conifer treesecbtophe

same size classes of deciduous trees (F@djeLarge conifer trees exhibited similar mortality
levds compared to large deciduous trees. Within each forest type, the group méansnohlit

and medium classes were significantly different than the mean of the larg&treisand

medium coniferous trees had significantly lower mean mortality peth@atlarge trees (Figure
3.4a). Conversely, small and medium deciduous trees had significantly higher meditymorta

per plot than large trees (Figudetb).

3.4.3 Relationship between Field and Satellite Data

Field variables with the highest corrida with 2014 vegetation indices were PAI and
CGF. NDMI had the strongest correlations with field measures, and wafotleeselected as the
appropriate metric and thus only those results are reported here. A significéine piosar
relationship (R = 0.64,p < 0.0001n=43) was found between field measured PAI and NDMI
(Figure 3.5a). A significant negative linear relationship£m.65,p < 0.0001n=43) was found
between field measured CGF and NDMI (Figure 3.5b). This result was expsatedse,
canopies have greater moisture content than sparse, open canopies or canopigis leitalfi
of mortality. The residuals of the linear regression models were $paiddpendent (PAI
model, Moran’s | =0.0428,p = 0.7; CGF model, Moran’s | =-0.02d= 0.9). The 2013 long-
term data (collected in 2013) did not exhibit as strong of a relationship withteiite data.
The highest correlation was live tree density with NDM £70.46,p < 0.0001n=52). We also
found a significant linear relationship between the short-term (2014) and lon§2@&18) field
data with the live tree density (strongest predictor) of PAKR.56,p < 0.0001h=43) and

CGF (R = 0.54,p < 0.00011=43).
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3.4.4 Trend Analysis

The results highlight the area of significgaisitive and negative trend for each time
period with at least ten observations. The first time periggg [1985-1998) highlights 1705 ha
(27% of the forested area) with positive, increasing trends, and only 1.6% of Stedaeea
(98 ha) experienng negative trends (Table 3.3). These trends began to change starting with
T2000(1985-2000) as the amount of forested area with a positive trend decreased andahe area
forest exhibiting negative trends began to increase. Fegsatd Too12(1985-2012) the amount
of forest in a significant negative trend increased every period from 16Qdag (@ 1606 ha
(T2012. The negative trend was significant in over 25% of the forested area by 20123 Bable
The decrease in the area under the positive tnasdhot cumulative as with the negative trend.
The positive trend decreased fromygkto a low of only 2.7% of the area in a significant positive
trend during the drought year of 2002 (172 ha). The amount of forest in a positive trend slowly
increased t@ similar area at the start of the dry period (2000), with just under 10% by 2012.

The trends were not consistent across forest functional types over the full tiote pe
T2012(1985-2012). A higher percentage of coniferous forest experienced significant positive
trends (11.9%) compared to deciduous forest (7.1%) (Table 3.4), and both groups had
substantially more area in negative trends. Deciduous forest had over twice aseaudii4
ha) in a negative trend compared to positive, and coniferous fae@searly three times as
much area (1132 ha.). The disparity between positive and negative trends for each group was
not consistent as coniferous forest had a much greater percentage in negyads/€32.8%)
compared to deciduous (16.5%). The trends over time were not consistent by forest functiona
type eitheras coniferous forest experienced a greater percentage in significaiviepasi

negative trends for every time period since 2000 (Figure 3.6).
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3.4.5 Spatial Analysis of Trends

Significantpositive and negative trends were present across all of the forest ridges
(Figure 3.7). At the landscape scale, significant trends appear somewteredus large
patches. Our analysis confirmed that negative trends were not randomhutistracrosthe
landscape with respect to topography. Forested areas at higher elevationssitieedyp
correlated with the frequency of detecting negative trends (Table 3.5). Sowgpecitsgsouth,
southeast and southwest) were least likely to exhibit a nededin and north aspects were
most prevalent. All aspects classes were significant, except for northeass.agfeertcluded
forest type (deciduous or coniferous) in the GLM model, but it was not a sigmiéigplanatory
variable and subsequently dropped. Positive trends with respect to topography avere als

analyzed, but very few variables were significant.

3.4.6 Ground Based Evidence of Trends

Field plots were identified a priori and therefore not evenly distributed wipeceto
trend significance or direction. A rigorous accuracy assessment or \@litieét could not be
conducted; however, our data provides grobaded evidence that trends in NDMI reflect
changing conditions in the forest. Nearly half of our field plots had a signifiemyattive trend
between 1985 and 2012. Of those plots, the magnitude of the slope provides a means to
distinguish between mortality classes. An ANOVA with matimparison post-hoc Tukey’s
HSD test revealed significant differences between group means of theddvwgarmortality
classes and the moderate and high mortality classes (Figure 3.8a). Pi@sigitificant
negative trend had a lower mean percentage of live trees compared to plots vétidr{m t
value significant at the 0.1 level) (Figure 3.8b). Plots with a negative trend had acsigtiyfi

higher amount of standing dead trees compared to plots with no jrealli¢ < 0.05) (Figure
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3.8c¢). Finally, plots with a negative trend also had a significantly higher amotataloflead
trees (standing dedckes + down trees) compared to plots with no trendilue < 0.05) (Figure
3.8d). Figures 3.8c and 3.8d indicate that the l@ngr data is particularly useful to capture the
legacy of a drought period in this system.

The NDMI trajectories were extractéal each plot and analyzed to explore plot level
trends over time. Figures 3.9 and 3.10 are examples of field plots that exhibited neDative N
trends from 1985 to 2012. Figure 3.9 is a coniferous plot (dominated by Ddiuglaish low
plant area index1.22), high canopy gap fraction (0.39), low live basal area (8°A%jrand
high plot mortality (68%). Pitch tubes were evident on many of the dead trees asdikely
that Dougladir beetle was responsible for the mortality at the site as extibitd a sharp
decline in NDMI beginning in 2005 (Figure 3.9). Figure 3.10 is an aspen stand with low plant
area index (0.43), a very open canopy (gap fraction = 0.64), low live basal area¥h2)8 amd
very high mortality (81.5%). The NDMI trend (Figure 3.10) provides a clear imglicetat the
mortality was first instigated by drought in the early 2000s, and the stand newesre=l. This
is confirmed with the long-term field data as the plot had a much higher amount efanthng
(live and deajibasal area (49.2%ha). Both of these plots began to decline around 2005, after a
five year dry period centered on the 2002 drought (Figure 3.3). Figure 3.11 is an example of a
plot that had a statistically significant positive trend over the studgdét was one of only two
plots with a positive trend. The conifer dominated plot had relatively high plannaiesa i
(1.78), low canopy gap fraction (0.28), and high live basal area (3Mh2)niFigure 3.11).

Figure 3.12 is an example of a plot that dot have a statisticallsignificanttrend during the
period of study. The deciduous plot is characterized by high plant area index (2.02), a low

canopy gap fraction (0.2), and a high amount of live basal area (3n&mThe NDMI values
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are fairly hgh and stable throughout the period of study (Figure 3.12) and track precipitation

during two extremely wet years (1995 and 1997) (Figure 3.3).

3.5 DISCUSSION

3.5.1Causes of Decline and Mortality

Physiological drivers of tree mortality are compl@icDowell et al., 2008and are often
coupled with multiple, interacting factogallen et al., 2010)McDowell et al (2008)proposed a
framework related to the intensity and duration of water sthegsdentified threenechanisms
of droughtrelatedmortality. Carbon starvation can occur when drought induces stomatal
closure, in turn reducing photosynthesis and carbon uptake until the plant exhausts carbon
reserves needed for maintenance of metabolism. Hydraulic failure occurs wisenl thater
supply is reduced, along with increased evaporative demand, leading to xyleaticaeinhd
subsequent desiccation of plant tissues. Drought can influence the demographest®ting
pathogens which can amplify plant physiological stress and in-turn sustaier greaitilations of
such biotic agents. Carbon starvation, hydraulic failure and biotic agents mateagtrer
inclusively or exclusively (Allen et al., 2010; McDowell et al., 20Q&)g effects of drought are
also known to operate in subalpine forests of the Rocky Mountains for as long as fiveetrslO y
after the evengBigler et al., 2007).

Deciduous and coniferous foresi® affected by different mechanisofanortality. It is
difficult to assign absolute causes of mortality withoutl@pth analysis (Vogelmann et al.,
2009), however, we found evidence of causal agents on several field visits. Visible
documentation of pine beetlBéndroctonus spp.) activity was documented on dead trees in
conifer stands in the form of pitch tubes (resin). Beetle caused mortalitygapdole pine trees
was likely caused by mountain pine beeber({droctonus ponderosae), whereas Douglair
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mortality was likely caused by the Dougfasbeetle Dendroctonus pseudotsugae). The
Douglas-fir tussock mothQrgyia pseudotsugata) andwestern spruce budworrtlforistoneura
occidentalis) are defoliator species and may have also contributed to mortality in smalaBou
fir stands. However, we suspect the dominant cause of Dofiighasrtality was a result of
beetle activity du¢o the sharp decline in NDMI, evident of rapid mortality (Figure 3.9), as
opposed to more gradual spectral changes associated with defoliator §pegedshann et al.,
2009). Whereas fire, blowdown or defoliation events have been documented as initiating
Douglas-fir beetle outbreaks (Negron et al., 2015 is the first time that a landscagpeale
outbreak has been associated with extreme drought.

Subalpine fir decline has been attributed to mortality in fir forests in Col¢@dsla,
2010) Tree motality is due to a combination of western balsam bark beRtlg¢oetes
confuses) (Meddens et al., 2012nd at least two species of fungrmillaria spp. and
Heterobasidium annosum known to cause root decay (Bigler et al., 2007; Ciesla, 2010).
However, subalpine fir decline does not occur in large distinct patches common with othe
agents of conifer mortality, but rather heightened levels of background nyorThiis particular
type of mortality is more challenging to detect because it is not as coospito human
observers or readily detected with short time periods of satellite datge@$. Subalpine fir is
the dominant conifer species on Little and Pine Mountains and significant negaide Wwere
identified in these stands (Figure 3.7). Mortality in subalpine fir forestadtdseen studied as
extensively as other coniferous species and is a future research need.lfeptlec
(Dendroctonus rufipennis) is an important disturbance agent in Spruce-Fir forests, however the
primary host, Englemann Sprud&dea englemanni), is not commonly found in the study area.

Western spruce budworm is also known to cause damage and mortality to subalpine fir by
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defoliation (Ciesla, 2010We found a significantly higher percentage of mortality in large,trees
which also suggests insect agents are a primary cause of mortality in tharsadlyigure 3.4a).
Worrall et al. (2013) provide a thorough review of causes of damage and mortality to
aspen, the primary deciduous tree in the study area. In addition to drought, tlzeneiaateer of
factors that can amplify or prolong the impact of moisture stress and leatlitti@a in growth,
partial dieback and mortality. Factors include myéiar defoliation by tent caterpillars
(Malacosoma spp.) and stem damad®y fungi and insects which can kill the cambium and
interrupt phloem, which leads to crown dieback (Worrall et al., 2013). We know of no
documented defoliation events in our study area, but evidence of fungi (cankers) etsd inse
(borers on standing dead and down trees) along with crown dieback were documented at over
half of the sites in our study area. Furthermore, many trees had evideneehainncal stem
damage caused by elk. Late spring frost and freeze/thaw cycles durtegddmmancy can also
damae leaves and previous year’'s growth (Worrall et al., 204/8)found a significantly higher
percentage of mortality in small and medium aspen trees, compared to lardEitgees3.4b).
A mechanistic study is needed to investigate why there has béserease in mortality in small

and medium sized aspen trees as related to drought.

3.52 Interpretation of Spatial Trends

We documented substantial levels of plot level mortality across forest tgpegB.4)
and identified negative trends throughout the study area (Figure 3.7) usirtgdongatellite
data. Although the physiology of droughtiuced tree mortality is complékicDowell et al.,
2008), an understanding of the spatial pattern of tree decline is an important ctinsidiera

managers. Mchanistic studies of drought impacts on tree physiology is an emergeagates
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trend and out of the scope of our study. However, our results serve as a coatsehitfielight
areas of mortality where mechanistic studies could be initiated (Huamgnaedegg, 2012).

The aspect of a slope has direct influence on incident solar radiation and surface
temperaturédMcCune and Keon, 2002) and indirectly influences evaporation and available soil
moisture(Huang and Anderegg, 201Btudies that evaluated aeuwlrought-induced mortality in
other Rocky mountain aspen forests found higher mortality rates on drier southeresseh w
aspectgHuang and Anderegg, 2012; Worrall et al., 2008). However, our results contrast with
these studies as we found higher than expected rates of deciduous and coniferousnoekh
aspects (Table 3.5). This might indicate that our study area, located on tiresroathe arid
Wyoming Basin ecoregion, is very different than aspen forests in other p#resinfermountain
west. Genetic research suggests that aspen clones exhibitamigiag phenotypic variation in
physiology and growth traits under drought conditions (St. Clair et al., 20d€8lized
mortality of aspen could be due to genotype (clonal) effettiang and Aderegg, 2012)and
adaptation could also explain regional differences in spatial patterns of decline

We do not know when the aspen genets (clones) were established in our study area, but
conditions were presumably wetter for some period conduciv@ablesshment. Our study area
has likely always been drier than other Rocky Mountain forests for some time amelsast,
these genets might be more adapted to arid conditions. We found higher elevations and northern
aspects most likely to exhibit sigrdéint negative trends. These areas are cooler and wetter than
other aspects, and trees would be most vulnerable in these areas in years winen winte
precipitation is below average. The density of trees on northern slopes could haaseihcre
during the wet decade of the 1990s (Figure 3.3), setting up those same slopes for smimcrea

mortality when water was limited during drought years. Although we docuthsabstantial
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mortality and areas of negative trends, we did not observe large scale ynddalihented by
others (Huang and Anderegg, 2012; Worrall et al., 2008} highlights the value of spatially

explicit analysis and the importance of landscape position in arid landscapes.

3.5.3 Management Implications

Regional climate exerts tegpwn control on ecosystems (Stephenson, 1990) and is an
important consideration for managers when considering the future outlook of an @tosyst
treatment options. The current climate profiles for many of the tree speaigged in this study
are predicted to no longer be present in the isolated forests of the study aresppsoaeh the
next century(Crookston et al., 2010; Rehfeldt et al., 2009). However, many global and regional
climate models do not currently take terrain into account (Crookston et al., 2010). Our study
provides spatially explicit evidence that bottom-up controls, includingsitaée topography,
remain important in climatically driven drougtRrichard and Kennedy, 2014). Adaptive
management can benefit from spatially explicit analysis atal llecause aspen forests do not
function the same across locations (Rogers et al., 2014) or within the confinessefsuzde
data used in climate models. The results of our analysis can frame hypttheséssted with
regard to resistance, persisterand vulnerability of forests to drougRiesistance is the capacity
of an ecosystem to remain largely unchanged, with regard to structure, precekses
functioning, despite stresses and disturbance (Folke et al., 2084)ggest areas with a
significant positive trend are resistant to drought episodes of these magnitudes. daesadra
statistically significant increase in canopy moisture despite several retemmexiroughts (e.g.
2002, 2012) and an extended dry period (e.g. 2000-2004). Taresesflikely increased in
structural, functional, and physiological capacity during this time periodhwkesulted in

increased productivity. Forests that did not have a statistically sigrifresual in either direction
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can be considered persistent during periods punctuated by drought. Finally,ilveas w
significant negative trend are vulnerable to drought as the structuralphai@nd physiological
properties of these stands markedly declined after these events. We thelisasults of our
study can benefit managers in utilizing limited budgets to ensure thadomgpersistence of

aspen in this area.

3.5.4 Ecological and Technical Considerations

Several spatial and temporal characteristics ofdtestshrubland ecotonghould be
taken into consideration with our approach as quantifying tree canopy dynamics tremage
sensing irthese areaemains a challengé&rang et al., 2012). Coniferous forests have a closed
architecture which enables robust modeling using remotely sensed datee{Adsan review).
However, semi-arid aspen systems found at lower elevations in our study aesd phallenges
to evaluate gradual dynamics over time. These systems tend to have low tree ¢ a\egrsity, a
very open canopy and low values of plant area index. Furthermore, the combinatios, of tree
shrubs and grasses may confound the spectral signal as pixel values areeachgund
elementgLefsky and Cohen, 2003). Given the high heterogeneity between forest afatexin-
present in our stydarea, mortality might be underestimated, particularly at the margins dof fores
patches. The time series would be more robust if we were able to obtain one imgege pleut
clouds, sensor issues, etc. limited availabld data. Numerious studies haed thi rich
temporal archive of MODIS data with daily toweekly collections of imagery that can track
both long term and interannual phenology differences. However, thedale-hetergeneity of
the study area and our interest to extend the study prior to 2000 prevented the use of MODIS

data.
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There are no lonterm plots in the study area so we have no information on mortality
rates. However, the results of our study indicate forest change (Figure Bkgaswith long-
term trends in precipitatiofFigure 3.3) and long-term analysis is required to understand the
cumulative effects of drought years in this ecosystem. Given the suggestedmsms of
mortality (sectiorB8.5.1), we suspect there has been a continuum of mortality triggered by severe
drought and our longerm field data confirm this suspicion as some plots had trees at different
stages of decomposition (e.g. standing dead trees with fine branchasesalt, down trees in
early stages of decomposition, etc.). Stands with a highdéwebrtality over a short time
period will have a relatively quick change in NDMI. These areas will likelxera heightened
chance of detection due to rapid change in NDMI. However, areas that exhibit lowersnfount
mortality over longer time periods Whave a smaller change in NDMI over a longer time
period. The advantage of the time series approach should capture both hypottetipdd e

that might be otherwise missed by just two or a small number of time periods.

3.6 CONCLUSION
Coniferious and decidous forests in the southern portion of the Wyoming Basin ecoregion
have experienced high levels of direct and indirect drought related mortaltiynevast decade.
This mortality has an effect on siztass distributions and thus implications floe future of
these forestdn this work we identified an appropriate vegetation index (NDMI) that best
represented short-term forest conditions of the study area. Through trersisanedyidentified
the location, direction and magnitude of forest change by forest cover typeol@ation of
long-term field data allowed us to relate plevel changes to long term spectral trends. The
results enabled us to quantify the amount of change and further assess theeinfll@ndscape

position on those trends. Our analysis provides managers with gelongperspective of the
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forest dynamics of this ecosystem with respect to variability in precipitatiorfi€idata
provides evidence and demonstrates application of assessingtongrends with Landsat
imagery at fine spatial scales in a forsstubland matrix.

Previous trend analysis studies have used a variety of lines of evidence to support
direction of change. Vogelmann et al. (2009) related areas of significargectaannual health
aerial detetton survey (ASD) polygons and qualitative field sampling. Only a small portion of
our study area was surveyed by aerial detection, and only during one yewinKziest al.

(2014) sampled a number of areas in the field with significant trends anchtjuellyt
categorized each plot. McManus et al. (2012) correlated significant positids treNDVI to

an increase in LAl based on a relationship with MODIS data across aaksggate. Our
research establishes an empirical link between spatial differences in speletctdmeé and
shortterm field measured vegetation parameters such as plant area index and canopy gap
fraction. The statistically significant (95% confidence level) spectapditorieCzerwinski et
al., 2014; McManus et al., 2012) provide a distinct level of certainty over the duration of the
study period. Furthermore, our long-term field data provides a line of ground basedevalen
interpret the spectral changes over time. The framework we presented i daitab
retrospecitively characterize the effects of drought in forest ecosystemthevast 30 years.
The use of Landsat data is beneficial as the time series can be extended ineheitfutine
recently launched Landsat 8 satellite (OLI sensor).

We believe the methodology and results of this assessment provide a valuabldiperspec
to resource managers and highlights potential opportunities to work acrossfiomsdilines.

This work highlights areas of forestthare resistant, persistentvarinerable to severe drought.
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The framework relies heavily on open access satellite data and could be apolreptéonh

monitoring of similar ecosystems.

Any use of trade, firm, or product names is for descriptive purposes only and does not imply

endorsement by the U.S. Government.
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3.8 TABLES

Table 31. Acquisition dates of Landsat scenes used in the analysis (path 36, row 32).Note, the
OLI image was used to establish the relationship between field measureddiatgyetation

indices and s not used in the trend analysis. TM = Thematic Mapper, ETM+ = Enhanced
Thematic Mapper Plus, and OLI = Operational Land Imager.

Acquisition Date Sensor
(year-month-day)
19850811 ™
19880724 ™
19910903 ™
19920828 ™
19930823 ™
19940709 ™
19950728 ™
19960831 ™
19970701 ™
19980805 ™
20000725 ™
20010829 ™
20020731 ™
20030819 ™
20040906 ™
20050905 ™
20070830 ™
20080731 ™
20090819 ™
20100705 ™
20110809 ™
20120803 ETM+
20120819 ETM+
20140902 OLI
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Table 32. Spectral indices calculated from the Landsat OLI reflectancedB¥l (Normalized
Difference Vegetation Index), NDMI (Normalized Difference Moistumgex; also known as
Normalized Difference Water Index), EVI (Enhanced Vegatalindex), and SAVI (Soil
Adjusted Vegetation Index). EVI constants: G (gain factor) = 2.5, L (capagkground
adjustment factor) = 1, C1 (atmospheric constant) = 6, C2 (atmospheric constdnt)SAVI
constants: L (soil adjustment factor) = 0.5¢mmbhediate vegetation density).

Spectral Equation Source
Index
NDVI NDVI = (B5 — B4)/(B5 + B4) (Ro‘izs7i)et al,
NDMI NDMI = (B5 — B6)/(B5 + B6) (Gao, 1996)
EVI EVI=G* (B5— B4)/(B5 + CL*B4— C2*B2 + L) | (Huete et al., 2002
SAVI SAVI = (B5 — B4)/(B5 + B4) * (1 + L) (Huete, 1988)
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Table 33. Area of significant positive and negative trends for time series withegtban 10
observations. Trends reported hawvealues that are significant at 0.05 or lower.

Significant Significant
. _ Observations positive change| negative change
Time period ")
% of % of
Area | forest | Area | forest
(ha) cover | (ha) cover
1985 to 1998 10 1705 27 98 1.6
1985 to 2000 11 660 10.4 160 2.5
1985 to 2001 12 338 5.3 255 4.0
1985 to 2002 13 172 2.7 445 7.0
1985 to 2003 14 226 3.6 565 8.9
1985 to 2004 15 345 5.5 588 9.3
1985 to 2005 16 545 8.6 577 9.1
1985 to 2007 17 486 7.7 946 15.0
1985 to 2008 18 491 7.8 1127 17.8
1985 to 2009 19 567 9.0 1233 19.5
1985 to 2010 20 598 9.5 1291 20.4
1985 to 2011 21 720 11.4 1347 21.3
1985 to 2012 22 615 9.7 1606 25.4
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Table 34. Summary of trends between 1985 and 2012. The area and proportion of change for
each group is compared to the total amount of that forest group.

Functional Group
Direction of Total Change Area Deciduous Coniferous
Change (ha) Area | % of Area % of
(ha) class (ha) class
Increase 615 205 7.1 410 11.9
Decrease 1606 474 16.5 1132 32.8
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Table 35. Topographic coefficients from the generalized linear model (GLM) fit ofifsogmt
negative trends between 1985 and 201 variableAspect is an indicator variable (N is the

reference class)P:value is significant at 0.05 or lower.

Predictor Vari able Coefficient
(Intercept) -8.22381*
Elevation 0.00286*
Slope 0.00234
Aspect
N NA
NE -0.04581
E -0.20159*
SE -0.96975*
S -1.27459*
SW -0.91533*
W -0.51793*
NW -0.25089*
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Figure3.1.Locationand extent of the forest in the study area.
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Figure3.2. Plot based sampling design for derivation of vegetation structureHzsts.
hemispheric photo location is spaced approximately 10 m from the nearest photo poirgldThe fi
of view of each hemispheric photo is shown (red circle) with an approximate ra@tsrof
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Standardized Precipitation Index

Extreme Drought
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Figure 33. Standardized precipitation index (SPI) for the study area between 1980 and 2014.
The index was calculated over amdnth period, equivalent to the water year (October of
previous year through September of current year). The SPI is cldssifierding taAgnew

(2000} values between moderate drought and moderately wet indicate the range of normal
conditions.
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Figure 34. Relative mortality by tree size classconiferous (=877) (left— Fig 3.4a) and
deciduousr{=1162) (right— Fig 3.4b) trees. Relative mortality was estimated as the percent of
dead and down tredxy class per plot. Different letters in each figure denote significant
differences at the 95% confidence level using a Tukey HSD test.
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Figure 35. Relationshipsetween field measured characterisingd NDML.

(Left — Fig 3.5a) The relationship between field measured LAI/PAI and ND#13). (Right—
Fig 3.5b) The relationship between field measured Canopy Gap Fraction and hEAgl). (
Note that the yaxis is a log scale.
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Figure 36. The results of the forest change analysis for trends with 10 or more olosexvati
Compare with Table 3. There was no imagery available for 1999 and 2006.
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Figure 37. Locations of forest with positive, negative and no NDMI trend over the full time
period of study (1985-2012). Positive and negative trends are significant that the 95%

confidence level.
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Figure 38. Results of boxplot analysserossitend classBoxplots of the variation in magnitude

of slope for significant negative trends categorized by relative mortaliggld plots (-value <

0.05) (top left). Boxplots of the variation of percent live trees between negativeoarend

plots (-value < 0.1) (top right). Boxplot of the variation in basal area of standing dead trees for
plots with negative and no trenptyalue < 0.05) (bottom left). Boxplot of the variation in basal
area of total dead trees (standing dead + down trees) for plots with negative and i tre

value < 0.05) (bottom right).
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Figure 39. Negative tend of a high mortality coniferous forest pldtegative NDMI trend ¢-
value < 0.05) (top) of a field plot located in coniferous forest with high levels of mortality
(bottom).
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Figure 310. Negative trend of a high mortality deciduous forest plegative NDMI trend §-
value < 0.05) (top) of a field plot located in an isolated aspen stand with high levels of tyortali
(bottom).
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Figure 311. Positive trend of a low mortality coniferous forest ghatsitive NDMI trend -
value < 0.05) (top) of a field plot located in a coniferous foreshvwow levels of mortality
(bottom).
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Figure 312. Stabletrend of a lonmortality deciduous forest ploStable NDMI trend §-value
not significant) (top) of a field plot located in aspen forest with low levefsortality (bottom
right). A digital hemispheric photo from the site indicates high plant area imdebowa canopy
gap fractions (bottom left).
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CHAPTER 4: Modeling a Historical Mountain Pine Beetle Outbreak UsingLandsat MSS
and Multiple Lines of Evidence’

4.1 SUMMARY

Mountain pine beetles are significant forest disturbance agents, capaide@hg widespread
mortality in coniferous forests in western North America. Various remotrggapproaches

have assessed the impacts of beetle outbreaks over the last two decades. Hawstidrese

have addressed the impacts of historical mountain pine beetle outbreaks, including the 1970s
event that impacted Glacier National Park. The lack of spatially explicit datésafigturbance
represents bothrmajor data gap ardl critical research challenge in that wildfire has removed
some of the evidence from the landscape.Wlized multiple lines of evidence to model forest
canopy mortality as a proxy for outbreak severity. We incorpabiiaterical aerial and landscape
photos, aeriafletectionsurvey data, a ningear collection of satellite imagery and abiotic data
This study presents a remote sensing based framework to (1) relate meatsuoéiceropy
mortality from finescale aerial photography to coassmle multispectral imagery and (2)

classify the severity of mountain pine beetle affected areas using a tengoprahse of Landsat
data ad other landscape variables. We sampled canopy mortality in 261 plots from aeal phot
and found that insect effects on mortality were evident ingésito the Normalized Difference
Vegetation Index (NDVI) over time. We tested multiple spectral indicdgamd that a

combination of NDVI and the green band resulted in the strongest model. We repmdtagd

3 A version of this chapter was published=emote Sensing of Environment on 23Sept 2014,
availableonline: http://www.sciencedirect.com/science/article/pii/S0034425714003435
Assal, T.J., Sibold, J., Reich, R., 2014. Modeling a Historical Mountain Pine Beetle
Outbreak Using Landsat MSS and Multiple Lines of Evidence. Remote Sens. Environ. 155,
275-288. doi:10.1016/j.rse.2014.09.002
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process where we utilize a generalized least squares model to account for teedbrge
variability in the data and a binary regression tree to describe thessralglvariability. The

final model had a root mean square error estimate of 9.8% canopy mortality, absaatea
error of 7.6% an@nR?of 0.82. The results demonstratata model of percent canopy
mortality as a continuous variable can be developed to identify a gradient of mountain pine

beetle severity on the landscape.

4.2INTRODUCTION

Temperate forest ecosystems are subgecatiousecological disturbances that can have
profound effects on the structure of the ecosystem for many years ageetit€rurner and
Dale, 1998) and influence the likelihood, severity and spread of subsequent distufidabtas
et al., 1994)In western North America, native bark beetles are a major disturbance agent
capable of regionadcale forest mortalit{fRaffa et al., 2008)Remotely sensed imagery has been
used to characterize such widespread disturbance events over the last two (Méchkie<t al.,
2006a) However, very little research has employed these techniques to study istsebadce
prior to the recent period of extended outbreak (~pre late 1990s). The northern RockyimMdounta
experienced a widespread mountain pine beetle outbreak in the late 1970s to eanydg80s
andPowell, 2001). However, the lack of spatially explicit data on the extent andtg@fehis
outbreak limits our understanding of the influence that this disturbance had on thedarnsca
overcome thishallenge, we utilizé multiple lines of evidence to retrospectively characterize
forest canopy mortality from the outbreak by comparing temporal chamgeshived satellite

imagery.
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4.2.1Mountain Pine Beetle Overview

The mountain pinbeetle Dendroctonus ponderosae) is a nativespecies found in the
western United States and Canada that attacks and reproduces in liBarge®t al., 2010).
The mechanisms with which populations switch to epidemic levels are co(Beletz et al.,
2010; Raffa et al 2008), but include suitable host availability (amount, vigor, age and density)
and condition (Fettig et al., 2007), along with beetle population survival and growth given
thermal conditiongPowellandLogan, 2005). Epidemic populations are capable of landscape-
scale forest mortality leading to cascading effects on forest struspgeies composition and
function (Raffa et al., 2008). Major host species include lodgepole Bings(contorta),
ponderosa pine?( ponderosa), and whitebark pineP( albicaulis) (Bentz et al., 2010)mpacted
forests exhibit unique and visible characteristics at each stage of a mgunéabeetle attack
(Wulder et al., 2006a). Killed trees begin to show visible changes as the foliagesctiange
green to yellow to redwer the first year after the attack. The gray attack stage typically
commences three years after the attack, as most trees will have lost all nethaliesnae

(Wulder et al., 2006a).

4.2.2 Remote Sensing and Disturbance

Historical aerial photographyg a valuable research tqmovidingdetailed records of
forest landscapes over the last half century or more. Althlomdfied in spatial extent, these
recordsprovide a fine-scale snapshot of landscapes at one or multiple points in time. Previous
studies have successfully used aerial photos collected during two or more tiogks peri
measure changes in tree co{@rown et al., 2006; Di Orio et al., 2005; KadmamdHarart
Kremer, 1999; KennedgndSpies, 2004; Manier et al., 2005; Platt and Schoennagel, 2009;

Strand et al., 2006 he use of satellite multispectral imagery to map and monitor forest
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condition over larger regions is also well documented (Cohen et al., 2001; Maselli, 2004;
Nemani et al., 2009; Schroeder et al., 2006; Townshend et al., 2012; Volcani et al., 2005) dating
back to the early 1970s with the initiation of the Landsat program (NASA, 28&@¢ral studies

have used aerial photas a surrogate for field data collection and theed that information to

scale up to satile imagery This technigue has been accomplished to map various attributes
including land cover type (Parmenter et al., 20@8e cove(Carreiras et al., 2006; Cohen et al.,
2001; Homer et al., 2007), and surface imperviousness (Homer et al., 2007). Photos can be used
to sample post-disturbance forest pattesagh as canopy mortality. The aerial photo reference
data can be used to bridge the gap in scale between localized tree mortality medsines an

more coarse scale of satellite imag@vieddens et al., 2013). This hybrid approach allows for
detection of fine-scale disturbance patterns captured in the aerial photodakinideadvantage

of the multispectral and multitemporal components of Landsat imagery at thedpadsale.

Furthermore, it provides aafhway to conduct a retrospective analysis.

Ecological dsturbance alters ecosystem structure by both abrupt, conspicuous change
and by gradual, slow change over some period of time. Such impacts allow rensotg &
capture the preand postandscape, and in some cases, the duration of the event. Aerial photos
have been utilized to investigate the impacts of(febi et al., 2003; Johnson and Fryer, 1987),
insect damagéBebi et al., 2003; White et al., 2005), extreme drought (AllerBardhars,
1998), and blowdown (Baker et al., 2002) on forest and woodland ecosystems. At regional
scales, multispectral satellite imagery has been employed to study divesetyprest
disturbance including fragmentation (Fuller, 2QGitg (Turner et al.1994), drough(Huang et
al., 2010) and insect induced mortality (DeRose et al., 2011; Vogelmann et al., 2009). Numerous

studies have utilized multispectral imagery to document the extent and sevéngyrecent
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mountain pine beetle outbreak over thstldecade. Efforts range from fiseale satellite and
aerial multispectral imagery acquired from one time pegi@umbps et al., 2006; Dennison et al.,
2010; Hicke and_ogan, 2009; Meddens et al., 2011), to moderate resolution sensors
incorporating multiple time period§&oodwin et al., 2008; Meddens et al., 2013; Meigs et al.,

2011; Wulder et al., 2006b).

We found few studies in the literature that used the first generation of Laladadb
detect mountain pine beetle outbreaks or other insect-driven forest disturbancandibat L
Multispectral Scanner System (MSS) sensor was carried onboard theéisafidsat satellites
and provided imagery from 1972 until 1995 (NASA, 2013). Researchers in British Columbia
(Harris et al., 1978)sed single date MSS imagery to detect damage caused by the Eouglas
tussock moth and western spruce budworm with little success. Weber et al. (197%eemplo
single date MSS imagery to map mountain pine beetle damage in Ponderosa pine. Rencz and
Nemeth (1985) tested thoa single date approach and a change detection approach over a six
year period to map mountain pine beetle damage in British Columbia. Both mountain pine beetle
studies concluded that MSS imagery does not have the capability to detect beate daran
the spatial resolution of the imagery. However, the British Columbia $Retycz andNemeth,
1985) noted greater detection accuracy at sites with heavy, continuous damagéngutges

spatial resolution is less limiting in areas with higverity outbreaks.

4.2.3. Outbreak Impacts to Forest Vegetation Spectral Properties

Living vegetation absorbs blue and red light energy, while radiation in the green and
nearinfrared portion of the electromagnetic spectrum is refleGiedes and Vaughan, 2010).
Therefore, coloinfrared photos can be used to distinguish between areas of live trees and dead

trees.As the foliage of killed trees changes during the first year after thekathe spectral
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response also begins to chaii@encz andNemeth, 1985)At the cellular level, mortality
contributes to a reduction in foliar moisture and chlorophyll, as other pigments anak cel
structure begin to break down (Mauseth, 1988)a result, the spectral reflectance in the red
wavelength (630-690 nm) increas, whereas the reflectance in the green wavelengtf6 (&R0

nm) decreasg®hern, 1988).

Disturbances where large portions of forest vegetation are removed fromdkedpe,
such as fire and clear cutting, create a drastic change in spectral reBe@anversely, subtle
changes in foliage color over time may prove more difficult to detect. Nevesshébe
phenology associated with mortality caused by an outbreak will lead to a chasagellite-
detected reflectance of the forest canopy. An @malyf multiple years of moderate spatial
resolution imagery has the potential to capture reflectance patterns baforg,ahd after
landscapescale disturbance ever{tsoodwin et al., 2008; Wulder et al., 2006a).

Multiple types of spectral indices have been employed to detect the impacsmbm
pine beetle disturbance over the last decade. Examples of indices includerttadi2éar
Difference Moisture Inde(Goodwin et al., 2008, 2010; Meddens et al., 20tt®) Tasseled Cap
(Meddens et al., 2013), the Enhanced Wetness Disturbance Index (Skakun et al., 2003; Wulder et
al., 2006b), the Normalized Burn Rafideigs et al., 2011Xhe RedGreen Index (RGIjCoops
et al., 2006; Hicke and Logan, 2009; Meddens et al., 2013), the Band 5/Band 4 Ratio (Meddens
et al., 2013)and the Normalized Difference Vegetation In@lebeddens et al., 2013). Various
levels of success were obtained with each index. Many of these indices are denvédridsat
TM or ETM+ imagery. However, Landsat TM imagery is not available prior to 1984h@
study area) and Landsat ETM+ imagery is not available before 1999. Becaosgtiteak that

is the focus of this study erupted in the mid-1970s, Landsat MSS imagery reptheeorily
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available satellite imagery. Given the founltispectral bands of MSS (Table 4.1), we were only

able to utilize a subset of these indices.

4.2.4 Aerial Detection Survey Data

The US Forest Service (USFS) has been conducting annual forest healtheseciad
surveys (ADS) since the middle of thé™@ntury. In summary, human observers record the
type and extent of abiotic and biotic disturbances and host species onto sket¢heigpst
al., 2011). The sketch maps are hard copy maps used by human observers in planes that are late
converted to digital form. This data has successfully been integrated int@ reenstng
detection studies of insect disturbance (Meddens et al., 2012; Meigs et al., 2@ Eprest
Health Protection Aviation Program in USFS Region 1 (including Glacier Nafrala(GNP))
maintains digital files of the ADS data since 2000. Staff at GNP digitized the Aia$rdia
1962-1998. The data include information about insect species, host tree species, daeage ty
and forest type. However, very few polygons contained information on the number ofltesks ki
per acre (severity), which is commonly included in contemporary ADSadaltés critical to
relating outbreaks to forest processes and change. Furthermore, the distpdiggons
identified in the ADS data were vergrfje (e.g. > 70,000 ha). Although useful for breadle
monitoring, we suspect the ADS data do not represent the heterogeneous impacts of the
disturbance. Since we are interested in both the extent and severity of the distuttEse

missing details revily influenced the direction of this study.

4.2.5 Objectives
The goal of the study was to test an approach combining multiple lines of evidence to
reconstruct the extent and severity shauntain pine beetle outbreak in a topographically

complex landcape. Furthermore, subsequent disturbance (fire) has removed evidencegieom lar
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areas of the study area. To accompligh, we used a combination of aerial detection survey
data, historical aerial and landscape photos, National Park Service repatseamubral
sequence of satellite imagery. Each data source has limitations in the spatiateeguood.
However, by combining disparate sources of data across spatial and tesoptesl we aimed to
reduce the uncertainty associated wébonstructing otbreak parameter&mploying multiple
lines of evidence from independent data sources has the potential to extend the oriormati
associated with each piece of data and create a robust composite pititereudbreak
(Swetnam et al., 1999Reference da was collected from aerial photos and scaled up to satellite
imagery measurements over time. We hypothesized that the impacts of the wicsttiobizne
forest canopyi.e. mortality)would be captured in spatiotemporal changes in reflectance. Finally
we sought to demonstrate a novel approach in the use of existing data to assess a historic
disturbance.
The objectives of this study are to:
1. Relate measurements of canopy mortality from-8oale aerial photography to coarse
scale multispectral imagery;
2.  Classify the severity of mountain pine beetle affected areas using a tempoesicgeq

of Landsat data and other landscape variables.
4.3METHODS

4.3.1 Study Area

The study was located in Glacier National Park in northwestern Montana(Ri@Ae
4.1) and chosen because of the extensive mountain pine &y@etéenic that occurred there in
the 1970s (Hamel et al., 1977; McGregor et al., 1975). The park encompasses 4,080 km
(408,000 ha) of diverse terrain on either side of the Continental Divide. Meag&aenaual
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precipitation is73.1 cm, and average annual maximum and minimum temperatures are 11.9 °C
and -0.2 °C, respectively (192000) (Western Regional Climate Center, West Glacier station,

elevation: 970 mittp://www.wrcc.dri.edpaccessed 17 December 2012). The climate averages

from this station are consistent with stations on the east side of the park. Elexagies from ~
950 m to 3184 m above sea level and major cover ipphgle grasslandsonifer aml
deciduous forests, lakes, wide glacial valleys and steep alpine Eonests are dominated by
lodgepole pineRinus contorta), western larchL(arix occidentalis), Engelmann sprucd{cea
engelmannii) and Dougladi (Pseudotsuga menziesii).

Given the size and diverse landscape of the park, we limited the study area based on
several assumptions. First, vegetation cover types not susceptible to mountairenattzek
were identified using ReGAP (Davidson et al., 2088 omitted. Second, we calculated the
cumulative extent of mountain pine beetle damage identified by the ADS datamé@vdeand
1987. The area not impacted by the mountain pine beetle outbreak during the buffered time
period was omitted from further analysis. The area of interesalsasonfined by the extent of
available satellite imagery used in the analysis. The confined area ebtriget 19%m?

(119,552 ha) and ranges in elevation from ~ 950 m to 2960 m above sea level (Figure 4.1).

4.3.2 Aerial and Landscape Photograph Pragssing

Six color infrared aerial photographs were obtained in digital format frotd$he
Geological Survey’'s Earth Resources Observation and Science Center (Figureur. bf the
photos were acquired in 1982 (west of the Continental Divide), two in 1984 (east of the divide).
All photos have a scale of 1:58,000 and were scanned at a resolution of 1800 dots per inch. The
photos were orthorectified to a 2009 NAIP photo (National Agriculture Imagerydnyaising

ground control points (GCPs) and a 30 mitdigelevation model (DEM) (Leica Photogrammetry
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Suite, Erdas, Inc., Norcross, GA, USAhe average root mean square e(RIVISE)for each
photo was less than two meters. We independastigssed the average displacement between
each ofthe orthorectifid images anthe 2009 NAIP image at multiple locations within each
image pairThe average displacement beémnéboth sets of images was less than two meters and
deemed acceptable.

We searched two landscape photographic archives (the US Geological Survey
Photographic Library and Glacier National Park Research Library) tosl@chtitional sources
with evidence of the disturbance. We obtained several color photos taken in the late 1970s or
1980 that contained evidence of the outbreak. In several caseseheadadthe aerial color
infrared photo and the color landscape photo were congruent. We were able to match the two
photos and identify unique patterns and patches of mortality in each photo. Although thais was
gualitative analysis, the additional infortiwen provided us with concrete evidence of the

disturbance in the aerial photos (Figure 4.2).

4.3.3 Aerial Detection Survey Data

We obtained the digital version of the ADS data (1962-18881 GNP andubset
annual shapefiles to correspond with the start of the outbreak (A9d ihe last year before
extensive fires in the park (1987). We queried polygons associated with mountain pine beetle
using theDamage Causal Agent attribute code and clipped the shapefile to the extent of the park
for each yearEach annual shapefile was converted to an annual grid (30 m), snapped to the
master Landsat imagand aggregated to form a cumulative mountain pine beetle extent and
used to constrain the study area. We did exathie@DS data for other disturbance agen
within the park to ensure there were no unaccounted disturbances. However, we fouad very f

disturbance polygons, accounting for a very small area, within the analysis mask.
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4.3.4 Satellite Data

Terrain corrected Level 1T MSS imagery were obtain@eh the USGS EarthExplorer
Archive (USGS, 2012) of the study area before, during and after the peak of the outbreak. The
imagery had been resampled by the USGS to a spatial resolution of 60 m in fout bpadsa
(Table 4.1) We utilized nine scenes the analysis (Table 4.2). Late summer data were used
(late AugustSeptember) due to availability of clofide imagery and the presumed relative
phenological stability of the forests during this time pefMdgelmann et al., 2009§5eometric
correction calibration, atmospheric correction and image normalization procedures \pkeel ap
to the imagery and are fully described in Appendix B.

Given the four multispectral bands of MSS, we were only able to utilize threeagpectr
indices in the model evaluation process (Table 4.3). The GNDVI is sensitive to thegere$
chlorophyll since the green spectral region is used instead of the red (€grogiras et al.,

2006). We did not use Band 3 as a covariate as it is often highly correlated with band& of MS
data. A preliminary investigation identified that NDVI performed the best amatirap

indices. In an effort to limit redundancy in the data, we transformed the NDVbk&nes using
principal component analysis. The principal components were used as predietiolesadn one

of the five models tested.

4.3.5 Sampling

We estimated beetle induced forest mortality using data collected from thephetizd
and compared these measurements with changes in spectral values over time. §ateddhee
landscape into 12 facets based on slope and aspect. These two variables influsince fore
composition, tree vigor and subsequent susceptibility to mountain pine (fegfie et al.,

2008). Furthermore, dividing the landscape into sgiens of similar inphysical characteristics
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can isolate spectral gradierfidomer et al., 2004). Both variables were derived from the
elevation dataset. Aspect was classified into four categories (nasthseath or west) while

slope was classified into three quantillesv (<12%), moderate (12-29%) and high (>29%).
Initially 350 random points were proportionally allocated in each landscapeanassquare

plots of 180 m x 180 m were delineated around the center of each point. The plot size was
chosen considering theatial resolution of the satellite imagery, i.e. 3 x 3 Landsat MSS pixels.
A negative buffer was used to insure each plot was located completely within oreapends
facet, and deleted (10%) if it fell within multiple facets. In addition, limitatiduns b

topographic shadow or image blur from the orthorectification process warrant@aigson of
some plots (13%). As a result, each landscape facet did not contain the same numhamagf sam
plots.

An unsupervised classification in Erdas Imagine was conducted on each air photo
resulting in 20 classes. We used an iterative approach to determine the number oVisesuper
classes that maximized spectral separation without generating an unwieldgrmaf classes.

For each plot, we manually interpreted #eclasses and assigned each class to live forest, dead
forest, or shadow (Figure 4.3). We then calculated the ratio of dead canopy cowardanopy

cover in each plot. We omitted shadow pixels as they represent unknown cover types.

4.3.6 Statistichd Analysis

Regression analysis can be used to explaindsecgke variability, while model residuals
can be used to describe srrsdhle variability in the dat@ressie, 1993We used a generalized
linear model (GLM, Gaussian distribution, Identity lifukaction) to identify a set of explanatory
variables to estimate canopy cover change on the sample plots over time. Pvadiibes

included spectral indices derived from nine years of Landsat MSS data, topoggigpayion,
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slope, aspect and topographic position index), and variables derived from the AD8stata (f
year detected, last year detected and total number of years detected)) aAdbe variables
derived from the aerial survey data were treated as indicator variables in fesarapect was
binned into four classes: North (0-45°; 315-365°), East (45-135°), South (135-225°), and West
(225-315°). Three categorical variables were derived from the aerial surveyirdatgear of
attack (early, mid, or late in the outbreak), last year of attack (early, mateon the outbreak)
and total number of years recorded during the outbreak (low, moderate, or high).

We tested five models in our analysis using different combinations of vegetatiorsindice
as the primary biotic variables. Faah model, a stepwise selection by Akaike’s Information
Criterion (AIC) was used to identify the best subset of independent variablesitteintithe
regression models (R Development Core Team, 201 aspect variable was allowed to
interact with theorimary vegetation index in each model. We evaluated the models through
consideration of AIC, the mean absolute error of prediction (MAE) and the root meaa squa
error of prediction (RMSE). Furthermore, a-fefd cross validation procedure (DAAG package
in R) was employed to calculate the prediction error of each model.

Residual error from the regression model can be utilized to describe thescaball
variability in the datgManier et al., 2005; Reich et al., 2018)odel residuals may still contain
useful information that can be utilized to gain precision in estim@dongpattananurak et al.,
2012). We modeled the residual error from the selected regression model using a binar
regression tree. We tested the residuals of the selected GLM modkeaedression tree model
for spatial autocorrelation using the Moran’s | statitegendre andrortin, 1989). The sampled
plots were clustered on the landscape into three distinct groups based on the ayvaiidbdi

aerial photos. We assumed poib&tween each cluster were spatially independent and employed
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a block diagonal spatial weights mat(bpton and Fingleton, 1985) to account for the clustered
nature of the plots. We used inverse distance to define the neighborhood structure of the three

gpatial weights matrices (one for each cluster).

The residuals of the GLM-CART model exhibited spatial autocorrelatioradileessed
the issue by running the regression analysis using a Generalized @eastsS(GLS) model. A
variogram was fit using thesiduals of the GLM model to describe the degree of spatial
dependence in the residuals. A Gaussian variogram model was fit to the samplemanggca
least squares to estimate the nugget, sill and range. The GLS regressisedvisastimate the
parameters of the trend surface model in the presence of spatial autocorrelataiowed plot
location (east or west of the Continental Divide) to enter the model to test if theaduiimpacts
were different on either side of the divide. We used thduats of the GLS to model the small
scale variation in the data using binary regression trees as described above.

After parameterizing and validating the models, forest canopy changeojecsted to
the landscape area of interest in three steps.&irend surface was created from the parameters
of the GLS model using the raster calculator in ArcGIS. Next, a surface @sideals
generated from the regression tree model was created using a seriestair@irsiatements in
the raster calculator. Finally, the trend and residual surfaces were add#tet to create a
continuous surface of forest canopy change scaled between 0 and 1. Areas of clgudiotmve
shadow and topographic shadows represent uncertainty and were omitted from gis. &ally
two years of data (1978 and 1983) contained sparse clouds, but topographic shadows were
present in all years. We applied a NDVI threshold (< 0.2) to remove clouds and topographic

shadowgHicke andLogan, 2009) and cloud shadows were manually delineated and removed.
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4. 4RESULTS

4.4.1 Aerial Detection Survey Data

Our analysis of the aerial survey data indicates the outbreak was firdfiedant1971 in
the north-west portion of the park in very small isolated patches. The outbreak cordinued t
spread from these centers until the ri®@70s when it was reported widely across the western
portion of the park (Figure 4.4). There was no data available for 1975, and the followinigeyear t
area affected by beetles significantly expanded on the westerofdite park. The aerial survey
continued to report large areas impacted from 1977 through 1980. The outbreak was first
identified east of the Continental Divide in the north central and north east portrenpErk in

1979. Inthe early 1980s, the araffected by beetles quickly decreased (Figure 4.5).

4.4.2 Determination of Tree Canopy Cover

A total of 261plots were used to estimate tree canopy mortality tieerair photo
analysis (Table 4)}Initially, 282 plots were analyzed, ladveralwereremoved from the
datasebecause thphoto plots fell within topographic shadows, cloud cover or cloud shadows in
the satellite imagerylhe study area is dominated by west facing slopes, followed by south, east
and north. Each aspect class did not contain the same number of plots (see Section 4.3.5
However, the number of plots in each aspect class is an adequate reflectopeasttntage of
the study area in each aspect class. Plots ranged from very little mo#tdlty) o nearly
complete mortalit (99.8%). West-facing plots had the highest mean mortality (68.3%), while
plots in the east aspect class had the lowest mean mortality (49.4%) (Table 4mu|ditity of
the data is concentrated in mortality classes ranging froB020 (Figure 4.6). Gien the

severity and extent of the outbreak, this is not an unexpected finding.
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4.4.3 Model Adjustment and Validation

The model that employed NDVI and the Green Band (NDVI+G) (Table 4.5) provided the
best estimation of canopy change over time. Thisahlodd the lowest AIG-237.55), MAE
(10.8%), and RMSE (13.6%) values while accounting for the greatest amount of ekplaine
variability (65.4%) (Table 4.5). Furthermore this model had the lowest predictmm(E5:4%)
of any model from the cross validation procedure. The incorporation of a green baratinesult
a stronger model than using NDVI alone (Table 4.5). The NDVI and PCA models had identica
coefficients of determination, and similar MAE and RMSE. However, the PCA model had
substantially highernediction error. The GNDVI model did not perform as well as the three

NDVI based models and the red-green index proved to be a poor indicator of mortality.

The NDVI+G model was selected to describe the laagde variability of canopy change
over time. However, the residuals of the GLM model exhibited spatial aut@tmne{Moran’s|
test;p < 0.0001) indicating that the null hypothesis of spatial independence in the residuals be
rejected. The variables included in the NDVI+G model were then analyregdau&LS model
that explained 62% of the variability with higher MAE (18%) and RMSE (21.1%) thanLtke G
model (Table 4.6, Figure 4. Hlowever, he residuals of the GLS model did not exhibit spatial
autocorrelation (Moran’stest;p =0.64). The green band from 1978 was the most important
predictor west of the Continental Divide, with a relative contribution to the model of 10.7%. The
green band from 1987 was the most important predictor east of the divide, with a relative
contribution to the model of 18%. Decreased values of green band reflectance indicated a
substantial increase in canopy mortality. NDVI from 1977 and 1981 were highlyicagiin
the model on the west side of the park (p<0.001) and also exhibited a negative relatiohship wit

canopymortality. NDVI from 1977 was also significant on the east side of the park.
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The residuals were used to model the sisedle variation in the data using binary
regression trees. The initial regression tree identified 27 nodes and locasioor (@ast b
divide) did not enter the analysis, so one tree was used to fit both sides of the CairiDiveahe.
Given that regression trees are prone to overfitting, we conducted a 10-fold crdasorabn
the data and subsequently pruned the tree to 22 nbldiessimplified the model while still
accounting for spatial autocorrelation. The combined model (GLS + CART), wiptlres
both the largeand smalscale variability, had a lower rate of MAE (7.6%) and RMSE (9.8%)
than the GLS model. The combined model increased the amount of explained variability in the
data by nearly 20%R*= 0.819) (Figure 4.8). The residuals of the combined model are spatially
independent (Lagrange multiplier tegt0.27) and the standardized mean square error (SMSE)
of the combined model is 0.996. An SMSE value of one indicates consistency between the
estimation error variance and the observed error variance in the model (Hale<i®92).

The combined model was then applied spatially to the study area as a continuoes surfac
with modeled canopy cover change scaled between 0 and 1. We binned the modeled data into
three categories based on natural breaks in the data (Figure 4.9). Thicalassifesulted in
20% of the project area in the low category (< 0.37 canopy change), 46% in the maxiérate
34% in the severe category (>0.62 canopy change). Pockets of high seveotyndre f
throughout the park across the elevation gradient present. The theess @es generally
represented across the study area. However, it should be noted that pockets of Is@rand se
impacts are clustered, with the moderate severity often forming a trarstwaen the classes.

To provideperspective on the classificatiangcolor-infrared photo and corresponding
classification map is shown Figure 4.10. Based on these visual comparisons, our model

appears to capture high levels of mortality associated with beetle attackaweel as areas not

105



as heavily impacted. Furthermore, the gradient of impact on the landscape appeaxel
represented in the model. Example spectral trajectories of the three classesahow cl

delineation during extent of the outbreak (Figure 4.11).

4.5 DISCUSSION

A primary objective of our analysis was to develop a methodology to reconstruct the
extent and seerity of the outbreakVe were able to identify a gradient of mortality the
landscape using changesNDVI andthe green band reflectanceer time Our findings
confirm the outbreak was not homogenous across the landscape (Figure 4.9). The neported e
metrics are reasonable given limitations in the data and comparable to reldies sf insect
impacts on the forest canopy (Townsend et al., 2@r2pr associated with the ADS data was
not quantified. Furthermore, this information was collected by observers presuwauabiyg
under difficult conditions. Therefore we suggest our model represents an unbiased thie
disturbance. In addition, thmodeling framework we applied in this study should be transferable
to other areas with similar foredisturbance characteristics.

This study builds on the ideology of many of the aforementioned studies which used
remotdy sensed data to document various stages of the late 1990s-mid 2000s mountain pine
beetle outbreak. The common theme is the developofientime series imagery stack to assess
spectral changes over tinf@oodwin et al., 2008; Meddens et al., 2013; Meigs et al., 2QLk)
normalization process gave us high confidence in the time series stack, gigendistent
reflectance values of ¢hpseudenvariant features over time (Figure 4.11). Howewes were
unable tautilize many of the vegetation indicés.g. Normalized Difference Moisture Index)
used in these studies. Given that our study objectives hinged around a historic disttaddanc

occurred in the mid-1970s and early 1980s, we were unable to use imagery with the spectral
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resolution needed for many of those indices. The major difference in our study and those
described in section 4.2.3 that the disturbance we are interesteaccurred in the 1970s and
early 1980s. This predates the advent of Landsat TM/ETM+ imagery and other dileer sc
imagery employed in those studies.

There were two main differences between our study and those that used MG&adaa
et al., 1978; RencandNemeth, 1985; Weber et al., 197Birst, we attempted to capture the
gradient of the disturbance on a continuous scale between 0 and 1. Second, we employed
multiple time periods of imagery to assess spectral changes at sites over timggARemcz
andNemeth(1985) used a change detection procedure, there was a gap of six years between
images. Thaise of justwo images waskely insufficient to capture the futenge of phenology
associated with the disturbance from pt&ckthrough the greened and gray stages, followed
by the likely expansion of understory growth following canopy mortality. Conducting a
retrospective analysis afforded us several advantages over the priotdd&S.sThe Landsat
archive is now readily available at no costnowing the financial burden that inhibited prior
investigators from developing a time series imagery dtdodcock et al., 2008). Furthermore,
advances in radiometric calibration provide a basis for standardized compansearbehages
acquired on di#rent dates and by different seng@kander et al., 2009).

Thereare several strengths associated with our study that allowed us to overcome
numerous limitations. Overall, we provide an objective framework that can bedajaptither
areas, at otherrtie periods, involving other types of forest disturbance. The major limitation of
guantifying a disturbance over a large, topographically complex landscape subsequent fire
has erased some of the evidence was overcome using existinghgatamote sesing archive

allowed us to extract information about the condition of the forest canopy acrossespatiral
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scales. By employing multiple lines of evidence, each independent data coniriguted to a
composite picture of the disturban@wetnam etlg 1999) Several key factors led to a
successful analysis. The first was employing a mask to restrict the area sfsd@yrity et al.,
2013) toforesttypes where mountain pine beetle hiaglpotential to impact. The second critical
elementwas thedevelopment of a normalized time serieseffectancgTownsend et al., 2012;
Vogelmann et al., 2012 characterize changes over time. We obtained many more images (24)
than we ultimately used (9), but this was necessary to conduct an exhaualiaton of
available imageryThe consistent level of pprocessing performed on the imagery by the
USGS and our procedure to convert datatsurface reflectance aided imetsuccess.
Furthermore, the image acquisition dateere within a skxweek window, whicHimited intra
year differences. The final critical element was the development of a novel apfwroaeasure
mortality in available aerial photos and scale up to multiple years of satellite ymalyer
procedure was crucial given the absenceeaid fata.

The absence of validation data in this study precluded the use of the holdout method
where the data is separated into a training set and test set. We evaluated th&stenodels
using several common measures, including a ten-fold cross validation procedure. Cross
validation divides the data intosubsets of approximately equal size and the holdout method is
repeatedk times(Salzberg, 1997)There are strengths and weaknesses to this method that is
commonly used in ecological studies. Creabdation is advantageous because it is less critical
how the data are divided, every point is used in the test set once, and each point is used in the
training sek-1 times. Disadvantages of the method include computation time andffade-

between vaance and bias, dependent on the number of iterations (Kohavi, 1995). Furthermore,
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there is only onéatasetnvolved in the cross validation, regardless of the number of subsets

created Esbensen and Geladi, 2010).

4.5.1 Ecological Considerations

In areas where mountain pine beetle disturbance induces high mortality in the forest
canopy over a short time period, there will be a relatively quick change in.NID¥tefore these
areas will have a heightened chance of detection by remote sensing methaddgidn, the
release of light, nutrients and moisture will occur at one time period. Therefdhestmef
understory growth will likely occur over a relatively short time period. Triseases the
likelihood of obtaining a tight sequence of imagesdtedt these rapid changes. Given the high
severity of the impact, the model identified large negative relative commbrisuof the green
band in the 1970s on the west side of the divide, indicative of an increase in canopy mortality.
However, the 1987 green band was significant, with a large positive relativdatatrito the
model. This can be interpreted ecologically in that there was a sharp increasepiy roantality
during the late 1970s, but understory growth was prevalent in these high sarea#yy the
late 1980s. The outbreak moved from the west to east over the divide. The 1987 green band had
a large negative contribution to the east side model, suggesting recent camtghyym
dominated the spectral signature, while understory regrowth was likely nopvadds

However, the impacts of mountain pine beetle disturbance on the forest canopy do not
always exhibit characteristics that are easily identified by remote sensthgas. Areas that
have lower amounts of mortality will l®mposed of a mix of live and dead trees resulting in a
gradient of mortality over the duration of the disturbance. As trees die ovemaipdriod, they
will likely be interspersed with live trees. Given that the spectral respdmasgixel is an

amdgamation of all elements preséhefsky andCohen, 2003)there will be a smaller change
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in reflectance. Additionally, as individual trees die, the release aires®will impact a smaller
area of understory regrowth. The localized understory regrowth could offsgipess the
change in reflectance associated with canopy mortality. This problem itestadion the
landscape as the cycle of canopy mortality, resource release, and ugdersiiocould be
occurring simultaneously in localized areas.

Several ecological phenomena could pose challenges to this methodology, pigrtfcula
the recent disturbance history of the study area is unknown. Other disturbances could be
identified by this method, without being attributed to mountain pine beetlevaféeable to
incorporate ancillary data about the mountain pine beetle outbreak such as ADSrkata, pa
reports and knowledge from park staff to supplement the primary imagery methoeestHar
events typically have sharp geometric boundaries (Goodwin et al., B@d®¥ten persist in
reflectance patterns for quite some time after the event. Unknown fireg¢Hatv severity or
small in area could be difficult to segregate from insect disturbance monpalitigularly if the
event corresponds with a gapsatellite imagery. Other insect disturbances such as mortality or
defoliation events in the study area could be detected as well (Meigs et al.T@@hsend et
al., 2012) We analyzed thBamage Causal Agent attribute code of the aerial survey data a
found nearly no other disturbance types recorded within the study area duringetipetioas
1971-87. Given that our objective was to detect landssegle-mortality associated with a
widespread, higlseverity disturbance, we were not concerned with these small disturbances.

Periods of drought and fluctuations in hydrologic year (Oct.-Sept.) prempitaiuld
impact interannual indices of vegetation reflectance in areas of low mortality. However, ou
normalization procedure should account for safthese differences between imagery years.

The establishment of appropriate reference conditions of an area remains aehallen
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ecological studie@Millar et al., 2007) Finally, all of the aforementioned challenges are made
more complex when attempgino conduct a retrospective analysis of historical forest

disturbance.

4.5.2 Technical Considerations

The technological challenges associated with this study are centeredspatibg
temporal and spectral resolution of the aerial photographs tailitsamagery. Although we
were constrained to the use of best available data for the time period, commsid#rabme of
the shortcomings is necessary. We used aerial photographs collected in 198&h{di934
(two). The scale of each photograph (1:58,000) is relatively coarse and does nobratteav f
identification of an individual tree crown. However, we believe the size of the photoJ86ts (
m x 180 m) was adequate to characterize the level of mortality within a stand. l&tvenrt
objective was to measure canopy mortality, we were confined to usinginéiared
photographs. We would have considered natural color photographs if they had been available in
the archive. There were additional photographs available in the archive that weskeotatd
due to a combination of acquisition date, coarse resolution and gray scale film. Althoug
nominal, there are acquisition costs associated with historic aerial photos, and the
orthorecticfication process can be time consuming.

Additional landscape photographs would have been extremely helpful. However, we
were limited by those that were taken by park staff at the end of the outbreak and hdlbsed i
National Park Service archive. Although they were not used in a quantitative snlggi
provided valuable evidence of the impact of disturbance.

The Landsat MSS imagery employed in this study is also subject to spatial,abammbr

spectral constraints. Although we resampled the MSS imagery to 30 m to aid in the
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georectification process, the nairesolution is significantly lower. Pixel values are a mixture of
ground elementf_efsky andCohen, 2003), and given the coarse spatial resolution, MSS
imagery is limiting to the amount of mortality that can be detected at one pixel betwégie
time periods. Therefore, areas that experienced low mortality may have been timageesby
our model. The temporal limitations of the image archive arefdlab The study may have
benefited from a higher frequency of images collected every calendar geanlditional image
years to establish pre-outbreak conditions. However, it was not tenable to elleesd
constraints given the available imagery and the timing of the disturbance. Thralg@solution
of MSS imagery is limited compared to TM/ETMmagery. Many of the indices that have been
successfully applied to recent outbreaks are developed from a wider spegeahamthat of
MSS. All of these factors may limit the sensitivity of the study to detect differegislof
mortality, especiallyow levels of mortality. However, given the scale and severity of the
disturbance, coupled with the dense imagery stack that was assembled, wdlabte &ii
achieve acceptable results.

The Tasseled Cap transformation for Landsat data has been aksstd| tmformation
from Landsat imagery in forest disturbance mapping (Healey et al., 2005). Hpwe\wid not
use the Tasseled Cap transformation in our analysis. Unlike Landsat TM and Eds4eled
Cap coefficients have not been developed for MSS imagery that has been converted to
reflectance datéSchowengerdt, 2007). Our normalization process depended on normalized
reflectance values and not Digital Numbers. The established Tasseled Claprivaiisn can
only be applied to Landsat MSS imagery igiEal Numbers.

We chose to classify the continuous output into three categories based on natkisal brea

in the data. Although relative differences are taken into account, the tldrestwween each class
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is somewhat subjective. Prior investigators have used lower thresholds (bd¥s-moderate
(11-29%), and severe > 30% of stands killed) (Aukema et al., 200&]ditional classes of
mortality severity (e.g. trace, light, moderate, severe, and very sévedjens et al., 2012).
However, these two stuel were considering ADS data which contained a measure of the
number of trees or the percentage of stand killed. This type of classificdtemecioes not
translate directly to our modeétor example, if 15% of the trees were killed in a localized drea,
could have a large impact on the reflectance of those pixels and overestimaterihe $bie
issue could be exacerbated by the coarse resolution of Landsat MSS pueatsth@t there is no
precedent for this type of analysis we opted for a natuealk classification scheme.

Our modeling framework was exhaustive in using multiple lines of evidence that
represented the best available data. Our model incorporated the full exdeati@lble spectral
reflectance in MSS imagery (green, red and ndaared bands). Only band 3 was discarded
given that it was highly correlated with band 4. Furthermore, the spectral atforused by the
model can be readily interpreted. NDVI is a commonly used index to assesgadalbange
(Pettorelli et al., Q05) and its behavior can be reasonably predicted from plant physiology theory
(Garrity et al., 2013)Plant material containing chlorophyll reflects in the green wavelength. The
reflectance in the green band would be expected to decrease as the arablonbplhyll in a
pixel is reduced from plant mortality. Therefore, the inclusion of the green bandgsavi

measure of the amount of chlorophyll present within a pixel over time.

4.6 CONCLUSION
We have presented a framework that incorporates multiple lines of evidence to
retrospectively characterize a landscape scale mountain pine beetle disturbaheenbre, we

have demonstrated that Landsat MSS data is a valuable tool to extend the moddudimres
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imagery record back to the early 1970s. We tadecthat our approach is suitable to characterize
the extent and severity of the event despite initial data limitations. Key considgmaititne
application of our model include the size and severity of the disturbance, as thelltiasing

(first date last date, and duration) of the satellite imagery. Our approach captures the
characteristics of a disturbance event that significantly impacts nusmecological processes.
Given the availability of these data sources, the characterization of recetst wilkeafford
investigators additional tools to study disturbance interactions and e@blegiacies at the

landscape scale.

Any use of trade, firm, or product names is for descriptive purposes only and does not imply

endorsement by the U.S. Government.
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4.8 TABLES

Table 41. Spectral characteristics of Landsat MSS imag®&mSA, 2013).

Band Wavelength Spectral Region
1 500-600 nm Green
2 600-700 nm Red
3 700-800 nm Nearinfrared
4 800-1100 nm Nearinfrared
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Table 42. Satellite imagery scene information and acquisition date used in the analysis.

Satellite | Scene Path/Row, Acquisition Date (yearinonth-day)
Landsatl 44/26 19730910
Landsat 1 44/26 19740923
Landsat 2 44/26 19760921
Landsat 2 44/26 19770811
Landsat 3 44/26 19780902
Landsat 3 44/26 19790915
Landsat 2 44/26 19810913
Landsat 4 41/26 19830924
Landsat 5 41/26 19870911
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Table 43. Spectral indices calculated with the Landsat MSS reflectdatze NDVI
(Normalized Difference Vegetation Index), RGI (Red Green Index), and\GEreen
Normalized Difference Vegetation Index).

Spectral Equation Source
Index
NDVI NDVI = MSSganda— MSS8andMSSsandat MSSsand2 | Rousse et 11974
RGI RGI = MSSadd/MS Ssand1 Coops et al., 2006
GNDVI GNDVI = MSSsanda— MSSsand/MSSsandat MSSsang1 | Gitelson et al.1996
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Table 44. Descriptive statistics of estimated tree canopy mortality the aerial photo plots
grouped by aspéclass (=261).

Aspect Number of Tree Canopy Mortality Statistics
Plots Mean Minimum Maximum S.D.
North 46 54.9 4.4 91.8 23.6
East 47 49.4 12.8 93.9 24.0
South 75 54.1 17.0 99.2 20.8
West 93 68.3 12.7 99.8 21.3
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Table 45. Comparison of model evaluation metrics.

10-fold Cross

Model AlC R? MAE | RMSE |Validation Prediction
Error
NDVI + G -237.55 0.65 | 10.8% | 13.6% 15.4%
NDVI -204.44 0.60 | 11.6% | 14.5% 16.8%
PCA -193.43 0.60 | 11.9% | 14.6% 20.4%
GNDVI -183.13 0.55 | 12.4% | 15.6% 17.3%
RGI -87.32 0.34 | 15.3% | 18.8% 20.7%
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Table 46. Predictor variables used in the NDVI+G GLS moHstimates of the model
parameters are listed for the west and east sides accordingly. The vakspbbtsindTotal # of
Years (low was the only category retained in the stepwise meda treated as indicator

variables in the analysisP*value is significant at 0.05 or lower.

Variable West Coefficient | East Coefficient
(Intercept) 3.18413* 3.43654*
Aspect

N 0.13478 -1.42706*

S -0.24309 -

W -0.58963* -0.17668*
green.1973 -9.58080* -
green.1974 -8.60109* -
green.1977 -9.97942* -
green.1978 -10.69192* -12.20042
green.1979 -5.24848 -
green.1983 6.49274 -
green.1987 8.11468* -11.77014*
Total # of Years Low 0.15773* -
ndvi.1973 - -0.37092
ndvi.1974 -0.03773 -
ndvi.1976 0.41517* -
ndvi.1977 -1.08326* -1.74362*
ndvi.1978 -0.36746 -
ndvi.1979 0.40112 -
ndvi.1981 -1.42992* -
ndvi.1983 -0.40449* -0.50511
ndvi.1973 x N - 2.01483
ndvi.1974 x N -1.24923* -
ndvi.1978 x N 1.69811* -
ndvi.1978 x W 1.10049* -
ndvi.1979 x N -1.78641* -
ndvi.1979 x S -1.18434* -
ndvi.1979 x W -1.49155* -
ndvi.1981 x S 1.52377* -
ndvi.1981 x W 1.20919* -
ndvi.1983 x N 0.9887* -
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4.9 FIGURES

Glacier National Park
[] Study Area

0 10 20 KM
| I E—

Figure 41. Location of study area and extent of aerial photo coverage. Background image is
Landsat Thematic Mapper (TM) Imagery (bands 3, 2, 1) acquired on August 25, 2010. Yellow
polygons represent the location and extent of aerial photograph covaragesa represents the

confined study area.
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Figure 42. Linking landscape and aerial photos. (Left) Landscape photo taken in the Summer of
1980 showing a mixture of live and dead treethe red attack stage in Waterton Valley (source:
Glacier National Park Research Library). (Right) A ceidrared aerial photo of the same area
acquired in October 1980 (source: NASA/Glacier National Park). The mosaie @ind dead

forest can be iddified in both images. The letters correspond to the same area in each photo (A
= stream confluence, B = small patch of live trees, surrounded by dead foreste@rzibbon

of dead forest).
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Figure 43. Example aerial poto sample plot.(A) Plot used to sample aerial photos. The 180 m x
180 m plot size was chosen to include a 3 x 3 block of Landsat MSS pixels. (B) Sampling plot
overlaid on color infrared photo at a low mortality site. (D) Sampling plot overlaidlon c

infrared photo at a high mortality site. (C) Output classification from sagplot in panel B

(live canopy cover = 83%). (E) Output classification from sampling plot in 2aele canopy
cover = 10%).
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Figure 44. Mapped area impacted by mountain pine beetle according to the aerial detection
survey data. Note: there was no data available for 1975.
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Figure 45. Area impacted by mountain pine beetle annually based on aerial detection survey
data.Note: there was no data available for 1975.
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Figure 46. Histogram of canopy tree mortality (%) for all plots=261).
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Figure 47. The output of the NDVI+G GLS model used to estincateopy change over time
due to mortality.
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Figure 48. The output of the combined GIGGART model used to estimate canopy change over
time due to mortality.
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Figure 49. The output of thepatial model classified into three severity levels.
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Figure 410. Comparison between aerial photo and model o(tedt) Color-infrared photo
(year acquired = 1982). (Right) Classified map result of the same areaniodalv applied).
Black polygons correspond to spectral trajectories in Figure 4.11 (A=Moder8ey8re,
C=Low). Note: tick marks are spaced on a 2 km grid; black polygons are &(2&imectares) in

size.
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Figure 411. Spectral trajectories of classified outbreak sevefitye three trajectories
correspond to the polygons identified in Figure 4.10. Note: rock features are included to

demonstrate the success of the image normalization process and the stgiskyduinvariant
features over time.
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CHAPTER 5: The Influence of an Historic Mountain Pine Beetle Outbreak on Burn
Severity in Glacier National Park

5.1 SUMMARY

Native bark beetles are capablecatisingwidespread mortality during outbreak events in the
forests of western North America. These disturbances can have vast effecesbstfacture
and there is concern that such changes could influence subsequent wildfire behciier
impact on ecosystems. New research has looked at the recent mountain pine lbeet& out
(~1986-2006), but few studies have analyzed the ecological legacies of historsc Bioeiiern
Rocky Mountairforests were impacted by adespread mountain pine beetle outbreathen

late 1970s through the early 198bsthis study, we evaluated the effettthe historic mountain
pine beetle outbreak and other biophysical variables on the burn severitgiiedent firesin
Glacier National Parkver an 18-year period. The extent and arrangementsédisturbances
presented a unique opportunity to evaluate the influence of an earlier disturbanseiog e
wildfires. We used sequential autoregression to obtain accurate estimates of model paramete
given the high level of gial autocorrelation associated with wildfire. Models included
additional explanatory variables known to influence burn severity such as topographgland f
moisture and variables were evaluated at increasing spatial scales. stoniain pine beetle
severity was a significant predictor of burn severity in 10 of the 11 fires.eldtenship
between beetle severity and burn severity was positive across all models tmohd/no
relationship between the effect size of beetle severity and time since the btéwtalou
However, our results suggest the influence of the beetle outbreak on burn seveaitg-is s
dependent on the pattern of beetle intensity. Fires where beetle severiteWwasttpredictor at

broad scales tended to have a larger beetle effect size compared to fires where lecal beet
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severity was the best predictor. A number of factors are responsible farrtheeverity
associated with a given fire. However, our work shows that the effects of higfitysenountain
pine beetle outbreatan influence the burn severity of wildfire for many years after thialin

disturbance event.

5.2 INTRODUCTION

In western North America, native bark beetles are a major disturbancecapahte of
regionalscale forest mortalit{fRaffa et al., 208) and fire as a disturbance agent is well
documented (Agee, 1993; Turner and Dale, 1998). These disturlzamncleave profound effects
on the structure of the ecosystem for many years after the (@wener and Dale, 1998) and
influence the likelihood, severity and spread of subsequent disturbances (Vebleh98&t43l
There is concern that the disturbance regime associated with each of theses evamging and
fire-beetle linkages need more resedtgmch et al., 2007)Recent bark beetle outbreaks have
become more frequent and widespread in the foéstestern North American (Raffa et al.,
2008).The frequency of large fires in the western United States has increasedadumiog
temperatures, earlier snowmelt, and longer fire seg&dtel| et al., 2009; Westerling et al.,
2006) Future predictions indicate that fires may become more frequent and sevéng, iead
novel fireclimatevegetation relationships (Lutz et al., 2009; Westerling et al., 2011).
Projections indicate the climate wget warmelIPCC Third Assessment Report, 2001) which
could lead to an increase in forest disturbance in the near future given thateéattdfbark
beetles are vulnerable to climactic conti@sntz et al., 2010; Logan et al., 2003; Westerling et
al., 2006). The response of bark beetles is not expected to be uniform among and within genera,
but several widespread species are predicted to become more widespread as tem@erasu

(Bentz et al., 2010).
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5.2.1 Compounded Disturbances

The interactiorof fire and insect agents is an area of active research due to the increased
probability of compounded disturbances and the potential for unexpected ecological sutcome
(Paine et al., 1998). Empirical studies on compounded disturbances have reportedoé rang
results. In Colorado, Kulakowski and Veblen (2007) found that fire extent was independent of
prefire disturbance history, however, fire severity wlsienced by stands that were severely
blown down five years earlier. Bebi et al. (2003) found that spruce-fir forests ira@olor
impacted by spruce beetle (50 years earlier) were not more likely to burn compared to
unaffected stands. Kulakowski and Jarvis (2Gbuhd no detectable increase in occurrence of
high-severity fires following mountain pirteeetle outbreaks and concluded climate has been the
primary driver of the fire regime in northwestern Colorado and southern WyoHugangey et al.
(2014) concluded recent beetle outbreak severity in the northern Rocky Mountaingyelys la
unrelated to subsequent fire severity. Turner et al. (1999) found high severity éieldaenage
increased the likelihood of crown fire in the 1988 Yellowstone National Park fireseadh
intermediate beetle severity did not. Lynch et al. (2006) found severe firaovadikely to
occur in lodgepole forest that experienced mountain pine beetle 15 years prior, hudreasi
that were impacted by beetles seven years earlier. These studies higkligmportance of
spatially explicit research as the effects of disturbance interactions vasg acasystems,

weather patterns, and time and severity associated with each disturbance.

5.2.2 Impacts of Mountain Pine Beetle on Forest Structure
The widespread mortality associated witbuntain pine eetle Dendroctonus
ponderosae) outbreaks has cascading effects on numerous ecological processes, irichagding

composition (Veblen et al., 1991), the condition and arrangement of fuels (Hicke et al., 2012)

141



and wildfire characteristid$Schoennagel et al., 2012; Simard et al., 20A%)beetles induce

stand level tree mortality, the foliage changes from green to red in the firgeéew after attack
(Wulder et al., 2006). The gray stage begins once needles and some small brartohbe fal
ground (> 3 years), but largéead fuels remain in the canof8choennagel et al., 2012). Fine
surface fuels increase in the gray phase as canopy bulk density decredsest(bli¢ 2012).
Approximately a decade later, the affected stands enter thBIPRIphas€Schoennagel et al.,
2012)where coarse surface fuels increase significantly as large branches andls(ldgke et

al., 2012). During this phase, the release of resources allows shrubs and seeditadpisb e
alongside any surviving trees. The new growth results in@ease of ladder fuels (Hicke et al.,
2012) which has implications on crown fire potential due to lower canopy bases and thcrease
canopy bulk density (Schoennagel et al., 2012; Simard et al.,.Z0idl)moisture is likely to
decrease as the canopy opens and wind speed incf8aekesnnagel et al., 2012iicke et al.
(2012) developed a conceptual framework of beetle induced changes to the probality of f
occurrence and burn severity based on a review of nearly 40 studies. They found an increase in
crown fire probability during the red phase, but surface fire probability rechamghanged in

this phase. Once a statrdnsitionsinto the gray phase, crown fire probability decreases, largely
due to reduced canopy bulk density. However, the probabilisurface fire increases with the
redistribution of fuels from the canopy to the surface and an increase in ladgekikewvise,

the probability of burn severity reflects changing conditions of phases toa:. foisture is
reduced during the red phase which could increase torching and active crowsuit@g in

high mortality and subsequent burn severity in the canopy (Keeley, 2009). In the gm\tiphas
probability of burn severity is reduced in the canopy due to reduced canopy bulk density, but

there is an increase in the probability of high burn severity along the forestifiea@o higher
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surface loads and greater reaction intensity. However, their frameworlghigldubstantial
knowledge gaps and a lack of consensus in the literature dependetiteipesearch question
addressed, time since the outbrea&ather conditiongndfire behavior(Hicke et al., 2012;

Simard et al., 2011).

5.2.3Remote Sensing of Burn Severity

There has been considerable confusion within the fielth@ms$age of fire intensity, fire
severity and burn severity, with terms occasionally being used synonymidaslgy, 2009).
The Monitoring Trends in Burn Severity (MTBS) program defines fire sevasithe degree to
which a site has been altered or disrupted by fire; loosely, a product of firsiiytend
residence tim¢Eidenshink et al., 2007); whereas burn severity is defined broadly as the effect of
fire on an ecosystel®gee, 1993). We follow the lead of (Lee et al., 2089 use the term
burn sewerity as a metric of vegetation chardgrived fromremotely senseminagery data that
has been made available for recent, large fire events through the MTBS p(agtanshink et
al., 2007). The Normalized Burn Ratio (Key and Benson, 2@80&Iculated using the near and
mid-infrared portions of the electromagnetic spectrum (bands 4 and 7 in Landsat TMgarhe
infrared band is sensitive to living vegetation whereas themiridred band is sensitive to ash,
char, and water content. Since both of thesesystem properties are impacted by fire, the
change in the Normalized Burn Ratio (ANBR) using pre and post fire imagery provatassa
measure of bureeverity(Duffy et al., 2007). However, dNBRay overestimate burn severity in
areas that have smatlamounts of photosynthetic active vegetation in thdipgeémage
therefore, a relative measw&dNBR (RANBR) was developed to account for fore-
conditions at each pixel (Miller and Thode, 2007). MTBS data (dNBR or RANBR) has been used

to test forspatial variation in wildfires in the western arisien et al., 2012gxamine the
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relationship between snowpack and fire size in Yellowstone National ParkefLaitz 2009),
understand patterns of burn severity by vegetation type and landscapexapniplAlaska

(Duffy et al., 2007) and assess the influence of multiple factors such as topogtajuen et

al., 2009) climate and weathé&Dillon et al., 2011) on burn severity in the western US. Several
studies have used dNBR or RANBR to analyze the effects of a prior disturbance on hign seve
Finney et al(2005) found that prescribed fire treatments reduced burn severity in two Arizona
wildfires. Thompson et al. (2007) analyzed burn severity on a fire in southwest Oregon that
burned 25 years prior and was partially salvage logged and replanted. Wimlaéri2@09) and
Prichard and Kennedy (2014) evaluated the effectiveness of fuel treatmentfiresnin

California and Washington. However, to our knowledge, no study has analyzed the influence of

beetle severity on burn severity of wildfire.

5.2.4 Challenges Associated with Modeling Contagious Landscape Disturbances

Analysis of forest disturbances, such as wildfire, present challengaslitttonal
statistical tests because wildfiremherently spatially structured and subject to both endogenous
and exogenous processes (Kissling and Carl, 2@pjtial pattern is an artifact of the inherent
property of fire (endogenous processes) in which areas in close protanaitiive fire are more
likely to burn (Lynch et al., 2007). Exogenous processes operate independent of wildfire, but
influence fire patterns because landscapes are spatially structured via clenaterghology
prevailing wind patterns, topography and vegetation charaate(iKtssling and Carl, 2008).
Therefore, simple overlays of burn severity and an explanatory variable ekintan result in
misleading conclusions (Wimberly et al., 2008)assical statistical tests assume indepengent!
distributed errors which lead problems with spatial autocorrelation because model coefficients

could be biased, impacting hypothesis testing and model inference (Kesstir@arl, 2008).
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Recent studies have addressed these issues using several different metrogtamécan be
used to determine the distance where observations are no longer spatialptedriHowever,

the variogram range associated with fire is often quite large, which gredtiges the number of
observations (Lee et al., 2009). Lynch et al. (2006) used Markov chain Monte Carlo te¢bnique
accurately capture the latent spatial autocorrelation and Thompson et al. (2004 spkerical
theoretical variogram model to describe correlation in the data and estinatesf@s of a
generalized least squares modElmberly et al. (2009) and Prichard and Kennedy (2014) used
sequential autoregression (SAR) (Cressie, 19883h incorporates a spatial term (i.e. spatial
weights matrix) in a standard regression model, to account for spatial auedcmrd he spatial
weights matrix considers the neighborhood (user-defined distance) of each tsenva

weights each neighbor as a function of distance (Kissling and Carl, @00®)del the spatial
dependence using a variarm®variance matriXCressie, 1993). In thisay, SAR models utilize
inherent spatial autocorrelation in the data (e.g. values of neighboring locatignayide a

proxy for missing variables that are not accounted for by explanatoaples (e.g. local fire
weather)Kissling and Carl, 2008; Prichard and Kennedy, 2014; Wimberly et al., 2088s

are computationally intensive, but have become more widely used with advances in mgmputi
capacity and offer an additional advantage for contagious disturbances hrethattount for

the missing variables problem.

Recognition of pattern and scale are paramount in ecology (Levin,, }@92hany
ecological studies analyze processes at a single scale. Observations froslyreemsed data
default to the raw pixel size associated with the image toseallect the informatioWu et al.,
2014). Multiscale analysis expands the frame of reference in a @tatkyet al., 2007) through

consideration of topology (or the surrounding neighborhood) of an environmental variable
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associated with an observation. Fire is a complex disturbance which is influertbed by
interaction of fuels, topography and climate, each of which may vary as afuntthe spatial

scale of studyFalk et al., 2007). Therefore mu#icale analysis of factors that contributdite
behavior is an important consideration in evaluation of fire-environment relatioriBhipset

al., 2007; Parks et al., 2011; Wu et al., 2014). Several studies have demonstrated thatanformati
contained in the surrounding neighborhood of an observation may be more relevant to controls
on fire than observations made at the individual pixel scale. For example, a stuskgin ea
Canada demonstrated that dominant aspect was related to fire frequency, bubmdd at

spatial scalefCyr et al., 2007)Parks et al. (2011) showed that burn probability in the western
US was most influenced by fuels and elevation at fine scales, but fuels antlatdproad scales
(Parks et al., 2011). Crossale research in the boreal forest of Northeastern China identified
burn severity was mainly controlled by vegetation at local scales and-apbgcat broad scales

(Wu et al., 2014).

5.2.5 Objectives

In the late 1970s and early 1980s a high-severity mountain pine beetle outbreak occurred
in the northern Rocky Mountains, which covered over 30% of Glacier National Park (GNP)
(Assal et al., 2014). Then additional disturbance impacted the landscape as 17ried<2@6
of the forest within the park between 1984 and 2006. The timing, arrangement, and data
avaiability of these events presented a unique opportunity to study the effect gdlenulti
disturbances. In this study, we use SAR modelingvaduate the effect @n historic mountain
pine beetle outbreak and other biophysical variables on the burn severity of 11 fiNB.if (&
main objective of the study was to determine if the severity of the bedbleeakiin the 1970s

and 80s had an effect on the burn severity of subsequent wildfires. Numerous othelikattors
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influenced the extent and severitfiythe wildfires such as vegetation, landform, and regional
weather(Prichard and Kennedy, 2014herefore, it was necessary to evaluate other faittats
could contribute to patterns of burn severitynountain pine beetle severitada measurable
influence on burseverity, wehypothesize the following: 1) the influencelsfetleseverity on
burnseverity would decline with time since the beetle outb(eale since beetle hypothesi®)
the influence obeetleseverity on burn severity would be @gd under extreme fire weather
(weather hypothesis), 3) thefluence of beetle severityould be contingent on thmatternof
beetle severityntensity (beetle pattern hypothesis) this study, we utilize data on beetle
severity and burn severity that exploits two large disturbance processpkatealt out over
broad spatial and temporal scales. The focus of our work is to determine if thgye is a
measureable ecological legacy from the mountain pine beetle disturbanceanidoape with
regard to ire severity. Burn severity is influenced by numerous factors but retrospacialysis
is a promising approach to evaluate the influence of beetle severity on buitysewethe
results hold great interest for those charged with management of forpatsged by the recent

beetle outbreak (~1996-2006) that occurred in the Rocky Mountains.

5.3 METHODS

5.3.1Study Area
The study is located in Glacier National Park in northwestern Montana (Eidyre
which encompasses over 400,000 ha of topografphidiverse terrain, bisected by the
Continental Divide. Mean average annual precipitation is 73.1 cm, and average annomalmaxi
and minimum temperatures are 11.9 °C and -0.2 °C, respectively (1971-2000) (Western Regiona

Climate Center, West Glacier 8tm, elevation: 970 nmhttp://www.wrcc.dri.edyaccessed 17

December 2012). Elevation ranges from ~ 950 m to 3184 m above sea level and major cover
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types include grasslands, conifer and deciduous forests, lakesghaailal valleys and steep
alpine zones. Forests are dominated by lodgepole Binas(contorta), western larchlL{@rix
occidentalis), Engelmann spruc@icea engelmanniiand Dougladi (Pseudotsuga menziesii).
The area was chosen because of the extemsountain pine beetle epidemic that took place in
the late 1970s and the number of wildfires that occurred since that time. dix@sarea was

limited to burned area inside the park of selected fires (Table 5.1, Figure 5.2).

5.3.2 Data

5.3.2.1Burn Severity Data
We considered 17 wildfires that intersected GNP between 1984 and 2006 (Figure 5.1).

We obtained fire progression information where available from GNP and retainieeslfbif the
analysis (Table 5.1). We chose to use RANBR in our rfitdtenalysis because the relative

index has been shown to provide a consistent definition of burn severity across time and space
(Miller and Thode, 2007). We used the continuous RANBR data as opposed to classified burn
severity data because information is Mbien using categorical data because burn severity

occurs on a continuum (Miller and Thode, 2007)

5.3.2.1 Explanatory Variables
Fire behavior is contingent on topography, weather conditions, and the arrangement and

amount of fuels. In our model, topography and otimgrortantabiotic landscape featurés fire
behavior are accounted for by elevation, heat load, and topographic position, all derivad from
30 m digital elevation model. The heat load index (HLI) is a potential measuredafidaieent
radiation(McCune and Keon, 2002Equation 3), which varies with aspect and slope; whereas a
topographic position index (TPI), a measure of slope position and landform type wittt tespe

adjacent grid cells, identifies the portion of the landscape aaalpies (e.g. valley bottom, mid
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slope, ridgetop, etc.) (Table 5.2). We used a daily fuel moisture data set whicenépthe fuel
moisture of large fuels (e.g. 100-hr and 1000uels). The data was developed by the US Forest
Service Rocky Mountain Research Station and derived from a 4 km gridded dbsasétae
meteorological variable@batzoglou, 2013). Each burned pixel was assigned the daily fuel

moisture value for fuel size that corresponded to the daily fire progressioralratthat pixel.

Several studies have used recent aerial survey detection data to account fomnpaumtai
beetle disturbanc@Meddens et al., 2012; Meigs et al., 2011). However, a previous study
concluded the historic aerial survey data in GNP to lack an adequatarmeéseverity and
developed a model of mountain pine beetle severity using multiple lines of ev{deasetet al.,
2014) The dataset identifies the amount of canopy change as a measure of beetle induced
mortality over a 14-year period as the disturbance progressed. We used theocentiataset of
beetle severity from the late 1970s and early 1980s to account for the previous mountain pine
beetle disturbance. This data set was developed from numerous vegetation indities Dde
year period and represents the best proxy for the amount of fuels on the landscapdingrior to

activity (Table 5.2).

We evaluated the relationship of the explanatory variables (Table 5.2) on burty sgver
seven spatial scales. We calculated the mean value withirugacincoving window at radii of
45, 90, 180, 360, 720, 990, and 1440 m, ranging from 0.64 ha to 650 ha in size. Scales were
considered based on the spatial resolution of the data, the complex and variable téreain of
study area, and a range of values covered in other fire regPar&is et al., 2011; Wu et al.,
2014). We did not evaluate fuel moisture at multiple scales on account of the coarg®nresbdl
the data (4 km). We opted to use a moving window analysis over other landscape metrics (e

patd size, mean shape index, etc.) to fully exploit the continuous nature of the data and avoid
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arbitrary categories. Our intent was to evaluate the best set of predatttite most appropriate
scale for each fire. Since we analyzed 11 independent firesewee did not enforce a static

scale for each explanatory variable across all fires.

5.3.3 Statistical Analysis

Variogram models of each fire indicated spatial autocorrelation in thesbuenity data
between 1500 m to over 3000 Therefore we use8AR modeling (Prichard and Kennedy,
2014), to predict continuous burn severlRINBR) using a suite of independent variables that
characterize topography and previous mountain pine beetle sdéVaiie 5.2) The analyses
were conducted using the extent of the data for each fire, with the sample oflEkésited on
a 60 x 60 m latticwWimberly et al., 2009)All statistical analyses were performed in the R

statistical environmen(R Development Core Team, 2013).

We used the error version of SAR/imberly et al., 2009)

Y =Xp+AW(Y-XP) +¢

Where

Y dependent variable (e.g. fire severity)
X matrix of independent variables

B vector of parameter

A autoregressive coefficient

W spatial weights matriXxnverse distance was used to define the neighborhood structure of

the 12 nearest neighbors (Wimberly et al., 2009)
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e uncorrelated error term

The model can also be viewed as:

Xp the spatial trend of fire severity predicted by the independent variables

AW(Y-XpB) the spatial signal, indicative of spatial ecrrelated deviations from the spatial

trend, modeled as an autoregressive function of deviations in neighboring sites

€ the noise term which represents deviations from the trend that were not spatially

autocorrelated

We first evaluated the univariatelationship between each explanatory variable and burn
severity to identify the scale of the explanatory variable which best deskubeseverity. We
selected the appropriate scale usikagike’s Information Criterion (AIC) and used that scale of
the \ariable in the full model. The full covariate model included variables to account for
topography (elevation, slope, TPI, HLI), a proxy for weather (fuel moistut@@and 1000-
hour fuels) and previougegetatiordisturbancelieetle severity We retainedhe full covariate
model for each fire to maintain a consistent covariance stryetitteminimal AIC penalty

given the large number of observationgath model

5.4 RESULTS

5.4.1 SAR Models

We produced a model of predicted burn severity for each of the 11 fires using the SAR
modeling approach and variables known touefice fireseverity (Table 5.2). Appendix C
contains the final models used for each fire. Although the full covariate model vibis @seh

fire, the scales of several explanatory variables differed between fire nfddele 5.3). Overall,
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the nodels performed well and explained between 54% and 80% of the variability in the burn
severitydatafor each fire(Table 5.3. The SAR models captured spatial patterns of high and low
burn severity that are visibly similar to measured values (Figure 5.3). fradiee there was no
spatial pattern in the error term of the SAR in each model, indicating spatipéimnce in the
residuals. We standardized the regression coefficients (Bring) @®8ach model in order

compare the effect size of each variable within and acrosqTiaéde 5.4).

5.4.2 Topography

Elevation was a significant predictor in most of modelstgpatally had a large positive
effect on burn severity (Table 5.4 he finest scale of elevation (e.g. one 30 m pixel) was
consistently the strongest scalentified by the univariate analysis. The topographic position
index (TPI) was a significant predictor of burn severitpearly all of the firesTable 5.4.
Effects of TPI, a measure of landform with respect to adjacent grid celis,small and nearly
always positive. This indicates that locations found atstoge to the top of slope were more
strongly correlated with higher levels of burn severity comparedlteywbottoms. Scales of TPI
that best fit modelsaried from single pixel up to 90 m neighborhoods. Heat load was a
significant predictor in 10 of the 11 models and always had a positive association with bur
severity. Slope was significant in the fewkists, however steeper slopes generally had a

positive effect on burn severity.

5.4.3 Fuel Moisture
The fuel moisture of 108+ fuels was a significant predictof burn severityn half of
the models. The results indicdlket a decrease in tlfigel moistureof 100-ha fuels is correlated

with an increase in burn severity (Table 5.4). The moisture of h0@@eIs was a significant
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predictor in the majority of the models, but the effect on burn severity was @ pasitive and

negative influence on burn severity depending on the fire.

5.4.4 Mountain Pine Beetle

We found that historic mountain pine beetle severity had a significant effect on burn
severity in 10 of the 11 fire modeBeetle severityvas not significant in the Middle Fork
Complex fre, where elevation and heat load had the largest effect size, suggestingveuity s
was largely driven by topographic processes. The effect of beetle seegiety by fire, but
there was always a positive association between beetleuandevery. Several different scales
were identified as the most appropriate for besgheerity ranging frorneighborhoods of 10

hectares (e.g. 180 m radius) or less.

5.5 DISCUSSION
Our study builds on the ideas of earlier work that assessed the effects wéwildf

(Thompson et al., 2007), prescribed burning (Finney et al., 2005), and fuels re@aatbard

and Kennedy, 2014; Wimberly et al., 2009) on burn severity. However, our study is different fo

several reasons. First, a continuous data set of beetletgéissal et al., 2014) allowed us to
extend our analysis beyond outbrgak&sencer absence used other studiegLynch et al.,
2007). This enabled us to shift the focus from potential events (i.e. changes in pyobbfik)
to the consequences of actual events (i.e. ecological consequences of burn se\cmitgl).ttee
arrangement of the area impacted by the beetle outbrehkubsequent wildfire presented a
unique opportunity to consider numerous wildfires as opposed to a singleditgBebi et al.,

2003; Finney et al., 2005; Thompson et al., 200bservations drawn from multiple fires

broaden the perspective of these compounded disturbances. Our findings support some of the

prior researcliLynch et al., 2007), but are inconsistent vitte conclsions of several other
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recent studies. The long-term perspective of our study shows that ecologacadefprior
high-severity disturbance may continue to influence subsequent disturbance foreaahgfyer

the initial event and cashed light on future disturbance interactions associated with the recent
mountain pine beetle outbreak. Much of the landscape impacted by the recent outbreak is in the
gray phaseHarvey et al(2014) concluded that beetle severity from the contemporary outbreak
had little effect on burn severity. However, their analysis was conducted on@ugostak

landscape in the gray phase. As ladder fuels continue to build acrossflmsgk forests as

time since the outbreak increases, these areas could experidrarebuig severity which has

important implications for podtre regeneratioriKulakowski and Veblen, 2007).

5.5.1 Ecological Mechanisms

There were common variables that influenced burn severity across the diffedsis m
including the primary variable in question, previous beetle disturbance. Numerous abioti
variables were relevant in the models, including elevation. Burn severity wasathg found to
be more severe at higher elevations eledtationhad the strongest effect in the Moose, Wedge
Canyonand Anaconda fires, which may be explained in part by the physiography of the study
area (Figure 5.1). These fires ignited or first entered the study area weshside of the park in
the North Fork Flathead River valley. The fires spread east and upslope intormsts &t mid-
elevations before encountering alpine vegetation. Our results are consittesther studies
that noted a decrease in severity as fire moved higher into vegetation with loWeadise
(Bigler et al., 2005; Lee et al., 2009)here was typically a small, positive relationship between
TPI and burn severity (Table 5.4), which indicates locations found between mid-slope and the
top of the slope were more strongly correlated with higher levels of burn ses@mpared to

valley bottoms. This is consistent with other findings which found higher severity crosgn fi
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less likely to occur in valley bottonfBradstock et al., 2010). TPI at scales of 45 and 90 m radii
were often the best predictors of TPI, which suggests the TPhdwerad area is a more
important predictor of burn severity than at the pixel level. HLI and slope wdszeaaue to
their influences on fuel type, configuration and moisture levels (Bradstotk 20H0; Parks et

al., 2011). The relationship between burn severity and HLI was positive, which indigeetsas
that receive a higher amount of direct incident radiation experienced hegleés of burn

severity. Our results are consistent with other studies that found an increalskiia w
occurrencéRollins et al., 2002) or burn severity (Wimberly et al., 2089reas that have a
higher HLI such as west and southwestern slopes. In the northern Rocky Mountdiaky spa
continuous biomass and fuel moisture conditions are most favorable to fieagthat have a
high HLI (Parks et al., 2011). The scale of HLI was not consistent across fiidethiealargest
effect of HLI were at scales of 45 and 90 m radii respectively (Tables 5.3 and 5.4), whic
suggests fuels were likely more continuous at bezades. The inconsistency across scales may
also suggest an interaction between aspect and prevailing weather contitiensnae of the

fire. The mixed results with respect to slope are consistent with other studiesptiréed either

a positive(Collins et al., 2007) or a negative correlation with burn severity (Lee et al., 2009;

Prichard and Kennedy, 2014).

We found burn severity to be higher in areas where the moisture &ir I08ls was
lower when this variable was significant (Table 5.4). Howgelhe effect of fuel moisture of
1000-hr fuels on burn severity is inconsistent, with both positive and negative influences on burn
severity. This may be explained in part by prevailing drought conditions at thefteaeh fire.
The Palmer Drought Sevsr Index from the month of each fire and one month prior to each fire

indicated mild to severe drought conditions during all fik¥egtern Regional Climate Center,
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WestWide Drought Trackehttp://www.wrcc.dri.edu/wwdt/time/accessed 20 July 2014). Fuel
moisture was low during each fire year and differences in fuel meigterre likely minimal

across each burned ar@airner et al., 1999). Furthermore, the inclusion of weather variables in
burn severity modeling is problematic, largely due to the scale of inpufWateerly et al.,

2009). Fire progression information is often recorded in broad polygons and weather data
collected from nearby weather stations (or used to develop continuous surfg.cef (EM

data)) might not accurately reflect the cdiwgtis at the fire front. Given the availability of data,
we chose to incorporate fuel moisture as a proxy for recent weather conditionsedhe

data set has coarse spatial resolution (4 km) which likely does not capturadbéaityan fuel
moistue. Furthermore, the fire progression dedanetimes includeldrge time gaps between

intervals which might not have adequately portrayedsjread

To meet our primary objective, we found that beetle severity was a statgsticall
significant predictor bburn severity in 10 of the 11 fires, even with a wide range of other
variables included in the models. We found a positive correlation between these savtable
indicates areas with higher beetle severity also experienced higher burtyséuerresults do
not support the time since disturbance hypothesis as there is no clear trendze tf¢hs
beetle effect over time (Figure 5.4). However, no distinct outbreak phase graaseptesent in
our analysis, as all of the fires burned during the:dPB phas€Schoennagel et al., 2012).
Likewise the results do not support the weather hypothesis as beetle seasrdignificant
across all fires except the Middle Fork complex fire. Although the Middle Fork ecnfipe
burned during an extreme fire year (2003), there were four other firggataluring that same

year (Table 5.1) and beetle severity was found to be significant in those t#s bI4).
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Our results indicate historic beetle severity has an influence on subsequresg\enity
(Table 5.4). The time scale between the beetle outbreak and the occurrence of each fire is
consistent with the time required for a significant release of understgeyat®n(Lynch et al.,
2007), or new establishment (Sibold et al., 2G@8ulting in an iarease in ladder fue(slicke et
al., 2012). Stands that were heavily impacted by beetles likely had surviving nmativrduals
(Sibold et al., 2007; Schoennagel et al., 2012) that along with ladder fuels, contributed to the
vertical heterogeneity of tee standgéLynch et al., 2007). Several recent studies concluded the
secondary effects of beetle activity (i.e. the change in stand structure anosd@mnphave a
larger effect on fire risk than the primary effect of tree mortéBigler et al., 2005; Lynch et al.,
2007). Although our study considered the effect of beetle severity on burn severity asldppos
fire risk, our results are consistent with the aforementioned studies in thaetamghanges in
stand structure associated with beetle @#tks can have an effect on subsequent disturbance
well into the future. Furthermore, our results lend support to those of Lynch et al., (2667)
foundthatareas in the OlPB phase influence the probability of burning, whereas stands in

the more recergray phase did not.

These results do lend support to the beetle pattern hypothesis that the influemtie of be
severity is contingent on the pattern and level of beetle severity at difseadas (Figure 5.5,
Table 5.4). Our results show several elifint scales of beetle severity were found to be the best
predictors of burn severity (Table 5.3he effect size of beetle severity, where stand structure
was influenced by severity of the beetle outbreak, was not consistent atfioss. & several
fires, inclusion of the beetle severity variabléaatjerneighborhoods (e.g. 180 m radius, 10
hectares) resulted in the best model fit. We interpret that this indicates consistsnstructure

at that scale for some fires, but not others. Fires whestle severity was the best predictor at
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broad scales tended to have a larger effect size compared to fires where locatbestjevegas
the best predictor (Figure 5.5). We found an increasing gradient of effect fiee as
neighborhood size increased. The data suggests a positive relationship, although #sizampl
(n=10) precludes a test for statistical significance. This may be the resohgstent forest
structure at broad scales resulting in spatially continuous biomass and fuebogdinpared

to fires that burned in areas with high heterogeneity at local scales.

5.5.2Considerations for Future Research

Research on interactions among disturbances has increased in recent yeamsips a
key challenge in ecologyfurner, 2010) Furthermore, there is a need for additional study on
beetlefire interactions given the mixed results on the limited research on this complex top
(Schoennagel et al., 2012; Simard et al., 2011). To move this line of research forwaratHicke
al. (2012) suggest studies improve the specificity and discussion of the question ddtireese
since disturbance, fuels and fire characteristics associated with an afRayispective
approaches, such as the current study, describe actual events, yet thendcamisigs with this
type of analysis. Remotely sensed burn severity data do not delineate betivecanacpassive
crown fire, which has implications on fire behavior (Simard et al., 2011). Models of burn
severity could benefit with the inclusion of atiloinal weather variables in the analysis as data
become more readily available at finer scales. Retrospective analyses are afftertan
incorporate information on wind speed, which has implications on fire behavior and can vary
across beetle outbreakase(Schoennagel et al., 2012). Additional investigation is needed on
the influence of beetle severity across multiple scales of analysisin@lysis focused on a high
severity insect disturbance in the QIRB phase at the time of each fire. The eftddhe

historic outbreak is contingent on the severity of the disturbance and the elapseddméhiee
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next disturbance. Finally, the influence of insect outbreaks on fire chasickeand subsequent
burn severity will vary by feeding guild, includjrdifferent species of bark beetle and defoliators

(Lynch et al., 2007).

5.6 CONCLUSIONS

A primary objective of our analysis was to determine if mountain pine beetligeve
had a measureable influence on burn severity. A continuous dafadsetle severityllowed us
to focus on the ecological consequences of fire as opposed to changes in the probftality o
The arrangemerand patterrof the area impacted by the beetle outbraadt subsequent wildfire
presented a unique opportunity to consider numerous wildfires as opposed to a siegkntfire
Using remotely sensed burn severity data, topographic and fuel moisture data, cotp®aRvi
analysis, we were able to determine that beetle severity was a significantqurefiburn
sewerity in 10 out of the 11 fires we analyzed. Furthermore, we were able to detémmine
relative contribution of each variable to burn severity of each fire and obsessdtiawn from
multiple fires broaden the perspective of these compounded disturb@inas the availability
of geospatial data, the framework we employed is transferable to othestecasyvhere there is
an opportunity for retrospective assessment of coupled disturbances. Thertomerspective
of our study shows that ecological leggsof prior high severity disturbance may continue to
influence subsequent disturbance for many years after the initial evetdrastied light on
future disturbance interactions associated with the recent mountain pine bdwtalauiuch
of the landscape impacted by the recent outbreak is in the gray phase. As we mdéwe into t
future, these areas could experience higher burn severity which has importa#tions for

the structure and composition of future forests. (Kulakowski and Veblen, 2007).
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5.8 TABLES

Table 51. Wildfire activity in Glacier National Park during the peti1984 to 2006.

Start Date Area Area
Fire Name | (year-month- (Ha.) inside Used in Analysis (Rationale)
day) Park
_ No (nearly all of fire was outside of
Napi Peak 19840819 1,489 2%
park)
Crystal 19840827, 1,317 85% | No (no prefire NBR data avidable)
Red Bench 19880906 13,705 71%| Yes
Adair-
* D onl YEs
Howling 19940807 4,182 100%
No (no fire progression data
Starvation 19940814 3,640 51% available)
Kootenai 1998083 3,285 100%| NO (only trace amounts of beetle
activity in fire perimeter)
Anaconda 19990806 4,637 100%| Yes
Parke Peak 20000722 805 100%| Yes
Moose 20010816 29,644 38%/| Yes
Wolf Gun 20030716 5,636 100%| Yes
No (no beetle activity ifire
Trapper 20030718 7,298  100% :
perimeter)
Wedge 20030718 21,053 55% /| Yes
Robert 20030723 22,065 75% | Yes
Middle Fork 20030817 4,984 100%| Yes
Rampage 20030819 9,584 100%]| Yes
Poll Haven 20031019 1.819 1% No (nearly all of fre was outside of
park)
Red Eagle 20060728 13,178 58% | Yes

*The Howling fire started on 8/7/1994 and Adair fire started on 8/12/1994, but the fires are

treated as one complex.
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Table 52. Description of the explanatowariables considered in the analySibe fuel moisture
variables have a spatial resolution of 4 km, all other variables have a syzatiafio of 30 m.

Variable Description

Elevation(Elev) Derived from National elevation data set

Potential direct incident radiatioM¢Cune and
Heat load inéx (HLI) Keon, 2002; equation 3)

Slope Derived from National elevation data set

A measure of slope position and landform typ
Topographic position index (TPI) with respect to adjacent grid cells

Standard moisture content of 180fuel
Fuel Moisture 100-hour fuels (FM100) | expressed as a percentage of dry weight.

Fuel Moisture 1000-hour fuels (FMlOO())Stand{jlrd moisture content of 1BDfueI.
expressed as a percentage of dry weight.

Historic Mountain Pine Betle Severity | A measure of MPB severity {D) for each grid
(MPB) cell (Assal et al.2014).
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Table 53. Regression models of the Relative difference normalized burn ratio (RANB&ctor

fire.

Fire Name Predictor Variables n R
Red Bench Elev, TPI90, Slope90, MPB90, HLI, FM100, FM1000| 25,956| 0.722
Adair-

Howling Elev, TPI, Slope, MPB180, HLI90, FM100, FM1000 11,149.671
Anaconda Elev, TPI45, Slope, MPB90, HLI45, FM100, FM1000| 11,748| 0.756
Parke Peak | Elev, TPI90, Slope, MPB180, HLI, FM100, FM1000 2,085| 0.537
Moose Elev, TPI190, Slope, MPB180, HLI, FM100, FM1000 24,146\ 0.802
Wolf Gun Elev, TPI90, Slope, MPB180, HLI45, FM100, FM100( 7,869| 0.583
Wedge

Canyon Elev, TPI90, Slope90, MPB90, HLI45, FM100, FM1000 30,890.74
Robert Elev, TPI45, Slope45, MPB, HLI, FM100, FM1000 40,580( 0.697
Middle Fork

Complex Elev, TPI90, Slope45, MPB90, HLI, FM100, FM1000 11,986639
Rampage Elev, TP145, Slope90, MPB, HLI, FM100, FM1000 21,287 0.598
Red Eagle Elev, TPI45, Slope90, MPB90, HLI, FM100, FM1000| 16,668| 0.586

Note: the numbers after the variables TPI, Slope, MPB and HLI refer to tegrsoaving
window size) of the variable that resulted in the best model fit.
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Table 54. The standardized the regression coefficients for each fire model basedictopr
variables used in Table®*P-value is significant at 0.05 or lower.

Fire Elevation TPI HLI Slope | FM100 | FM1000| MPB
Red Bench | 0.1457* | 0.0451* | 0.0854* | 0.1535* | 0.2493* | 0.2165* | 0.1761*
Adair-
Howling 0.0599 | -0.0217% 0.1674% 0.0533* 0.0287 -0.083D:1784*
Anaconda | g ooi00 | 0ot | 041214 -0.0112 -0.0583¢ -0.007®.1003*
Parke Peak | oeoor | 0.0171| 0.0535| 00387 -0.0637 0.0116.2315%
Moose 0.4994* | 0.04584 0.06074 -0.0109 -0.0206* -0.04933.2761*
Wolf Gun 0.006 | 0.0898{ 018994 0.0982F -0.1369* 0.13869.1656*
Wedge
Canyon 0.4025* | 0.0321% 0.0934% 0.0245 00228 -0.085* 0.00*
Robert J

-0.0639* | 0.037* 0.1111% 0.1494t -0.0065 -0.04580.0285*
Middle Fork
Complex 0.246* | 00881 0.1288F 0.1057* 0.0077 -0.0917* -0.0199
Rampage | 0386 | 003141 004141 -0.0796* -0.0005 -0.0439.0231*
RedEagle | 1841+ | 006994 006594 -0.2143F -0.1391* 0.10548.1059*%
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5.9 FIGURES
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Figure 51. Location and extent of fires in the study area.
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Figure 52. Location of project analysis areBhe location and extent of the historic mountain
pine beetle disturbance (Assal et 2014) classified into three severity levels for areas that later
burned (orange color ramp) and did not burn (green color ramp) in subsequent wildfire.
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Figure 53. Comparison between measured and predicted buenityeizxample of measured
(left) and predicted (right) burn severity in the Wedge Canyon fire. Naasuaned burn severity
from RANBR (30 m resolution); predicted burn severity from the SAR model (60 m readluti
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Figure 54. The relationship between the effect size of beetle severity and time sincelkditiore
each fire (=10).
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CHAPTER 6: Synthesis

The overall goal of this dissertation was to investigate the ecological legacies o
disturbance in two different ecosysterAssecondary objective of my research, data
developmentwas motivated by a lack of available data which preclwbedbgicalinvestigation
of each disturbanc& he findings of this research contribute new and detailed information
applicable to both ecological theory and land management. | studied the effectggbt drou
deciduous and coniferous &st along a foregthrubland ecotone in the southern portion of the
Wyoming Basin. This study was undertaken because little is known thiledngtseline condition
of forest in the areandspecificallyhow drought affectiorest inthis topographically comex
ecosystem. The results show that forests in the region have experienced high ldnaelgluf
related mortality over the last decade. Negative spectral trends were notecdragsoss forest
type or distributed randomly across the study area. These patterns of hartgeteds highlight
areas of forest that are resistant, persistent and vulnerable to sevayletdin the second thread
of my dissertation, | assessed the influence of an historic mountain pinedugbtksak on
wildfire in Glacier Naional Park. | addressed the current debate in disturbance ecology rggardin
linkages between beetle outbreak #meleffect on wildfire. Specifically, determined ibeetle
severity had a measureable influence on burn severity in the ensuing decadbe afitbreak.
Although a number of factors contribute to burn severity, the results indicated thatdesetiity
was positively correlated to burn severity in the majority of the firealyaad.

In chapter two | found highly dissected foresterin the Little Mountain Ecosystemas
best prelictedusinga comlnation of fine-scaletopographic and sp&al varidbles Independent
predictive models of the two major forest functional types were highly @ecandshowed little

overlapbetween the covealerived from the two modelsh& models were integratauo a
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synthesis mapith an overall assification accuracy of 87%hat identified 61.7 kAof forest
(56% coniferous, 44% deciduou$he resultsuggest my method adequately captures the
functional type, size, and distribution pattern of forest covérigspatially heterogeneous
landscapeFurthermore, tonsidered spatial autocorrelation in our framework, which is often
overlooked in species distribution modeling. Consideration of planiglbgyg and species

traits, such as phenologyluminates the ecological context of biophysical variables that were
captured with leabn and leabff SPOT imagery. Thetudy addresses the important
management need of accurate cover nodpieciduous and coniferofsrest characteristic of
this region To explore the utility of my findings, | compared my results with basic metfics
forest covederived from severakgional land cover datasets (Appendix A) and found high
levels of disagreement betweendsdktasets. The total area of forest type was generally
overestimated by regional products, and my results identify the largest nunpla¢ctods of each
forest cover type and the smallest mean patch size. This has large implioatlmasc
management questions regarding the extent and juxtaposition of forest cover unlyhersa.
Ecological studies requiring highly accurate forest cover and plant functionahgpéd
consider using multiemporal SPOT imagery to derive regionally specific land conags.
Furthermore, this framework offers a powerful alternative to traditionajenstassification and
utilizes open access aerial photos and satellite data. In this way, it is &hlesterhighly
heterogeneous ecosystems to develop critical baseline tree cover data that can batupdated

regular intervals to monitor the effects of disturbance and termg-ecosystem dynamics.

In my study of drought effects, | found coniferous and deciduous forests in the southern
portion of the Wyoming Basin ecoregion have experienced high levels of droughd relate

mortality over the last decade. | analyzed multiple satellite derivecemaind found the
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Normalized Difference Vegetation Index besflected conditions on the ground, most notably
plant area index and sapy gap fraction of a plot. | used these empirical relationships to
measure trends over timemoisture content as a proxy for canopy cover. Dense canopies have
greater moisture content than sparse, open canopies and the moisturenabmedlgict changes

in forest canopy covever time.During the study periqd25% of the forested area experienced

a statistically significant negative trend in canopy moisture, comparedgaehan 10% in a
positive trend. The cumulative negative trend began in 2000 and increased with cumulative
drought years. | found negative trends were not consistent across foresinalngpe as a

larger amount of coniferous forest was impacted by negative trends than decidesus for
Negative trends were not randomly distremliacross the landscape as southern aspects were
least likely to exhibit a negative trend and north aspects most prevaddamg.field collected
informationl concludedplots with a negative trend had a lower live density, and higher amounts
of standing dead and down trees compared to plots with no trend. My analysis &lepttfially
explicit patterns of longerm trends anchored with ground based evidence to highlight areas of
forest that are resistant, persistentvarinerable to severe drought. The results provide a much
needed londerm perspective to local managers affdrs anavenue tassess finscale trends

in the forest-shrubland matrixh&eresults can be used to tégpotheses with regard to
resistance, persistence and vulnerabilitjooésts to drought and give insight behind the
mechanisms of mortalityvlany global and regional climate models do noteutly take terrain

into account, and my results show that bottom-up topographic controls are important during
climatically driven draght.| believe this research gisensight to local managers where broad
climate models do not: a cost effective avenue to delineate local areas that cefitdroem

targeted management.
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The analysis in chapter four sought to overcome a data linmittitad precluded deeper
investigation of disturbance linkage$he lack of spatially explicitata on this disturbance was
both a major data gap and a critical research challenge in that wildfiredireinaved some of
the evidence from the landscapisingmultiple lines of evidencd developed a model ébrest
canopy mortality as a proxy for beetle outbreak severity. | mapped tregityont aerial photos
and scaledip the information to a time series of satellite images in order to track the-beetl
induced changes over time. | found a generalized least squaresr{@d&l)that utilized a time
series of the Normalized Difference Vegetation Index and Green band bagtetbthe large
scale variability of canopy change associated with mortality fsatbreak. The GLS model was
used to address spatial autocorrelation in the generalized linear moddltheisesiduals of the
GLS model to account for the small-scale variation in the data using binaegsien trees. The
combined model explained over 80% of the variability in the data and was used to create a
continuous surface of beetle severity. Thedel identifiesa gradient of mortality on the
landscape using topographic variables and changes in spectral reflectancaetat ti
confirms the autbreak was not homogenous across the landscape. My approach is of interest to
the spatial ecology community because it demonstrategaine of Landsat MSS dataextend
the moderate resolution imagery record back to the early 1G#@= the availability of these
data sources, the characterization of recent events will afford invessigaplatform for future

research of historical foredtsturbance that would be beneficial to the field of forest ecology.

In the final analysis, | found thbeetle severity was positively correlated to burn severity
in 10 of the 11 fires | analyzed. | used sequential autoregrg$#dR) to obtain accurate
estimates of model parameters given the high level of spatial autocorretstomiasded with

wildfire. | produced a model of predicted burn severity for each of the 11 fireg th&d SAR
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modeling approach and variables known to influence fire severity. The modelsdagyatial
patterns of high and low burn severity that are visibly similar to measured ealdexplained
between 54% and 80% of the variability in the burn severity tHataluated the relationship at
multiple spatial scales and determined the influence of the surrounding neighbanhaajivien
variable was dependant eonditions associated with each fire, although broad trends emerged.
Elevation at local scales wasignificant predictor in moshodels and typically had a large
positive effect on burn severity. Areas located betweenstojge and the top of slope were more
strongly correlate with higher levels of burn severity compared to valley bottoms. Locations in
the study area with a higher heat load experienced higher burn severity.diastarenshowed
mixed effects which were likely due to dry conditions across the study arettiate of fire and
the coarse resolution of the data. Our results suggest the change in stand sindcture
composition associated with beetle outbreak severity had an effect on burryséisitvas

likely due to the accumulation t#dder fuels in areasith high amounts of beetle activity. |
considered several additional hypotheses, and found the effect of beetle severity sgvbtity
might be contingent on the patterns of severity at different scales. Fiezs beetle severity was
best predicted at broad scales tended to have a larger effect size compared hefedweatle
severity was best predicted at local scales. This suggests spatialiyioastbiomass and fuel
conditions compared across broad scales can contribute to higher burn severitgeddmpa
areas with high heterogeneity of fuels. This study is unique becausedaed@wcontinuous data
set of beetle severity (developed in chapter four) and focused on the consequertces, of ac
instead of potential events. These results can help managers prioritize mgmitoestoration
efforts. The spatial arraegent of the beetle outbreak and subsequent wildfire presented a

unique opportunity to consider numerous wildfires as opposed to a single fire evas#. Th
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findings are ofmteresto the broader science community because observaiedsawn from
multiple fireswhich broaden the perspective on these compounded disturbances. Tkerhong-
perspective of our study shows that ecological legacies of prior high gelistitrbance may
continue to influence subsequent disturbance for many years after thleewetnt. This can
provide insight on future disturbance interactions associated with the recent impuregebeetle
outbreakas nmuch of the landscape impacted by the recent eaktwill enter the old mountain

pine beetle phase in coming decades.

Collectively, the findings of my dissertation contribute new insight into tteeine of
several major disturbance types. The research in the Little Mountain Esosadvances our
ahlity to measure disparaferest cover across trsrubland ecotone that might be inaccurately
described by regional data. Results of the trend research contribute to thegdvody of
literaturewhich indicates climate not only impacts forest demogi@pthrough extreme events,
but also by less conspicuous events that might have cumulative impacts over a decadal
timeframe. | developed new method for reconstructing historic bark beetle outbreaks using
multiple lines of evidence to characterize theesity of a disturbance that we did not know
much about. Finally, my research contributes to our understanding of linkages beteten b
outbreak and the ecological consequences of subsequent fire. Although manyrastdre
consideredmy results indiate that beetleutbreaksave ecological legacies on ensuing forest

disturbance for some time after the initial outbreak
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APPENDIX A: Supplementary Material for Mapping Forest Functional Type in a Forest-
Shrubland Ecotone(Chapter 2)

Chapter 2vas published by the journ&emote Sensing Letters. However, due to space
limitations of the journal | had to omit one of the objectives of this study which wasioace
the results of our modeling framework with regional land cover data setseevddiis

comparison adds value to our analysis and is informative to readers so | chose tatiheltede

A.1 METHODS

In order to compare our map with regional data, we reclassified NLCDDEARE and
ReGAP data into deciduous forest, coniferous forest andarest (Tables AJA3). We
identified contiguous patches of forest cover using the same procedum/as\dle calculated
basic landscape metrics (total cover area, mean patch size and number of patcoesleta p
simple, quantitative assessment of heaeh product characterized the forest cover of the study

area.

A.2 RESULTS

The landscape metrics calculated from the regional data sources revealey¢lgbfi
disagreement between land cover products. LANDFIRE and ReGAP repatedshtotal area
of deciduous forest with 44.3 Krand 41.7 krirespectively (Tablé4). However, the
LANDFIRE map has over five times the number of patches as the ReGAP mamgeasid
much smaller mean patch size. NLCD has the smallest amount of deciduousnidiest a
fewest patches. Our synthesis map had the most deciduous patches and the seaallpatain
size, with a total area between the high and low range of regional map productgs€lgnve
NLCD identifies the most coniferousrest in the study area (TalAd) with a large average

patch size (0.073 kfh ReGAP and our magport similar total area (388n”and 34.4 krh
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respectively) of coniferous forest. However, our synthesis map has neariyrfes the number
of patches and therefore a much smallermesich size. LANDFIRE reports far less coniferous

forest, yet a high number of patches.

A.3 DISCUSSION

Our results show that fingcale mapping is necessary to capture the spatial heterogeneity
of deciduous and coniferous woodlands characteristic of this ecoregion (AigByeFigure Al
depicts a representative area on Little Mountain which highlights the smatif s&mgated forest
patches of the study area (Figé®A). The LANDFIRE map overestimates deciduous forest
cover and contains many single @i, inflatingthe number of patches (Figure A1C). The NLCD
map underestimates deciduous forest (FigurB)Atvhereas the ReGAP map overestimates
deciduous forest at the expense of fanest (Figure AE). Native LANDFIRE data classifies
significant portims of coniferous forest as shrubland, resulting in lower total area (Table A4,
Figure ALC). NLCD reports a large area of coniferous forest, in part becausedtaslih
product that does not differentiate between montane conifer species and lessuiése ¢

woodland at lower elevations (TabletA

The results of the land cover comparison highlight the differences in land covératata
are currently available at regional scaleg(re ALC-E, TableA4). We acknowledge our
comparison is biased sinoar model utilized finer scale data. It is not our intent to criticize
regional land cover data products, rather we identify the differences in &stalieas that
exhibit high levels of spatial heterogeneity. Regional land cover produasieeelopedvith
more coarse data (e.g. 30 m Landsat) at much greater spatial exterasrtheodeling and
mapping process. However, in our highly heterogeneous study area, thereagrgdment
between the land cover data. Our methodology is capable of detecting both tetaidues as
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well as the landscape juxtaposition of forest patches that are represeritdtiseea (Figure
A1B). We conclude that ecological studies requiring highly accurate farest and plant
functional type should consider usimylti-temporal SPOT imagery to derive regionally specific

land cover maps.
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Table AlL. LANDFIRE reclassification crosswalk tabMersion LF_1.3.0 (2012) was used in the
analysis.

Map Class LANDFIRE EXxist ing Vegetation Type Name (EVT Code)
Deciduous | Rocky Mountain Aspen Forest and Woodland (2011)

Forest Rocky Mountain Gambel Oak-Mixed Montane Shrubland (2107)
Coniferous | Northern Rocky Mountain Subalpine Woodland and Parkland (2046)
Forest Rocky Mountain Lodgepole Pine Forest (2050)

Southern Rocky Mountain Driytesic Montane Mixed Conifer Forest and
Woodland (2051)

Southern Rocky Mountain Ponderosa Pine Woodland (2054)

Rocky Mountain Subalpine Driytesic Sprucerir Forest and Woodland (2055)
Middle Rocky Mountain Montane Douglas-fir Forest and Woodland (2166)
Rocky Mountain Poor-Site Lodgepole Pine Forest (2167)

Table A2. NLCD reclassification crosswalk tabMersion NLCD 2011 was used in the analysis.
Map Class NLCD Classification Description (Class Value)
Deciduous | Deciduous Forest (41)

Forest Mixed Forest (43)

Coniferous | Evergreen Forest (42)

Forest

Table A3. ReGAP reclassification crosswalk tablersion 2 ReGAP data (2011) was used in

the analysis.
Map Class ReGAP Ecological System Description (Level 3 Code)
Deciduous | Rocky Mountain Aspen Forest and Woodland (4111)
Forest
Coniferous | Inte-Mountain Basins Aspen-Mixed Conifer Forest and Woodland (4324)
Forest Northern Rocky Mountain Drjdesic Montane Mixed Conifer Forest (4524)

Rocky Mountain Lodgepole Pine Forest (4527)

Southern Rocky Mountain Driytesic Montane Mixed Conifer Forest and
Woodland (4528)

Rocky Mountain Subalpine Driytesic Spruce-ir Forest and Woodland (4531)
Middle Rocky Mountain Montane Douglas-fir Forest and Woodland (4543)
Northern Rocky Mountain Mesic Montane Mixed Conifer Forest (4609)
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Table M. Results of the land cover comparison between the synthesis map and regional data
products.

Deciduous Forest Coniferous Forest
Total Area | No. of | Mean Patch | Total Area | No. of | Mean Patch
Product (km?) Patches| Size km? (km?) Patches| Size km?

Synthesis 7110 345 2362 0.015
Map 27.2 0.004

LANDFIRE 44 .3 6518 0.007 13.7 2001 0.007
NLCD 15.4 812 0.019 86.7 1192 0.073
ReGAP 41.7 1223 0.034 38.8 496 0.078
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Figure AL. Comparison of forest type maps derived from each data source of a representative
area of the landscape on Little Mountaitate: each map panel is displayed at the same scale;
tick marks are spaced at 30 second intervals. (A) 2009 color-infrared aerial ldatemél
Agriculture Imagery Program). Dark red/black hues indicate coniferoustfoeel hues indicate
deciduous forest; grey/light red/bluedsurepresent neiorest, (B) USGS synthesis map, (C)
LANDFIRE map, (D) NLCD map, and (E) ReGAP map.
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APPENDIX B: Supplementary Material for Modeling a Historical Mountain Pine Beetle
Outbreak Using Landsat MSS and Multiple Lines of Evidence (Chapter 4)

This appendix contains information on the geometric correction, calibration, atmospher
correction and image normalization procedures applied to the Landsat MSSyimsegein the

analysis in Chapter 4.

B.1 GEOMETRIC CORRECTION

Twenty GCPs were establisthto compare the spatial accuracy between the 2009 NAIP
photo and a 2010 Landsat Thematic Mapper (TM) image of the study area. We used the
AutoSync module in Erdas Imagine to georectify the image to the 2009 photo (RMSE < 0.5
pixel). The process was reped to georectify each of the nine Landsat MSS images to the 2010
TM image. Each MSS image had an RMSE < 0.4 pixel and was resampled to 30 m during the
georectification process using a nearest neighbor transformation to r@irggometric offsets in
the image stackGoodwin et al., 2008 However, the spatial resolution of the data is still

considered 60 m.

B.2 CALIBRATION

Radiometric calibration of imagery is an important step for creating a conststgn
guality temporal image series. We conveitteel four bands of each image from Digital Numbers
to absolute units of at-sensor spectral radiance using the formula (Chardet0&x9:

Ly = (LMAX 3 —LMIN 3./ Qcaimax— Qeaimin) * (Qcai— Qeaimin) + LMIN), (1)

where

L, = Spectral radiance #te sensor’s aperture [W/¢rar um)]

Qca = Quantized calibrated pixel value [DN]

caimin = Minimum quantized calibrated pixel value corresponding to LIMINN]
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Qcamax= Maximum quantized calibrated pixel value corresponding to LIVAXN]
LMIN ;= Spectral asensor radiance that is scaled to Qcalmin [VW&mum)]

LMAX ,, = Spectral asensor radiance that is scaled to Qcalmax [Wémpm)]

The spectral radiance values were converted teQisftmosphergTOA) reflectance
to account for differences in sensor and viewing augileg the formuldChander et al., 2009)

po=m*L* d?/ ESUN, * cosOs (2)

where

p,. = Planetary TOA reflectance [unitless]

n = Mathematical constant equal to ~3.14159 [unitless]

L, = Spectral radiance at the sensor’s aperture [Agfmm)]

d = EarthSun distance [astronomical units]

ESUN. = Mean exoatmospheric solar irradiance [W/(rm)]

0s= Solar zenith angle [degrees]

Inputs used in the formulas above were supplied by the header file ((MTégdbrscene

and Chander et al. (2009).

B.3 ATMOSPHERIC CORRECTION

Each image was snapped to the reference image (1979 image) in ArcGIS éoeaxbur
30 m pixel for every year was exactly congruent with the master image. Alutabs
normalization was applied to the 1979 master image using a dark object subtratiduie
(Chavez 1988). The minimum pixel value of each band (recorded in at least 1000 pixels),

representing deep glacial lakes and shadows, was ideri@iecvez, 1996)The theoretical
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radiance of a dark object is assumed to have 1% refledf@heeez, 1996; Moran et al., 1992)
so the minimum identified pixel value was multiplied by 0.99 to generate the pi:sianke

object of each image band.

B.4 RELATIVE NORMALIZATION

The remaining imagesere normalized to the master image using a relative
normalization technique. This procedure removes non-surface noise and improves thal tempor
homogeneity between images so that spectral change associated with surfacepheram be
detectedYuan and Elvidge, 1996). Psuetfovariant Features (PIFs) are targets in each image
that are not expected to change between image (&dbstt et al., 1988Relative normalization
is based on the assumption that a linear relationship exists between the refeagyecarid the
image to be normalize@chott et al., 1988; Yuan and Elvidge, 1996). This technique has been
applied in many studies to analyze vegetation chéBgelley and Fleishman, 2008; Schroeder
et al., 2006; Vicente-Serrano et al., 2008). We idextiO PIFs that encompassed a range of
pseudo-invariant reflectance values in each band. Each PIF was 32 #0§ize; equivalent to
a 3x3 block of 60 m Landsat MSS pixels. The mean of the reflectance values at éseserst
used to fit an ordinary least squares regression model between the image to lieatbfona
each year and the reference image for each of the four bands. We tested thés fiesidpatial
autocorrelation using the Moran’s | statistic and the Likelihood Ratio(Legendre and Fortin,
1989). Inverse distance was used to define the neighborhood structure of the spgtital wei
matrix. If spatial autocorrelation was detected, a spatially autoregressilet wes used to fit
the datgCressie, 1993)n all cases, the fit of linassed to spectrally align the images h&d R
values > 0.92. Statistical analysis was conducted using the r pg&k&gselopment Core

Team, 2013and the linear regression was applied to each image in Erdas Imagine.
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APPENDIX C: Supplementary Material for Investigation of Mountain Pine Beetle
Outbreak and Burn Severity (Chapter 5)

This appendix contains tablesadfefficients, standard errors and P values for the
sequential autoregressi@®AR) models for each firanalyzed in Chapter 5. The coefficients
presented in this appendix are the unstandardized regression coefficienttesdsath the

model for each fire. The regression coefficients presented in Table 5.4 havé¢aeandszed.

C.1RESULTS

TableCL1. Sequential autoregression models of burn severity (RANBR) for the Red Bench fi

Variable p SE P value
Intercept -1173.70 219.82 <0.001
elev 0.35 0.10 <0.001
tpi90 46.22 6.25 <0.001
slope90 9.58 1.06 <0.001
mpb90 318.13 19.87 <0.001
hload 441.78 39.92 <0.001
FM100 -53.20 8.99 <0.001
FM1000 107.48 20.45 <0.001

TableC2. Sequential autoregression models of burn severity (RANBR) for the Aalalmg

fire.

Variable p SE P value
Intercept -537.31 163.81 0.001
elev 0.13 0.10 0.197
tpi -6.20 1.54 <0.001
slope 2.46 0.57 <0.001
mpb180 488.02 75.76 <0001
hload90 678.75 82.74 <0.001
FM100 2.90 3.05 0.342
FM1000 -8.20 3.84 0.033
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TableC3. Sequential autoregression models of burn severity (RANBR) for the Anacenda fir

Variable p SE P value
Intercept -1722.74 278.46 <0001
elev 1.25 0.16 <0.001
tpi45 33.26 3.03 <0.001
slope -0.69 0.62 0.261
mpb90 202.52 28.43 <0.001
hload45 802.65 73.38 <0.001
FM100 -18.13 5.88 0.002
FM1000 -4.54 18.55 0.807

Table CGl. Sequential autoregression misdaf burn severity (RANBR) for the Parke Peak fire.

Variable p SE P value
Intercept -54.08 346.31 0.876
elev 0.43 0.19 0.022
tpi90 7.23 11.74 0.538
slope -1.05 1.32 0.426
mpb180 385.02 122.49 0.002
hload 81.27 87.08 0.351
FM100 -27.61 44.35 0.534
FM1000 2.38 20.84 0.909

Table . Sequential autoregression models of burn severity (RANBR) for the Moose fire.

Variable /] SE P value
Intercept -794.08 151.38 < 0.001
elev 1.04 0.09 <0.001
tpi90 34.13 3.96 <0.001
slope -0.44 0.38 0.248
mpb180 560.23 45.28 <0.001
hload 219.69 24.99 <0.001
FM100 -8.38 3.84 0.029
FM1000 -27.36 7.45 <0.001
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Table G5. Sequential autoregression models of burn severity (RANBR) for the Wolf Gun fire.

Variable p SE P value
Intercept -259.250 152.940 0.090
elev 0.008 0.076 0.917
tpi90 32.291 5.112 <0.001
slope 2.796 0.500 <0.001
mpb180 214.110 65.417 0.001
hload45 404.700 43.684 <0.001
FM100 -14.264 5.892 0.015
FM1000 30.377 11.842 0.010

Table 7. Sequential autoregression models of burn severity (RANBR) for the Wedge Canyon

fire.

Variable /] SE P value
Intercept -326.19 121.42 0.007
elev 0.57 0.05 <0.001
tpi90 20.03 3.53 <0.001
slope90 0.93 0.71 0.192
mpb90 144.80 17.37 <0.001
hload45 309.71 30.32 <0.001
FM100 5.53 4.32 0.200
FM1000 -31.15 12.57 0.013

Table B. Sequential autoregression models of burn severity (RANBR) for the Robert fire.

Variable p SE P value
Intercept 583.27 142.50 <0.001
elev -0.10 0.05 0.026
tpid5 10.58 0.92 <0.001
slope45 4.82 0.32 <0.001
mpb 32.45 5.33 <0.001
hload 280.21 18.64 <0.001
FM100 -1.32 4.53 0.771
FM1000 -31.53 15.40 0.041
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Table ®. Sequential autoregression models of burn severity (RANBR) for the Middle Fork
Complex fire

Variable p SE P value
Intercept 233.53 171.35 0.173
elev 0.26 0.06 <0.001
tpi90 27.17 3.08 <0.001
slope45 2.52 0.43 < 0.001
mpb90 -18.82 25.91 0.467
hload 189.88 18.72 <0.001
FM100 1.18 5.58 0.832
FM1000 -44.34 19.38 0.022

Table 0. Sequential autoregression models ohlaeverity (RANBR) for the Rampage fire

Variable /] SE P value
Intercept 920.32 233.82 < 0.001
elev 0.05 0.05 0.289
tpid5 7.74 1.23 <0.001
slope90 -2.85 0.81 < 0.001
mpb 43.69 15.51 0.005
hload 80.59 26.15 0.002
FM100 -0.27 9.98 0.978
FM1000 -42.38 27.72 0.126

Table 1. Sequential autoregression models of burn severity (RANBR) for the RediEagle f

Variable p SE P value
Intercept 114.36 226.28 0.613
elev 0.28 0.06 <0.001
tpid5 18.73 1.56 <0.001
slope90 -6.81 0.81 <0.001
mpb90 172.60 34.45 <0.001
hload 150.45 28.75 <0.001
FM100 -70.73 17.31 <0.001
FM1000 58.14 21.51 0.007
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