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ABSTRACT 
 
 

THE ECOLOGICAL LEGACIES OF DROUGHT, FIRE, AND INSECT DISTURBANCE IN 

WESTERN NORTH AMERICAN FORESTS 

 
 

Temperate forest ecosystems are subject to various disturbances including insect agents, 

drought and fire, which can have profound effects on the structure of the ecosystem for many 

years after the event. Impacts of disturbance can vary widely, therefore an understanding of the 

legacies of an event are critical in the interpretation of contemporary forest patterns and those of 

the near future. The primary objective of this dissertation was to investigate the ecological 

legacies of drought, beetle outbreak and ensuing wildfire in two different ecosystems. A 

secondary objective of my research, data development, was motivated by a lack of available data 

which precluded ecological investigation of each disturbance.  

    I studied the effects of drought on deciduous and coniferous forest along a forest-

shrubland ecotone in the southern portion of the Wyoming Basin Ecoregion. The results show 

that forests in the region have experienced high levels of cumulative drought related mortality 

over the last decade. Negative trends were not consistent across forest type or distributed 

randomly across the study area. The patterns of long-term trends highlight areas of forest that are 

resistant, persistent or vulnerable to severe drought. 

In the second thread of my dissertation, I used multiple lines of evidence to 

retrospectively characterize a landscape scale mountain pine beetle disturbance from the 1970s in 

Glacier National Park. The lack of spatially explicit data on this disturbance was a major data 

gap since wildfire had removed some of the evidence from the landscape. I used this information 

to assess the influence of beetle severity on the burn severity of subsequent wildfires in the 
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decades after the outbreak. Although many factors contribute to burn severity, my results 

indicate that beetle severity can positively influence burn severity of wildfire. This is likely due 

to the change in forest structure in the decades after the outbreak and not as a direct result of tree 

mortality from the outbreak. The long-term perspective of this study suggests that ecological 

legacies of high severity disturbance may continue to influence subsequent disturbance for many 

years after the initial event. This work also provides insight on future disturbance interactions 

associated with the recent mountain pine beetle outbreak that has impacted tens of millions of 

hectares in western North America over the last two decades.  
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CHAPTER 1: I ntroduction 
 
 

1.1 DISTURBANCE IN FOREST ECOSYSTEMS 

A disturbance is considered a relatively discrete event that changes the resource 

availability or physical environment and in turn disrupts the structure of an ecosystem, 

community or population (White and Pickett, 1985). Such an event can be abiotic (e.g. drought, 

desiccation stress), biotic (e.g. insect or fungal agent) or some combination of the two (e.g. fire), 

and result in punctuated killing, displacement or damaging of one or more individuals of an 

ecosystem (Sousa, 1984). The spatial and temporal dynamics of disturbances over a period of 

time that affect a given area or ecosystem are known as the disturbance regime (Turner, 2010). 

The disturbance regime includes characteristics of multiple disturbances such as the spatial 

distribution, frequency, return interval, rotation period, as well as characteristics of individual 

disturbances such as size, intensity and severity (Sousa, 1984; Turner, 2010). 

Disturbances are key drivers of spatial and temporal heterogeneity at various scales 

because they can alter ecosystem components and subsequent trajectory (Turner, 2010). The 

ensuing landscape pattern influences the rate and pattern of energy flow, nutrient cycling, 

wildlife and human responses, and susceptibility to subsequent disturbance (Turner and Dale, 

1998; Veblen et al., 1994). Disturbance can result in changes in species composition and ecotone 

boundaries (Allen and Breshears, 1998) and accelerate potential transitions to no-analog 

communities in the future (Williams and Jackson, 2007). Such changes could have large 

implications on the quantity, quality and distribution of habitat leading to impacts on species 

biogeography (Turner, 2010). 

Large, infrequent disturbances are a key mechanism for landscape pattern in forests 

(Turner and Dale, 1998) due to the enduring legacies of physical and biological structure 
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produced from such disturbances (Foster et al., 1998). In addition to the area impacted by the 

disturbance, the biotic remnants or disturbance residuals contribute to the vegetation pattern in 

forested landscapes (Bebi et al., 2003; Turner and Dale, 1998). Much of the literature focuses on 

large disturbances, but legacies can persist at some level regardless of the size or frequency of 

the disturbance (Turner et al., 1998). An understanding of specific disturbance impact on pattern 

and legacy forms the foundation of basic landscape ecology research (Turner, 1989). 

Furthermore, this information becomes critical when evaluating characteristics of ecosystem 

recovery from different types of disturbance (Foster et al., 1998). Given that legacies can persist 

for decades to centuries, past disturbance is important in explaining the present landscape. 

However, contemporary and recent disturbance, coupled with global climate change will likely 

be key mechanisms of ecological dynamics well into the future (Turner, 2010).  

Temperate forest ecosystems are subject to various disturbances such as insect agents, 

drought and fire (Allen, 2009; Foster et al., 1998; Logan et al., 2003). These disturbances 

contribute to ecological legacies that can have profound effects on the structure of the ecosystem 

for many years after the event (Turner and Dale, 1998). However, impacts and legacies of 

disturbance can vary widely in extent, duration and severity over space and time. Superimposed 

on this concept is global climate change which is expected to increase rates of forest disturbance 

(Dale et al., 2001; Overpeck et al., 1990). Therefore an understanding of disturbance events and 

legacies are critical in the interpretation of contemporary forest patterns (Foster et al., 1998) and 

those of the near future (~ 50 years).   

1.2 CLIMATE CHANGE AND  DISTURBANCE EVENTS 

Global climate change is expected to impact temperature and precipitation regimes and 

increase the frequency of extreme events (IPCC, 2007). Global mean surface temperature has 
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risen by 0.74 °C (+/- 0.18 °C) over the last 100 years; with the warming rate over the last 50 

years nearly double that of earlier in the century. However, warming rates have not been steady 

nor uniform spatially (different locations) or temporally (different seasons). Variability in global 

precipitation has not been uniform, and changes have been observed in the amount, intensity, 

frequency and type of precipitation. Radiative forcing affects evaporation and sensible heating 

rates which influence the amount, frequency, intensity, duration, and type of precipitation of a 

localized area (Trenberth et al., 2003). Extreme events (values exceeded 1, 5, or 10% of the time) 

are an expression of increased climate variability leading to changes in the frequency and 

intensity of events. Decreased land precipitation and increased temperatures have enhanced 

evapotranspiration and the intensity, duration and spatial extent of drought has increased 

(particularly in the last three decades) (IPCC, 2007). The Palmer Drought Severity Index 

(Palmer, 1965) indicates that very dry areas have more than doubled since the 1970s (Dai et al., 

2004). The El Niño – Southern Oscillation (ENSO) was responsible in part for the precipitation 

decrease in the early 1980s, but surface warming is cited as the primary cause after the mid-

1980s (Dai et al., 2004). In the late 1990s and early 2000s, over half of the coterminous United 

States experienced moderate to severe drought conditions with record (or near-record) breaking 

precipitation deficits throughout the western part of the country (Cook et al., 2004). This event 

brought attention to drought vulnerability in the semi-arid western United States. Warming 

accelerates land surface drying which increases drought potential (IPCC, 2007), therefore an 

increase in warming could result in elevated aridity in western North America (Cook et al., 

2004).  

Regional climate models (RCMs) project that all of North America is likely to warm 

during this century, with annual mean warming surpassing the global mean rate of warming in 
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most areas (IPCC, 2007). Global and regional simulations predict that a 1 to 2.5 °C increase in 

temperature by mid-century will have a strong impact on snowpack in the western United States 

(Leung et al., 2004), as a result of delayed autumn snowfall, earlier spring snowmelt and changes 

in precipitation form (IPCC, 2007). Even small changes in temperature and precipitation can 

magnify impacts to snowpack and runoff on monthly and seasonal time scales due to various 

surface hydrological and land-atmosphere feedback processes (Leung et al., 2004). RCMs using 

the A2 emission scenario project that the increase in atmospheric concentrations of greenhouse 

gases will result in a dramatic increase in extreme heat events, decreases in extreme cold events 

and increases in extreme precipitation events (Diffenbaugh et al., 2005). Although large-scale 

climate dynamics govern these changes, fine-scale climate-system modifiers will also play a part, 

especially in the topographically complex terrain of the western United States (Diffenbaugh et 

al., 2005). 

Many disturbances have a significant climate forcing and research over the last couple of 

decades has demonstrated that disturbance regimes are in a phase of rapid change (Turner, 2010). 

Three major disturbance types that are of interest for my research are bark beetle outbreaks, 

severe drought and fire. Bark beetles (Dendroctonae) are directly vulnerable to disruption by 

climate change due to impacts on developmental timing, cold tolerance and habitat constraints 

(Bentz et al., 2010; Hicke et al., 2006; Logan et al., 2003). Indirect effects of climate include 

host-tree vigor and other community associates (Bentz et al., 2010). Severe drought in the early 

part of the last decade contributed to stress, dieback and mortality across diverse forest types 

(Allen, 2009; Breshears et al., 2005; Gitlin et al., 2006; Michaelian et al., 2011). The frequency 

of large fires in the western United States has increased due to warming temperatures, earlier 

snowmelt, and longer fire seasons (Littell et al., 2009; Westerling et al., 2006). Future 
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predictions indicate that fires may become more frequent and severe, leading to novel fire-

climate-vegetation relationships (Lutz et al., 2009; Westerling et al., 2011). Research on 

interactions among disturbances has increased in recent years (Simard et al., 2011), yet 

understanding interactions remains a key challenge in ecology (Turner, 2010).  

1.3 RESOURCE MANAGEMENT AND FOREST DISTURBANCE  

Climatic means and variability shape patterns in vegetation through the seasonal balance 

between energy supply and moisture (Stephenson, 1990). Climate exerts top-down control on 

ecosystem pattern and process and vegetation is vulnerable to water stress from drought and 

warm temperatures (Allen, 2009). If water for growth is not available, the energy acts to heat and 

stress the plant (Stephenson, 1990). Severe drought in the early part of the last decade was the 

mechanism for disturbance through tree stress, dieback and mortality across diverse forest types 

(Allen, 2009; Breshears et al., 2005; Gitlin et al., 2006; Michaelian et al., 2011). Drought has 

indirect effects on other disturbances including bark beetles and fire. Drought reduces host-tree 

vigor which increases insect attack probability (Bentz et al., 2010). Drought contributes to 

flammability of fuels and decreased snowpack, resulting in longer fire seasons (Littell et al., 

2009; Westerling et al., 2006). Therefore in this framework, drought is considered both an 

indirect mechanism for other disturbance types as well as a disturbance under severe drought 

circumstances. 

Current forest managers are faced with increasing levels of uncertainty given that future 

landscapes will likely be different from both the past and present (Millar et al., 2007).  The use 

of historical range and variability (HRV) has often been employed by land managers (Keane et 

al., 2009), but this idea may no longer be appropriate where future, no-analog communities do 

not reflect historic conditions (Williams and Jackson, 2007). A contrasting approach to gain 
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insight into future landscapes uses predictive models. Predictive models have provided valuable 

information on future impacts, but have been criticized in the use of assumptions and limited 

knowledge (Sinclair et al., 2010). The study of recent events falls somewhere between HRV and 

predictive models and has the potential to reduce levels of uncertainty as we move into the 

future. Analyzing recent events may provide resource managers the most realistic view of 

landscapes over the next 50 years.  

1.4 REMOTE SENSING OF FOREST DISTURBANCE 

Remote sensing is the collection of information about an object, without being in direct 

contact with the object. Disturbance alters ecosystem structure by both abrupt, conspicuous 

change and by gradual, slow change over some period of time. Such impacts allow remote 

sensing to capture the pre- and post-disturbance landscape, and in some cases, the duration of the 

event. The need to measure change over space is clear, but the ability to measure change over 

time is paramount to remote sensing of forest disturbance. Consideration of spatial and temporal 

scale is a prominent theme in the work presented in this dissertation. Disturbance such as 

wildfire or land cover change may occur very quickly and result in conspicuous change. 

However, the impact of disturbances such as drought or insect outbreaks may not be realized 

until the timeframe of study is expanded.  

  The remote sensing archive is a great resource for my work as much of the research 

presented in this dissertation has a focus on retrospective analysis of events that occurred over 

the last 40 years. Available imagery represents tradeoffs between spatial, temporal and spectral 

resolution. Multispectral imagery combined with temporal trend analysis provides high utility to 

assess impacts to forest vegetation from drought, fire, and insect damage. Aerial photography is 

a valuable research tool that provides detailed records of forest landscapes over the last half 
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century. Although limited in spatial extent, such records can provide a snapshot of disturbance at 

one or multiple points in time. This information can be scaled up to lower spatial resolution, but 

increased spatial extent of satellite imagery. Scale is an integral part of ecological research 

(Levin, 1992), and the ability to scale up from local areas to regional landscapes is critical to our 

understanding of ecosystems (Turner, 2010; Wilson et al., 2010).  

Various types of open or freely shared remotely sensed data are utilized in this 

dissertation: traditional landscape photos, digital and hardcopy aerial photos, and a number of 

satellite imagery platforms (Landsat Multispectral Scanner (MSS), Landsat Thematic Mapper 

(TM), Landsat Enhanced Thematic Mapper (ETM+), Landsat Operational Land Imager (OLI), 

Système Pour l’Observation de la Terre (SPOT 5), and Moderate Resolution Imaging 

Spectroradiometer (MODIS)). The value of historic records should never be underestimated and 

the opportunistic scientist might find value where others do not. Had it not been for the heroic 

actions of one Park Service employee during an office cleanup, a very important set of aerial 

photos would have been discarded and never found its way into Chapter 4 of this dissertation.        

1.5 RESEARCH MOTIVATION  AND OBJECTIVES 

Numerous studies highlight the value of spatially explicit research as disturbance impacts 

are not uniform over time and space. For example, the 1988 fires in Yellowstone National Park 

burned a very large area (250,000 ha) but 75% of the burned area was less than 200 m from 

unburned forest which has large implications for post-fire regeneration  (Turner et al., 1994). In 

northern New Mexico, the ecotone between ponderosa pine forest and pinyon-juniper woodland 

seen on the landscape today shifted by upwards of two kilometers following a drought in the 

1950s. Such information is valuable to a wide audience spanning local resource managers to 

national policy makers. My work aims to contribute to this field through several lines of research 
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addressed in this discussion. The overall goal of this dissertation is to uncover the ecological 

legacies that recent drought, insect outbreaks and fire have on forested ecosystems. These 

disturbances are major issues in the two regions of study and will continue to be as we move into 

an uncertain future. It is my hope that the research contributes to an ecological understanding of 

the subject matter, but also provides a framework for retrospective study of ecosystem 

disturbance than can be applied to other ecosystems. My research is further motivated by a lack 

of available data that limit investigation of these questions. I use a combination of remote 

sensing, geospatial and statistical analysis to develop datasets that can then be used to investigate 

larger ecological questions. The two major threads of my dissertation research are summarized 

below. 

 Drought in the Forest-Shrubland Ecotone – Little Mountain Ecosystem  

What are the spatial and temporal effects of recent drought in a forested ecosystem expected to 

be vulnerable to climate change? 

In the southern part of the Wyoming Basin Ecoregion, referred to as the Little Mountain 

Ecosystem (LME), relatively small patches of deciduous and coniferous forest occur on moist 

sites in a matrix of sagebrush steppe. Multiple entities have identified the region as a priority 

area for conservation given the important habitat it provides many wildlife species. The area has 

experienced a relatively dry period since 2000, punctuated by two years of extreme drought. 

Lack of aspen regeneration due to high rates of herbivory is a local concern, yet little attention 

has been given to the effect of top down controls on the condition of the forest across the region. 

Recent drought-related mortality of aspen has been documented in western North America 

(Michaelian et al., 2011; Worrall et al., 2008) and multiple studies have also documented an 

increase in mortality rates of coniferous species throughout the western United States over the 
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later part of the 20th century (Allen and Breshears, 1998; Breshears et al., 2005; van Mantgem et 

al., 2009). These events are driven by increased water deficit associated with drought, but 

secondary agents such as bark beetle outbreaks have also contributed to mortality in some areas 

(van Mantgem et al., 2009). Mortality has been observed in the LME, but the extent and timing 

has not been documented. The effects of climate change are expected to be most rapid and 

extreme at ecotones in semi-arid areas (Allen and Breshears, 1998; Gosz, 1992) and the current 

climate profile for several of the dominant tree species are predicted to be greatly limited or no 

longer present over the course of the next century (Crookston et al., 2010; Rehfeldt et al., 2009). 

Ecotones are important barometers of climate change (NEON, 2000) and stress, dieback and 

mortality are expected to accompany severe drought in this arid landscape. Several recent studies 

have found the use of a temporal remotely sensed data to be effective in monitoring drought 

induced changes in arid forests (Lloret et al., 2007; Maselli, 2004; Vogelmann et al., 2009; 

Volcani et al., 2005). My primary objective is to quantify the spatial and temporal effects of 

drought on the forests of the Little Mountain Ecosystem. Regional climate is mediated by local 

topography, and I am also interested in the influence of these bottom-up controls during drought 

periods across the complex terrain of this semi-arid area. However, regional land cover data did 

not provide adequate details on forest cover to address our objective. Therefore, my initial 

objective was to develop new data which accurately portrayed the amount and pattern of forest 

cover in the area, which I used to address the primary objective.  

Mountain Pine Beetle Outbreak and Wildfire – Glacier National Park 

Did the severity associated with the 1970s mountain pine beetle outbreak affect the burn severity 

of subsequent wildfires in Glacier National Park? 



10 
 

The influence of mountain pine beetle on past fire activity (Lynch et al., 2007) and future 

fire probability (Simard et al., 2011) has been explored in Yellowstone National Park and other 

areas of western North America, yet similar work has not been conducted in Glacier National 

Park (GNP). The 1970s mountain pine beetle outbreak in GNP was a high severity disturbance 

that covered 1400 km2 (28% of the park) by the end of the decade. However, the aerial survey 

data from that time did not contain any measure of severity so we cannot determine 

heterogeneity of the disturbance. In the decades after the outbreak, fire was frequent on the 

landscape as 27% of the forest in the park burned between 1984 and 2006. The lack of spatially 

explicit data on the beetle outbreak represents a major data gap and inhibits our ability to 

investigate the influence of beetle severity on subsequent fire. Recent research has garnered 

positive results tracking the recent (~1996-2006) beetle outbreak using temporal Landsat TM 

data (Goodwin et al., 2008; Huang et al., 2010; Meigs et al., 2011). A major challenge of this 

analysis is to reconstruct the extent of a disturbance in which most of the evidence has been 

erased through subsequent disturbance. The initial objective was to reconstruct the extent and 

severity of the beetle outbreak. In the second phase of analysis, I used the model of outbreak 

severity developed in the first phase to assess the influence of beetle severity on the burn severity 

of succeeding wildfires.      

1.6 DISSERTATION LAYOUT  

This dissertation consists of six chapters. This chapter (chapter one) introduces the 

concept of ecological disturbance in forest ecosystems.  Further discussion outlines the influence 

of climate change on forest disturbance and implications to resource management. I outline the 

utility of remote sensing in forest disturbance research and the motivation behind my dissertation 

research. There are two analysis chapters devoted to each geographic area of study covered in 
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this dissertation. The first chapter (two and four) of each geographic area has a primary focus on 

modeling an ecological variable of interest then the new datasets are used to address the primary 

ecological questions of each study area (chapters three and five). 

In Chapter two, I present a framework that incorporates aerial photos and satellite 

imagery to model dominant forest cover at local scales across a forest-shrubland ecotone in the 

southern portion of the Wyoming Basin Ecoregion (Assal et al., 2015). I developed probability 

of occurrence models for forest type and combined the outputs into a synthesis map that captures 

the functional type, size, and distribution pattern of forest cover in a spatially heterogeneous 

landscape. The output addressed an important research need and provides managers with an 

important tool to support conservation and monitoring efforts across management unit 

boundaries. To explore the utility of my findings, I compared my results with basic metrics of 

forest cover derived from several regional land cover datasets. This information is presented in 

Appendix A of the dissertation. In the third chapter, I assessed the relationship between remotely 

sensed indices and field measured forest characteristics. Then I used the index in trend analysis 

of a long-term satellite dataset to uncover the location, direction and timing of forest change 

associated with drought. The analysis identifies spatially explicit patterns of long-term trends 

anchored with ground based evidence to highlight areas of forest that are resistant, persistent or 

vulnerable to severe drought. The results provide a long-term perspective for the resource 

management of this area and can be applied to similar ecosystems throughout western North 

America.   

The fourth chapter and fifth chapters are devoted to questions related to mountain pine 

beetle and wildfire disturbance in Glacier National Park. In chapter four, I present an approach 

that incorporates multiple lines of evidence to retrospectively characterize the landscape scale 
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mountain pine beetle disturbance of the late 1970s and early 1980s (Assal et al., 2014). Then I 

use this dataset in chapter five to determine if beetle severity had a measureable influence on 

burn severity in wildfires in the ensuing decades after the outbreak. The long-term perspective of 

the study shows that ecological legacies of a prior high severity beetle outbreak may continue to 

influence subsequent disturbance for many years after the initial event. The findings of the 

dissertation are summarized in chapter six.  
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CHAPTER 2: Mapping Forest Functional Type in a Forest-Shrubland Ecotone using 
SPOT Imagery and Predictive Habitat Distribution Modeling1 

 
 

2.1 SUMMARY  

The availability of land cover data at local scales is an important component in 

forest management and monitoring efforts. Regional land cover data seldom provide 

detailed information needed to support local management needs. Here we present a 

transferable framework to model forest cover by major plant functional type using aerial 

photos, multi-date Système Pour l'Observation de la Terre (SPOT) imagery, and 

topographic variables. We developed probability of occurrence models for deciduous 

broad-leaved forest and needle-leaved evergreen forest using logistic regression in the 

southern portion of the Wyoming Basin Ecoregion. The model outputs were combined into 

a synthesis map depicting deciduous and coniferous forest cover type. We evaluated the 

models and synthesis map using a field validated, independent data source. Results showed 

strong relationships between forest cover and model variables and the synthesis map was 

accurate with an overall correct classification rate of 0.87 and Cohen’s kappa value of 

0.81. The results suggest our method adequately captures the functional type, size and 

distribution pattern of forest cover in a spatially heterogeneous landscape.      

                                                 
1 A version of this chapter was published in Remote Sensing Letters on 21 August 2015, 

available online: http://www.tandfonline.com/doi/full/10.1080/2150704X.2015.1072289: 
Assal, T., Anderson, P., Sibold, J., 2015. Mapping forest functional type in a forest-
shrubland ecotone using SPOT imagery and predictive habitat distribution modelling. 
Remote Sens. Lett. 6, 755–764. doi:10.1080/2150704X.2015.1072289 

 

http://www.tandfonline.com/doi/full/10.1080/2150704X.2015.1072289
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2.2 INTRODUCTION  

Land cover data provides the foundation for a wide variety of geographical analysis and 

science applications. There have been several national and regional land cover mapping 

initiatives over the last two decades, most notably the National Land Cover Database (NLCD) 

(Jin et al., 2013), LANDFIRE (Rollins, 2009), and ReGAP (Davidson et al., 2009). These 

products have provided tremendous utility in studies documenting land cover change (Radeloff 

et al., 2005), effects of climate change (Wylie et al., 2014), vegetation change (Bradley and 

Fleishman, 2008) and conservation planning (Stoms, 2000). However, in some heterogeneous 

ecosystems, they lack the spatial resolution needed to adequately characterize the extent and 

juxtaposition of land cover. In the Wyoming Basin ecoregion, small areas of forest are found 

within sagebrush shrubland at higher elevations which are difficult to adequately characterize 

using regional land cover data.  

Plant functional types (PFTs) are groups of species that share similar structural, physiological 

and phenological traits (Barbour et al., 1999). PFTs provide a framework to consider how 

species utilize resource availability and respond to environmental change and management. At 

the stand scale, multispectral remote sensing can be used to delineate the relationship between 

vegetation structure and physiology of PFTs, linking biophysical properties to ecological theory 

(Ustin and Gamon, 2010). Predictive habitat distribution modeling offers the potential to assess 

the current extent of species as well as effects of global climate change and other change agents. 

However, a challenge is to better link remote sensing data to underlying ecological relationships 

and describe the distribution of species along environmental gradients (Zimmermann et al., 

2007). Incorporating remote sensing variables in the modeling process allows us to take full 



20 
 

advantage of continuous gradients to delineate biophysical properties of vegetation such as leaf 

shape, structure, longevity and chlorophyll content (Jones and Vaughan, 2010).   

We explored the potential of fine-scale remotely sensed spectral data in predictive habitat 

distribution modeling of forest cover type across a forest-shrubland ecotone. The two PFTs of 

interest in the study area are deciduous broad-leaved forest (referred to as deciduous forest) and 

montane needle-leaved evergreen forest (referred to as coniferous forest). We hypothesized that 

the delineation between forest functional type would be aided with the addition of multitemporal 

remote sensing predictors due to differences in phenology between deciduous and coniferous 

species (Bergen and Dronova, 2007; Zimmermann et al., 2007). The major goal of the study was 

to develop an operational mapping framework using aerial photos coupled with fine-scale 

satellite imagery to efficiently model dominant forest cover. The specific objectives were to: 1) 

develop probability of occurrence models for deciduous and coniferous forest; and 2) to combine 

model outputs into a field-validated synthesis map depicting forest cover type. 

2.3 STUDY AREA 

The study area, managed largely by the U.S. Bureau of Land Management, is located in 

the southern part of the Wyoming Basin ecoregion, spanning parts of southwestern Wyoming, 

northwestern Colorado, and northeastern Utah (Figure 2.1). Several prominent ridges form a 

transition zone between basins and mountainous areas (Knight, 1994), where several species of 

trees exist at the xeric fringes of their respective ranges. Forests are dominated by either aspen 

(Populus tremuloides) or several coniferous species, namely subalpine fir (Abies lasiocarpa), 

Douglas-fir (Pseudotsuga menziesii), and lodgepole pine (Pinus contorta), that occur as 

relatively small patches on moist sites in a matrix of mountain sagebrush (Artemisia tridendata 

spp. vaseyana) or mixed-species shrublands. Scattered juniper (Juniperus communis var. 
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depressa) and limber pine (Pinus flexilis) woodlands, distinct from the montane conifer forest, 

are found on rocky slopes at lower elevations and small patches of manzanita (Arctostaphylos 

patula) are found in the southern part of the study area. The area has a midlatitude steppe climate 

with a substantial portion of the annual precipitation occurring as snow. Multiple state and 

federal agencies, along with the Wyoming Landscape Conservation Initiative (wlci.gov), have 

identified the region as a priority area for conservation given the important habitat it provides for 

many wildlife species. Drought-related mortality of aspen is a concern in western North America 

(Worrall et al., 2008), and lack of aspen regeneration due to high rates of herbivory is a concern 

locally. Active management seeks to address these concerns and locally accurate maps of forest 

cover type are critical to support conservation and monitoring efforts.   

2.4 METHODS 

2.4.1 Explanatory Variables 

We identified a contiguous area (1,088 km2) greater than 2,300 m in elevation known to 

encompass the forest communities of the study area (Figure 2.1). We explored the relationship of 

topographic and multi-date remotely sensed variables to forest presence that have had utility in 

other SDMs (Turner et al., 2003; Zimmermann et al., 2007; Jarnevich et al., 2014; Engler et al., 

2013). Topographic variables were derived from a 10 m National Elevation Dataset and remotely 

sensed variables were derived from terrain corrected Level 1 T SPOT 5 HRG satellite imagery, 

acquired at no cost (USGS, 2014) (Table 2.1).  We obtained two cloud-free dates during leaf-on 

(07 September 2010) and leaf-off (19 October 2010) conditions from two SPOT scenes (KJ grid 

555-267; 555-286). Each of the four images were geometrically registered to National 

Agriculture Imagery Program (NAIP) aerial photos using 20-25 ground control points with a root 

mean square error of less than 0.5 pixel. A top-of-atmosphere correction was applied to each 
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image to account for differences in sensor and viewing angle (Wulder et al., 2006; Vogelmann et 

al., 2012; Sankey et al., 2008).  

Remotely sensed spectral bands and derived vegetation indices often exhibit high levels of 

collinearity (Engler et al., 2013). Multi-collinearity among all potential explanatory variables 

was assessed prior to model calibration using the Pearson’s correlation coefficient. Variables 

with a correlation coefficient greater than 0.8 or less than -0.8 were removed from consideration 

within the same model (Jarnevich et al., 2014). All of the analysis was conducted using the R 

statistical package (R Development Core Team 2013).    

2.4.2 Sample Data 

ReGAP land cover data was reclassified into eight land cover categories (including 

deciduous and coniferous forest), and we used a stratified random selection procedure to ensure 

an unbiased distribution of sample plots (10 m x 10 m, congruent with a SPOT pixel) across land 

cover types. Our objective was to capture fine-scale patterns in the study area, while minimizing 

the impact of spatial dependency between observations. We used a total of 545 plots, with a 

minimum distance of 250 m (25 pixels) between each plot, to develop presence and absence 

records. We interpreted recent aerial photographs (natural color and infrared NAIP) and 

classified each plot as deciduous forest, coniferous forest, or non-forest. Mixed forest is not 

found at broad scales in the study area, and it is difficult to reliably classify a 10 m NAIP plot as 

mixed forest. Absence records for deciduous forest included both non-forest and coniferous 

forest plots, whereas absence records for coniferous forest included non-forest and deciduous 

forest. We extracted the values of the 19 predictor variables (Table 2.1) at each sample location. 

The respective leaf-on and leaf-off periods for each band exhibited high collinearity. Leaf-on 

bands 1, 2, and 4 were also highly correlated along with leaf-on NDVI. We opted to use leaf-on 
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bands over leaf-off, although leaf-off data was incorporated into ΔNDVI (Table 2.1). We 

retained band 1 over band 2 since information from band 2 is incorporated into the NDVI 

variable. This selection process resulted in 13 variables for consideration (Table 2.1), including 

longitude and latitude to account for spatial autocorrelation (Knapp et al., 2003; Hu and Lo, 

2007).        

2.4.3 Data Analysis 

Logistic regression is a widely used method to predict the probability of a dichotomous 

variable (i.e., presence, absence of a forest cover type) that has been used in species distribution 

modeling (SDM) (Engler et al., 2013; Jarnevich et al., 2014; Stohlgren et al., 2010) and other 

ecological studies (Turner et al., 2003; Wulder et al., 2006; Dubovyk et al., 2013). We used a 

multivariate generalized linear model (GLM, binomial distribution, logit link function) to create 

independent models of deciduous (DECID) and coniferous (CONIF) forest cover in the study 

area. We modeled each cover type independently to maximize information contained in the 

continuous gradient of biophysical characteristics of these systems. The full dataset (n = 545) 

was used for model calibration. To simplify the interpretation of the logistic model, we converted 

the regression coefficients into odds ratios, then calculated the percent change in odds (Wulder et 

al., 2006). This approach identifies the percent change in the probability of a pixel containing 

deciduous or coniferous forest relative to changes in independent variables.  

We tested several models for each type of forest cover, using different combinations of 

predictor variables below the acceptable collinearity threshold. For each model a standard 

stepwise selection by Akaike’s Information Criterion (AIC) was used to select the best subset of 

independent variables and we calculated variance inflation factors (VIF) to ensure all model 

variables had a value below 5 (Dubovyk et al., 2013). In logistic regression, spatial 
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autocorrelation violates the assumption that observations are independent and can cause 

unreliable estimates of the model parameters (Hu and Lo, 2007). We evaluated spatial 

autocorrelation using the Moran’s I statistic on each model using Pearson residuals which are 

comparable to residuals of linear regression models. The neighborhood structure of the spatial 

weights matrix was defined using inverse distance (Assal et al., 2014).   

The two selected models produced a continuous surface with values between zero and one 

corresponding to the probability of a pixel containing either deciduous or coniferous forest. We 

used an independent dataset (n=321) representing coniferous, deciduous and non-forest 

observations to evaluate each model. The reference dataset was compiled from observations of 

related studies that were visited in the field between 2010 and 2013. We randomly selected 100 

presence and 100 absence points of the respective forest cover type for each model to calculate 

the receiver operator characteristic area under the curve (AUC). For each model, we selected a 

threshold where the sensitivity was equal to the specificity (Liu et al., 2005) (i.e. the number of 

false positives were equal to the number of false negatives) to convert each model output into a 

binary map of presence and absence.      

2.4.4 Synthesis Map 

The binary maps from the two models were combined into a synthesis map of deciduous 

and coniferous forest cover. If a pixel was predicted to contain both forest types, the values from 

each model above the presence threshold were linearly rescaled from 0 to 1. The cover type with 

the highest occurrence probability was then assigned to the pixel (Engler et al., 2013). Within 

each cover type, pixels were assigned to neighbors in all eight directions (‘queen’s move’) to 

identify contiguous forest patches. Patches of three pixels and greater were retained in order to 

minimize small, likely incorrect classified areas. We used the full, validation dataset (n=321) to 
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build a confusion matrix to calculate the overall classification accuracy and Cohen’s kappa 

coefficient on the synthesis map.  

2.5 RESULTS 

Forest cover type was best predicted by a combination of topographic and spectral variables, 

and the two models included several common variables selected through the model fitting 

process (Table 2.2). The residuals of both models exhibited very weak or no spatial 

autocorrelation (DECID; Moran’s I=0.005, p=0.052; CONIF; Moran’s I=0.001, p=0.38). Aspen, 

the only deciduous forest type present, have a clonal growth form which produces clustered 

patches of deciduous forest in the study area. Both of the models had high accuracy with AUC 

values of 0.92 for DECID and 0.99 for CONIF. The percentage changes in the odds ratio for 

model variables are shown in Table 2.2. The DECID model indicated that the presence of 

deciduous forest is mainly associated with high values in the NIR band (band3.leaf-on), north 

facing slopes, and high values of ΔNDVI. Deciduous forest is more likely to be found in areas 

higher in elevation, particularly moderate elevations (classes 3 and 2). The model also indicated 

that deciduous forest was less likely associated with higher values in the green band (band1.leaf-

on) and higher TPI values, found along ridge lines and hilltops. The CONIF model indicated 

presence of coniferous forest is mainly associated with high values in NDVI (NDVI.leaf-on), 

TPI and elevation and less likely associated with high values in the NIR band (band3.leaf-on) 

and areas that experience a higher HLI.  

A comparison of the output maps, derived from the binary models, revealed high separation 

between the two models. Less than 1% of all pixels in the study area were predicted to contain 

both deciduous and coniferous forest. The comparison indicated satisfactory agreement with an 

overall classification accuracy of 87% (Table 2.3) and a Cohen’s kappa coefficient (Cohen, 
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1960) of 0.81. Our synthesis map identified 61.7 km2 of forest (Figure 2.2). Deciduous forest 

accounts for 44% (27.2 km2) of total forest cover, while the remaining 56% (34.5 km2) is 

coniferous forest. There are over 7,000 patches of deciduous forest compared to less than 2,400 

coniferous forest patches, and the mean patch size is much smaller for deciduous (0.004 km2) 

compared to coniferous forest (0.015 km2).    

2.6 DISCUSSION 

The spatial resolution (10 m) of the SPOT imagery appeared particularly appropriate for 

identifying the extent and pattern of forest cover in this highly heterogeneous ecosystem (Figure 

2.3). The models performed well and had little overlap between forest functional types. 

Furthermore, we considered spatial autocorrelation in our framework which is often overlooked 

in SDMs. The inclusion of latitude and longitude in the model, as well as treating elevation as an 

indicator variable, accounted for spatial autocorrelation in the models. Consideration of plant 

physiology and species traits illuminates the ecological context of biophysical variables that were 

captured with leaf-on and leaf-off SPOT imagery. Due to differences in seasonal phenology, 

deciduous forests are more likely to be associated with areas that have a large ΔNDVI between 

leaf-on and leaf-off periods. Aspen leaves absorb more radiation (and reflect less) in the green 

region of the electromagnetic spectrum compared to sagebrush and grassland plants (Jones and 

Vaughan, 2010). Therefore, deciduous forest is associated with lower values in the green band 

(band1.leaf-on) compared to shrubland and grasslands. Coniferous forests have higher NDVI 

values than grassland and shrubland, especially late in the growing season when the leaf-on 

image was acquired. Although deciduous forests have a higher NDVI than coniferous forests, 

NDVI was not as important in DECID, which also included ΔNDVI and the NIR band 

(band3.leaf-on). Coniferous forests do not reflect as much radiation as aspen forest, grassland, 
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and sagebrush and, therefore, are more likely to be associated with lower values in the NIR 

(band3.leaf-on).   

In our synthesis map, the non-forest class had the lowest producer’s accuracy (the percentage 

of reference observations correctly mapped), due to Type 1 errors (i.e. false-positives) in the 

deciduous forest class (Table 2.3). The DECID model incorrectly classified some small areas of 

manzanita, non-forested riparian areas, narrow, linear bands of deciduous shrubs and one large 

herbaceous wetland. There is a trade-off between capturing small patches of deciduous forest and 

incorrectly classifying some small areas with similar spectral values to deciduous forest. In 

future work, our methodology could be improved with additional information that discriminates 

between herbaceous wetlands and deciduous forest. The deciduous forest class had the lowest 

user’s accuracy (the percentage of map locations correctly identified) due to several type II errors 

(i.e. false-negatives). The higher rate of misclassification might be explained by the open canopy 

of  aspen forests compared to closed, dense  coniferous forest. Furthermore, some aspen stands 

observed in the field had a substantial amount of canopy dieback and tree mortality. Aspen 

forests with highly reduced leaf area at the time the satellite image was acquired have lower 

reflectance values and therefore tend to be mapped as non-forest. Although this can be a 

drawback, it highlights the value of our methodology to capture changes in aspen forest if fine-

scale imagery is available over an appropriate time period. The CONIF model performed very 

strongly as needle-leaved species have a closed canopy that forms dense stands. A few 

exceptions include several conifer stands dominated by Douglas-fir that experienced high 

mortality in recent years due to infestation of the Douglas-fir beetle (Dendroctonus 

pseudotsugae). 
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2.7 CONCLUSIONS 

We have presented a framework that incorporates aerial photos and satellite imagery to 

model dominant forest cover at local scales across a forest-shrubland ecotone. Our modeling 

process offers a powerful alternative to traditional image classification and our synthesis map 

provides managers with an important tool to support conservation and monitoring efforts across 

management unit boundaries. Our study highlights the advantages of using physiologically 

relevant remote sensing products in predictive modeling and addresses an important research 

need (e.g. high-resolution remote sensing of aspen distribution, (Kulakowski et al., 2013)). We 

conclude that our approach is suitable to characterize the extent and juxtaposition of forest cover 

in a highly heterogeneous ecosystem. Furthermore, our framework utilizes open access aerial 

photos and satellite data. In this way it is transferable to highly heterogeneous ecosystems to 

develop critical baseline tree cover data that can be updated at regular intervals to monitor the 

effects of disturbance and long-term ecosystem dynamics.   

 

Any use of trade, firm, or product names is for descriptive purposes only and does not imply 

endorsement by the U.S. Government.  
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2.9 TABLES 
Table 2.1. Description of the explanatory variables considered in the analysis. 

Variable 
 

Description 

Spectral variables  

Band1.leaf-on* Green band (0.50 µm - 0.59 µm) 
Band2.leaf-on Red band (0.61 µm - 0.68 µm) 

Band3.leaf-on* Near infrared band (0.79 µm - 0.89 µm) 

Band4.leaf-on* Short wave infrared band (1.58 µm - 1.75 µm) 

Normalized difference vegetation index 
(NDVI.leaf-on*) 

NDVI = (B3 reflectance – B2 reflectance )/(B3 
reflectance + B2 reflectance) (Rousse et al., 1974) 

Band1.leaf-off Green band (0.50 µm - 0.59 µm) 
Band2.leaf-off Red band (0.61 µm - 0.68 µm) 

Band3.leaf-off Near infrared band (0.79 µm - 0.89 µm) 

Band4.leaf-off Short wave infrared band (1.58 µm - 1.75 µm) 

Normalized difference vegetation index 
(NDVI.leaf-off) 

NDVI = (B3 reflectance – B2 reflectance )/(B3 
reflectance + B2 reflectance) (Rousse et al., 1974) 

ΔNDVI*  ΔNDVI = NDVIleaf-on – NDVI leaf-off 

Topographic variables  

Elevation* Derived from National elevation dataset 

Slope* Derived from National elevation dataset 

North exposure* Cosine transformation of aspect 

East exposure* Sine transformation of aspect 

Heat load index (HLI)* 
Potential direct incident radiation (McCune and 
Keon, 2002; equation 3) 

Topographic position index (TPI)* 
A measure of slope position and landform type with 
respect to adjacent grid cells 

Longitude* Longitude at cell centroid 

Latitude* Latitude at cell centroid  

Notes: Leaf-on variables were acquired from the 07 September 2010 SPOT image; leaf-off 
variables were acquired from the 19 October 2010 SPOT image. All variables have a spatial 
resolution of 10 m. The native resolution for band 4 is 20 m, but it was resampled to 10 m using 
a nearest neighbour transformation. 

*Indicates variable was utilized in the modeling process.  
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Table 2.2. Predictor variables used in the logistic regression models.  

Explanatory variable 

DECID model CONIF model 

Coefficient 
Change in 
odds (%) 

 

 

Coefficient 
Change in 
odds (%) 

Spectral variables     

  NDVI.leaf-on - - 1.9164* 580 

  ΔNDVI  0.3327* 39 -0.2914 -25 

  Band1.leaf-on -4.261* -99 - - 

  Band3.leaf-on 3.068* 2050 -3.7485* -98 

Topographic variables     

  TPI -0.5016* -39 0.8194* 127 

  HLI  - - -0.7466* -53 

  North exposure 0.8654* 138 -0.6963 -50 

  Longitude -6.86e-05* - - - 

  Latitude -1.24e-04* - - - 

  Elevation**     

     Class 1 (low) - - - - 

     Class 2 (low to moderate) 5.053* 15549 0.3221 38 

     Class 3 (moderate to high) 5.591* 26700 1.7885 498 

     Class 4 (High) 4.409* -8119 3.5633* 3428 

Notes: Estimates of the model parameters are listed for each model accordingly. *p-values are 
significant at 0.05 or lower. **Elevation is treated as an indicator variable; therefore the percent 
change in odds for each class can only be compared to the reference elevation class (Class 1).   
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Table 2.3. Confusion matrix for the synthesis forest cover map. 

Field data 

Classified as: 
Producer’s 
accuracy 

(%) Non-forest 
Deciduous 

forest 
Coniferous 

forest 

Non-forest 95 24 3 78 

Deciduous forest 6 86 5 89 

Conifer forest 0 2 100 98 

User’s accuracy (%) 94.1 76.8 92.6 87 

Note: bold values in the matrix diagonal highlight the correctly predicted samples. 
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2.10 FIGURES 
 

 

 

Figure 2.1. Location of study area. Note: approximately 50 km2 of non-forest were omitted from 
the southeast corner of the study area due to the extent of the SPOT image.   
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Figure 2.2. Results of the model outputs combined into the synthesis map.  (a) Little Mountain, 
(b) Middle Mountain and portions of Diamond Peak, (c) Pine Mountain and (d) Cold Spring 
Mountain. Note: each map panel is displayed at the same scale. 
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Figure 2.3. Comparison of forest type maps derived from each data source of a representative 
area of the landscape on Little Mountain.  (a) 2009 color-infrared aerial photo (National 
Agriculture Imagery Program) where dark red/black hues indicate coniferous forest, red hues 
indicate deciduous forest, grey/light red/blue hues represent non-forest and (b) USGS synthesis 
map. Note: each map panel is displayed at the same scale and extent.  

 

  



35 
 

LITERATURE CITED  

Assal, T.J., Sibold, J., Reich, R., 2014. Modeling a Historical Mountain Pine Beetle Outbreak 
Using Landsat MSS and Multiple Lines of Evidence. Remote Sens. Environ. 155, 275–288. 
doi:10.1016/j.rse.2014.09.002 

Barbour, M.G., Burk, J.H., Pitts, W.D., Gilliam, F.S., Schwartz, M.W., 1999. Terrestrial Plant 
Ecology, Third. ed. Benjamin Cummings, New York, New York. 

Bergen, K.M., Dronova, I., 2007. Observing succession on aspen-dominated landscapes using a 
remote sensing-ecosystem approach. Landsc. Ecol. 22, 1395–1410. doi:10.1007/s10980-
007-9119-1 

Bradley, B.A., Fleishman, E., 2008. Relationships between expanding pinyon–juniper cover and 
topography in the central Great Basin, Nevada. J. Biogeogr. 35, 951–964. 
doi:10.1111/j.1365-2699.2007.01847.x 

Cohen, J., 1960. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20, 37–46. 

Davidson, A., Aycrigg, J., Grossmann, E., Kagan, J., Lennartz, S., McDonough, S., Miewald, T., 
Ohmann, J., Radel, A., Sajwaj, T., Tobalske, C., 2009. Digital Land Cover Map for the 
Northwestern United States. 

Dubovyk, O., Menz, G., Conrad, C., Kan, E., Machwitz, M., Khamzina, A., 2013. Spatio-
temporal analyses of cropland degradation in the irrigated lowlands of Uzbekistan using 
remote-sensing and logistic regression modeling. Environ. Monit. Assess. 185, 4775–90. 
doi:10.1007/s10661-012-2904-6 

Engler, R., Waser, L.T., Zimmermann, N.E., Schaub, M., Berdos, S., Ginzler, C., Psomas, A., 
2013. Combining ensemble modeling and remote sensing for mapping individual tree 
species at high spatial resolution. For. Ecol. Manage. 310, 64–73. 

Hu, Z., Lo, C., 2007. Modeling urban growth in Atlanta using logistic regression. Comput. 
Environ. Urban Syst. 31, 667–688. doi:10.1016/j.compenvurbsys.2006.11.001 

Jarnevich, C.S., Esaias, W.E., Ma, P.L.A., Morisette, J.T., Nickeson, J.E., Stohlgren, T.J., 
Holcombe, T.R., Nightingale, J.M., Wolfe, R.E., Tan, B., 2014. Regional distribution 
models with lack of proximate predictors: Africanized honeybees expanding north. Divers. 
Distrib. 20, 193–201. doi:10.1111/ddi.12143 

Jin, S., Yang, L., Danielson, P., Homer, C., Fry, J., Xian, G., 2013. A comprehensive change 
detection method for updating the National Land Cover Database to circa 2011. Remote 
Sens. Environ. 132, 159–175. 

Jones, H.G., Vaughan, R.H., 2010. Remote Sensing of Vegetation: Principles, Techniques, and 
Applications. Oxford University Press, Oxford, UK. 



36 
 

Knapp, R.A., Matthews, K.R., Preisler, H.K., Jellison, R., 2003. Developing Probabilistic 
Models to Predict Amphibian Site Occupancy in a Patchy Landscape. Ecol. Appl. 13, 1069–
1082. 

Knight, D.H., 1994. Mountains and Plains: The Ecology of Wyoming Landscapes. Yale 
University, New Haven, CT. 

Liu, C., Berry, P.M., Dawson, T.P., Pearson, R.G., 2005. Selecting thresholds of occurrence in 
the prediction of species distributions. Ecography (Cop.). 28, 385–393. 

McCune, B., Keon, D., 2002. Equations for potential annual direct incident radiation and heat 
load. J. Veg. Sci. 13, 603–606. 

R Development Core Team, 2013. R: A language and environment for statistical computing. 

Radeloff, V.C., Hammer, R.B., Stewart, S.I., Fried, J.S., Holcomb, S.S., McKeefry, J.F., 2005. 
The Wildland-Urban Interface in the United States. Ecol. Appl. 15, 799–805. 

Rollins, M.G., 2009. LANDFIRE: a nationally consistent vegetation, wildland fire, and fuel 
assessment. Int. J. Wildl. Fire 18, 235–249. 

Rousse, J.W., Hass, R.H., Schell, J.A., Deering, D.W., Harlan, J.C., 1974. Monitoring the vernal 
advancement of retrogradation of natural vegetation, Type III, Final Report. Greenbelt, 
Maryland. 

Sankey, T.T., Moffet, C., Weber, K., 2008. Postfire Recovery of Sagebrush Communities:   
Assessment Using Spot-5 and Very Large-Scale Aerial Imagery. Rangel. Ecol. Manag. 
61, 598–604. doi:10.2111/08-079.1 

Stohlgren, T.J., Ma, P., Kumar, S., Rocca, M., Morisette, J.T., Jarnevich, C.S., Benson, N., 2010. 
Ensemble habitat mapping of invasive plant species. Risk Anal. 30, 224–235. 
doi:10.1111/j.1539-6924.2009.01343.x 

Stoms, D.M., 2000. GAP management status and regional indicators of threats to biodiversity. 
Landsc. Ecol. 15, 21–33. 

Turner, M.G., Romme, W.H., Reed, R.A., Tuskan, G.A., 2003. Post-fire aspen seedling 
recruitment across the Yellowstone ( USA ) Landscape. Landsc. Ecol. 18, 127–140. 

USGS, 2014. EarthExplorer archive [WWW Document]. URL 
http://edcsns17.cr.usgs.gov/NewEarthExplorer/ 

Ustin, S.L., Gamon, J.A., 2010. Remote sensing of plant functional types. New Phytol. 186, 795–
816. doi:10.1111/j.1469-8137.2010.03284.x 



37 
 

Vogelmann, J.E., Xian, G., Homer, C., Tolk, B., 2012. Monitoring gradual ecosystem change 
using Landsat time series analyses: Case studies in selected forest and rangeland 
ecosystems. Remote Sens. Environ. 122, 92–105. doi:10.1016/j.rse.2011.06.027 

Worrall, J.J., Egeland, L., Eager, T., Mask, R.A., Johnson, E.W., Kemp, P.A., Shepperd, W.D., 
2008. Rapid mortality of Populus tremuloides in southwestern Colorado, USA. For. Ecol. 
Manage. 255, 686–696. doi:10.1016/j.foreco.2007.09.071 

Wulder, M.A., White, J.C., Bentz, B.J., Alvarez, M.F., Coops, N.C., 2006. Estimating the 
probability of mountain pine beetle red-attack damage. Remote Sens. Environ. 101, 150–
166. 

Wylie, B., Rigge, M., Brisco, B., Murnaghan, K., Rover, J., Long, J., 2014. Effects of 
Disturbance and Climate Change on Ecosystem Performance in the Yukon River Basin 
Boreal Forest. Remote Sens. 6, 9145–9169. doi:10.3390/rs6109145 

Zimmermann, N.E., Edwards, T.C., Moisen, G.G., Frescino, T.S., Blackard, J.A., 2007. Remote 
sensing-based predictors improve distribution models of rare, early successional and 
broadleaf tree species in Utah. J. Appl. Ecol. 44, 1057–1067. doi:10.1111/j.1365-
2664.2007.01348.x 

 

 
 

  



38 
 

CHAPTER 3: Spatial and Temporal Analysis of Drought Effects in a Heterogeneous Semi-
Arid Forest Ecosystem2 

 
 

3.1 SUMMARY  

Drought has long been recognized as a driving mechanism in the forests of western North 

America and drought-induced mortality has been documented across genera in recent years. 

Given the frequency of these events are expected to increase in the future, understanding patterns 

of mortality and plant response to severe drought is important to resource managers. Drought can 

affect the functional, physiological, structural, and demographic properties of forest ecosystems. 

Remote sensing studies have documented changes in forest properties due to direct and indirect 

effects of drought; however, few studies have addressed this at local scales needed to 

characterize highly heterogeneous ecosystems in the forest-shrubland ecotone. We analyzed a 

22-year Landsat time series (1985-2012) to determine changes in forest in an area that 

experienced a relatively dry decade punctuated by two years of extreme drought. We assessed 

the relationship between several vegetation indices and field measured characteristics (e.g. plant 

area index and canopy gap fraction) and applied this index to trend analysis to uncover the 

location, direction and timing of change. Finally, we assessed the interaction of climate and 

topography by forest functional type. The Normalized Difference Moisture Index (NDMI) had 

the strongest correlation with short-term field measures of plant area index (R2 = 0.64) and 

canopy gap fraction (R2 = 0.65). Over the entire time period, 25% of the forested area 

experienced a significant (p < 0.05) negative trend in NDMI, compared to less than 10% in a 

positive trend. Negative trends were not consistent across forest functional type as a larger 

amount of coniferous forest was impacted by negative trends than deciduous forest. Southern 
                                                 
2 A version of this chapter was submitted to Forest Ecology and Management. 
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aspects were least likely to exhibit a negative trend and north aspects were most prevalent. Field 

plots with a negative trend had a lower live density, and higher amounts of standing dead and 

down trees compared to plots with no trend. Our analysis identifies spatially explicit patterns of 

long-term trends anchored with ground based evidence to highlight areas of forest that are 

resistant, persistent or vulnerable to severe drought. The results provide a long-term perspective 

for the resource management of this area and can be applied to similar ecosystems throughout 

western North America.  

3.2 INTRODUCTION  

Climate shapes patterns in vegetation through the balance between energy supply, 

moisture and the seasonal timing of the two (Stephenson, 1990). In this way, the climate of a 

region exerts top-down control on ecosystem pattern and process. Ecosystem disturbance, in 

particular large, infrequent disturbances (Turner and Dale, 1998), are also recognized as a key 

mechanism of landscape pattern in forests due to the enduring legacies of physical and biological 

structure that result from these events (Foster et al., 1998). However, disturbance also operates at 

less conspicuous scales and the range of disturbance impacts are best thought of along a 

continuum (Sousa, 1984), as legacies can persist at some level regardless of the size or frequency 

of the disturbance (Turner et al., 1998). Drought and desiccation stress are forms of ecosystem 

disturbance (Sousa, 1984), yet the spatial and temporal complexity of drought renders 

identification and quantification very difficult (Vicente-Serrano, 2007).   

Vegetation is vulnerable to climate via water stress brought on by drought and warm 

temperatures (Allen, 2009). If water for growth is not available, the energy acts to heat and stress 

the plant (Stephenson, 1990). In the early 2000s, over half of the coterminous United States 

experienced moderate to severe drought conditions and record breaking precipitation deficits 
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throughout the western part of the country (Cook et al., 2004). This event brought attention to 

drought vulnerability in semi-arid forests of western North America. Portions of the 

intermountain west also experienced severe to extreme drought in 2012 (NOAA, 2012). Severe 

drought in the early part of the last decade has been identified as the driver of tree stress, dieback 

and mortality across diverse forest types (Allen et al., 2010; Breshears et al., 2005; Gitlin et al., 

2006; Michaelian et al., 2011). Lag effects of drought may lead to tree mortality several years 

after the drought event (Bigler et al., 2007). Moreover, drought has indirect effects on other 

disturbances including insect agents, pathogens and fire. For example, reduced host-tree vigor 

from drought increases insect attack probability (Bentz et al., 2010). Drought contributes to 

flammability of fuels and decreased snowpack, resulting in longer fire seasons (Littell et al., 

2009; Westerling et al., 2006).  

Dominant tree species in Rocky Mountains forests including quaking aspen (Populus 

tremuloides), sub-alpine fir (Abies lasiocarpa), lodgepole pine (Pinus contorta), and Douglas-fir 

(Pseudotsuga menziesii) are susceptible to drought through stress and dieback, which impact the 

photosynthetic activity of the tree, as well as mortality. Although the clonal root system of aspen 

may provide an advantage during periods of lower moisture, droughts of long duration are likely 

to affect the growth of both suckers and mature trees alike (Hessl and Graumlich, 2002). Severe 

drought in the boreal forest and parkland of western Canada resulted in a two-fold increase in 

stem mortality and a 30% decrease in regional stem growth in persistent trees (Hogg et al., 

2008). Decrease in growth is the result of high levels of twig and branch dieback in the crowns 

of living trees and productivity is limited by carbon dioxide fixation imposed by leaf stomatal 

resistance during soil or atmospheric water deficits (Hogg et al., 2000). Trees that are not killed 

are susceptible to other stressors such as insects and fungal agents that can amplify and prolong 
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the impact of drought (Hogg et al., 2008, 2005). A phenomenon known as sudden aspen decline 

(SAD) has been documented in regional aspen forests (Worrall et al., 2008). Rapid and sudden 

onset of mortality is primarily caused by high temperatures, acute drought and secondary biotic 

agents (Worrall et al., 2008).  

Multiple studies have documented an increase in mortality rates of coniferous species 

throughout the western United States over the later part of the 20th century (Allen and Breshears, 

1998; Breshears et al., 2005; van Mantgem et al., 2009). Increases in mortality rates have been 

reported across ecosystem type and elevation, among dominant genera and tree size, and at sites 

with diverse fire histories (Gitlin et al., 2006; van Mantgem et al., 2009). All of these mortality 

events are driven by increased water deficit associated with drought, but secondary agents such 

as bark beetle outbreaks have also contributed to mortality in some areas (van Mantgem et al., 

2009).   

Drought can induce direct or indirect tree mortality, however, less conspicuous effects 

such as loss of productivity can accompany drought as well. Forest response to drought is likely 

dependent on the spatial pattern of forest structure and function (Hope et al., 2014), and the 

duration of the drought is a key element in plant response. Water stress can lead to an increase in 

plant respiration (Jones and Vaughan, 2010), and plants cope with drought via stomatal closure 

and reduced leaf area index (LAI) (Hope et al., 2014). A reduction in leaf area leads to a lower 

photosynthetic capacity and a change in canopy structure. Collectively, these responses result in 

a decrease in chlorophyll and water content of plant leaves (Jones and Vaughan, 2010). 

Successive years of declining productivity associated with severe drought can also lead to 

delayed mortality (Bigler et al., 2007).  
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Disturbance alters ecosystem structure by both abrupt, obvious change and through 

gradual, slow change over some period of time (Assal et al., 2014). Remote sensing offers a 

powerful medium to capture the pre and post disturbance landscape and detect changes that 

might not be readily observed, such as drought stress. Spatial, temporal and spectral scales are an 

important consideration when using remote sensing in ecosystem disturbance studies. Two 

common multispectral remote sensing platforms used in drought studies are the Moderate 

Resolution Imaging Spectroradiometer (MODIS) (Abbas et al., 2014; Bastos et al., 2014; Hope 

et al., 2014) and the Landsat satellites (Huang and Anderegg, 2012; Maselli, 2004; Vogelmann et 

al., 2009; Volcani et al., 2005). Both platforms are well suited to study ecosystem dynamics at 

regional scales given the large coverage area per scene. However, subtle changes in forest 

structure and productivity are difficult to detect with satellite derived observations (Deshayes et 

al., 2006). Therefore, drought studies require a long term series of observations, which makes the 

high temporal resolution of these satellites well suited for this application. Although MODIS has 

a high-temporal resolution (16-day composite product compared to 16-day revisit time for 

Landsat), the lower spatial resolution (250-500 m compared to 30 m) preclude its use in highly 

heterogeneous forest-shrubland ecotones. Trend analysis utilizing time-series of Landsat data is 

useful to identify, monitor, and assess both abrupt and subtle forest change (Czerwinski et al., 

2014; Dorman et al., 2013; Kennedy et al., 2010; Vogelmann et al., 2009). 

Forest canopy reflectance is influenced by several biophysical parameters including 

crown closure, canopy and branch architecture, LAI, the chlorophyll and water content of leaves 

as well as the understory and exposed soil properties of the stand (Deshayes et al., 2006). 

Multispectral satellites have spectral bands spanning the visible and infrared wavelengths that 

can be combined into vegetation indices that are sensitive to differences in these biophysical 
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parameters (Jones and Vaughan, 2010). Living vegetation absorbs radiation in portions of the 

visible wavelengths and reflects in the near-infrared (NIR) and radiation in the shortwave-

infrared (SWIR) is absorbed by water content of leaves (Jones and Vaughan, 2010). The NIR 

and SWIR are sensitive to variations in LAI and the SWIR band is sensitive to water stress 

during periods of drought (Deshayes et al., 2006). Numerous spectral vegetation indices (VIs) 

have been used in disturbance and drought studies, many of which utilize the NIR and/or the 

SWIR bands. The Normalized Difference Vegetation Index (NDVI) is the most widely used 

vegetation index to document and monitor drought and related impacts in forests (Breshears et 

al., 2005; Carreiras et al., 2006; DeRose et al., 2011; Lloret et al., 2007; Maselli, 2004; Volcani 

et al., 2005; Weiss et al., 2004). However, other vegetation indices have utility in disturbance 

related vegetation dynamics including the Enhanced Vegetation Index (EVI) (Hope et al., 2014; 

Tüshaus et al., 2014), the Normalized Difference Moisture Index (NDMI) (Goodwin et al., 2008; 

Meddens et al., 2013), the soil adjusted vegetation index (SAVI) (Tüshaus et al., 2014), and the 

Tasseled Cap (Czerwinski et al., 2014).   

We sought to quantify the spatial and temporal effects of drought in an ecosystem that is 

expected to be vulnerable to drought stress and climate change. The effects of climate change 

and variability are expected to be most rapid and extreme at ecotones, especially in semi-arid 

areas (Allen and Breshears, 1998; Gosz, 1992). An understanding of the link between climate 

variability and tree mortality for species near ecotones is an important goal of current research 

(Kulakowski et al., 2013). Recent studies (Crookston et al., 2010; Rehfeldt et al., 2009) predict 

the current climate profile for several prominent tree species (e.g. aspen, subalpine fir and 

lodgepole pine) will be greatly limited or no longer present in isolated forests of the Rocky 

Mountains over the course of the next century. Ecotones are important barometers of climate 
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change (NEON, 2000) and stress, dieback and mortality are expected to accompany severe 

drought in this arid landscape. However, regional climate can be influenced by local terrain, a 

concept known as topoclimate (Thornthwaite, 1953). Slope and aspect influence air temperature, 

water balance, radiation, snowmelt patterns and wind exposure (Dobrowski, 2011). In this way, 

topography can potentially amplify the effects of drought, particularly in arid landscapes. The 

use of temporal remotely sensed data has been effective in monitoring drought induced changes 

in forests and woodlands (Maselli, 2004; Vogelmann et al., 2012). A primary challenge in 

spectral change analysis is to segregate long-term vegetation change from interannual phenology 

differences in response to climate variability. We hypothesize that the ecological consequences 

of drought create a landscape mosaic of drought effects and that trend analysis of vegetation 

indices can be used to document these impacts across a range of severities (Lloret et al., 2007). 

The gradient spans demographic (i.e. tree mortality), structural (i.e. crown partial dieback), 

functional (i.e. reduction in leaf area), and physiological (i.e. temporary/permanent reduction in 

photosynthetic activity) properties of the forest ecosystem that will result in different spectral 

trajectories. This study was undertaken because little is known about baseline condition in this 

ecosystem, and how climate, in particular drought, affects this topographically complex 

ecosystem. Finally, we are interested in providing managers with a long-term perspective of the 

forest dynamics of this ecosystem with respect to variability in precipitation patterns.  

Our research objectives were to:   

1) Identify an appropriate vegetation index for use in temporal trend analysis based on the 

relationship with field measured estimates of vegetation traits, 

2) Analyze the spatial location, directional trend, and timing of change by forest type, and 

3) Assess the drivers of change by forest type and the interaction of climate on topography.  
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3.3 METHODS 

3.3.1 Study Area 

Our study area is located in the southern part of the Wyoming Basin ecoregion, spanning 

parts of southwestern Wyoming, northwestern Colorado and northeastern Utah (Figure 3.1). 

Several prominent ridges form a transition zone between basins and mountainous areas (Knight, 

1994), where several species of trees are found at the xeric fringes of their respective ranges. 

Forests dominated by aspen (Populus tremuloides) and several coniferous species (sub-alpine fir 

(Abies lasiocarpa), lodgepole pine (Pinus contorta), and Douglas-fir (Pseudotsuga menziesii)) 

occur as relatively small patches on moist sites in a matrix of sagebrush steppe (Artemisia 

tridendata spp. vaseyana) or mixed-species shrublands. Scattered juniper (Juniperus communis 

var. depressa) and limber pine (Pinus flexilis) woodlands, distinct from the montane conifer 

forest, are found on rocky slopes at lower elevations and small patches of manzanita 

(Arctostaphylos patula) are found in the southern part of the study area. Most of the area is under 

jurisdiction of the U.S. Bureau of Land Management, interspersed with small parcels of state and 

private land. The area has a midlatitude steppe climate with a substantial portion of the annual 

precipitation occurring as snow. Dominant land uses include livestock grazing, energy extraction 

and recreation. Multiple state and federal agencies, along with the Wyoming Landscape 

Conservation Initiative (wlci.gov), have identified the region as a priority area for conservation. 

The area provides important habitat for many wildlife species including big game, migratory and 

resident birds, as well as domestic livestock. Management has sought to rejuvenate decadent 

aspen stands and reduce conifer expansion in successional aspen stands through prescribed fire 

and mechanical thinning. Drought related mortality of aspen is a concern in western North 
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America (Worrall et al., 2008) and lack of aspen regeneration due to high rates of herbivory is a 

concern in the study area.  

3.3.2 Drought Index Calculation 

To understand the effects of drought at a local level, we needed to develop a localized 

index of drought severity. The most widely used drought index, the standardized precipitation 

index (SPI) (Vicente-Serrano, 2007), was used to quantify water deficit and surplus. We used the 

SPI instead of the regional Palmer Drought Severity Index to capture local differences in annual 

precipitation of the relatively small and isolated study area. The SPI indicates the number of 

standard deviations the precipitation deviates from the long-term mean during the measured 

period (Vicente-Serrano, 2007). The majority of the precipitation in the study area is received in 

the form of snow. The flexibility of the SPI enabled us to calculate a 12-month duration 

equivalent to the water year (Oct-Sept) between 1980 and 2014. We obtained 4 km2 SPI data 

from the Western Regional Climate Center (http://www. wrcc.dri.edu; accessed 15 February 

2015) and calculated the water year mean for a 50 km2 area that encompasses the forested ridges 

of the study area.    

3.3.3 Landsat Data  

The growing season in the study area is short, with snow possible in mid-June and leaf 

senescence by late September. To select a consistent window of peak greenness, we calculated 

the average growing season phenology (2000-2012) of the forested portion of the study area 

using MODIS NDVI 16-day composite data (MOD13Q1). Predominantly cloud-free Landsat 

images were selected between July 01 and September 06 (day of year 182 to 249 in non-leap 

years). A total of 24 Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), 

and Operational Land Imager (OLI) images (path 36, row 32) were acquired for analysis from 
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the USGS EarthExplorer Archive (USGS, 2014) between 1985 and 2014 (Table 3.1). The 

imagery was processed to surface reflectance using the Landsat Ecosystem Disturbance Adaptive 

Processing System (LEDAPS) (Masek et al., 2006) which has been successfully used in other 

ecosystem change studies (McManus et al., 2012). We used the LEDAPS quality mask layer to 

identify pixels with clouds, cloud shadows and other unacceptable pixels that were removed 

from the analysis. We calculated several vegetation indices (Table 3.2) using the OLI imagery to 

explore relationships between each VI and the field data. We then applied the VI that best 

explained variation in the short-term field data (see Section 3.4.3) to the Landsat time series.     

In order to extend the time series beyond 2011, it was necessary to use several Landsat 

ETM+ images with gaps due to the scan-line corrector problem that occurred in 2003 (Chander 

et al., 2009). Landsat TM data is not available after the growing season of 2011 and we chose not 

to incorporate Landsat OLI data (available beginning in June 2013) given the wavelengths of 

several key bands are different from earlier Landsat satellites, and a reliable calibration process 

has not yet been documented. We obtained six ETM+ scenes from 2012, 2013 and 2014. We 

sought to connect pixels through time (z) and not space (x, y), and therefore a traditional image 

normalization technique would not be appropriate. We conducted a sensitivity analysis between 

annual images using our field plot locations (n=52) and several vegetation indices to evaluate the 

annual phenological stability between dates. The Pearson’s correlation coefficient for each index 

in each of the three years was >=0.85. However, we only retained the data from 2012 as the 

available images were consecutive (Aug 03 and Aug 19) and the field points were highly related 

(Pearson’s correlation coefficient NDMI= 0.95, NDVI=0.94). A composite 2012 image was 

created using the earlier image as the primary value and the later image was used to overwrite 

pixels with no data. We also obtained a Landsat OLI scene to evaluate the relationship between 
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field data and spectral vegetation indices. The OLI image was acquired several days before our 

field collection effort in 2014.  

3.3.4 Field Measurements  

We used a sampling approach to allow rapid collection of data to describe a range of 

conditions across the study area (Meigs et al., 2011). We conducted a preliminary investigation 

to identify areas of change and stability over time using NDVI from several years (mid-90s, early 

2000s, and 2010). We identified 52 plots distributed in coniferous and deciduous dominated 

forests on each of the major forested ridges in the study area. We avoided areas with substantial 

anthropogenic activity (e.g. logging, recreational sites, roads, trails, stock tanks, etc.) or fire 

occurrence since 1984 (Eidenshink et al., 2007).   

In 2013, we collected plot level measurements to assess tree density, species composition 

and structure, and tree mortality (Meigs et al., 2011). We consider these measurements long-term 

data as we presume they reflect conditions for a number of years prior to measurement since 

there were no major disturbances in each plot. Each plot was located at the center of a Landsat 

pixel (30 x 30 m) using a sub-meter GPS unit (Trimble GeoXT). Three, 15 m belt transects were 

established from the plot center at 0° (true north), 120°, and 240° with a variable width of two or 

four meters. In each transect we quantified live and dead tree basal area for all standing tree 

species greater than 2 meters in height. We noted canopy dieback, bark damage, and presence of 

cankers or insect damage. We also counted dead, down trees that were likely rooted within each 

transect (Meigs et al., 2011) and assigned a bark decay class (1-5) according to USFS Forest 

Inventory and Analysis standards.  In this analysis, we retain the lowest decay classes (1-3) as 

they were most likely alive in recent decades.  
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In 2014 we revisited the field plots to measure canopy condition via in situ plant area 

index (PAI) and canopy gap fraction (CGF). We consider this short-term data as it likely reflects 

recent conditions at each plot. We used a hand-held CID-110 Plant Canopy Imager instrument 

(CID Bio-Science, Inc.) to collect hemispherical (fish-eye) plant canopy images to estimate PAI 

and CGF. The process relies on the gap-fraction inversion procedure (Campbell and Norman, 

1989) to measure radiation transmission through the canopy (Martens et al., 1993). The 

instrument contains a self-leveling PENTAX lens that enabled images to be collected looking 

vertically upward beneath the canopy at approximately one meter above the ground. 

Measurements were performed under a range of sky conditions, as the study area rarely 

experiences prolonged overcast conditions (Pfeifer et al., 2012). Exposure, color, and contrast 

settings were manually adjusted to maximize the contrast between the sky and canopy. A 

sampling grid was established within each 30 x 30 m plot and nine photo points were collected 

(Figure 3.2) for 43 of the 52 plots (due to equipment issues). The images were classified into sky 

and plant components using CID software and PAI and CGF were averaged for each plot. We 

use the term plant area index instead of leaf area index because this measurement includes stems 

and branches (Pfeifer et al., 2012). We opted not to subtract an estimated stem-area index 

because preliminary results indicated the PAI was sensitive to mortality levels between plots.  

3.3.5 Statistical Analysis of Vegetation Indices  

We used a generalized linear model (GLM, Gaussian distribution, Identity link function) 

to evaluate the relationship between field and satellite data. Our goal was to identify the 

vegetation index with the strongest relationship to field data, not create a spatially explicit model 

of forest characteristics (e.g. PAI). We found the short-term data had the strongest relationship 

with that year’s satellite data (e.g. 2014 field data with 2014 satellite data). This was expected as 
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the Landsat OLI scene was acquired just days before the 2014 field campaign. The Canopy Gap 

Fraction data was log-transformed prior to the analysis to meet the assumptions of linear 

regression.   

3.3.6 Temporal Trend Analysis  

Trend analysis was implemented on a per-pixel basis using least-squares regression 

between the vegetation index (dependent variable) and time (explanatory variable) (McManus et 

al., 2012; Vogelmann et al., 2009). We evaluated trends for several time periods of n images and 

allowed one missing observation (n-1) in each pixel stack. This allowed the use of several 

additional years of imagery with some cloud and cloud shadows present, while minimizing the 

potential for illegitimate trend detection (McManus et al., 2012). The slope and statistical 

significance of the linear regression in the selected VI values (see Section 3.4.3) were evaluated 

using a Student’s t-test at 95% confidence level for each geographic pixel (McManus et al., 

2012). Significant temporal trends in NDMI may be interpreted as changes in vegetation 

condition, given the relationship between field and satellite data. Pixels identified with 

significant monotonic temporal trends (p = < 0.05) were mapped as positive or negative change 

(Czerwinski et al., 2014). Trend analysis was conducted on all eligible (no more than one 

missing year due to clouds, cloud shadows, no fire) forested pixels in the study area over a range 

of time periods with at least ten observations. 

3.3.7 Spatial Analysis of NDMI Trends 

Positive and negative trends in NDMI between 1985 and 2012 were evaluated by 

dominant forest type. We obtained a 10 m raster map of forest cover and dominant type (e.g. 

deciduous vs. coniferous) (Assal et al., 2015) and resampled the data to 30 m using a nearest 

neighbor algorithm. The map was developed from 2010 SPOT imagery so we added obvious 
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omissions of small aspen stands documented in the field that were missing from the map due to 

recent mortality. Next, we evaluated trends in NDMI by elevation, slope and aspect to 

understand how trends were distributed with respect to landscape position. Topographic 

variables were derived from a 10 m National Elevation Dataset including slope, and aspect. The 

relationship between elevation, slope and aspect was analyzed with respect to negative NDMI 

trend occurrence using a binomial generalized linear model. We selected a random sample of 

negative and no-trend observations for 10% of total observations of each class (McManus et al., 

2012).  

3.4 RESULTS 

3.4.1 Drought Index 

The SPI for the study area (Figure 3.3) indicates high variability of precipitation over the 

last three and a half decades with several distinct wet and dry periods. The majority of the 1980s 

were wet along with the mid to late 1990s. There was a multi-year drought in the late 1980s and 

early 1990s. The late 1990s had two extremely wet years (1995 and 1997), while 2002 and 2012 

were classified as extreme drought years. With the exception of 2005 and 2011 (severely wet 

years), the area has been in a dry period since 2000.  

3.4.2 Field Data Analysis 

The field data results indicate that our sampling effort captured a wide range of plot-level 

mortality. We categorized the plots into deciduous or coniferous based on the majority of the 

total basal area. There were very few mixed plots, and the vast majority of plots contained 70% 

or more of the dominant forest type. Deciduous plots ranged from low (11%) to total (100%) 

mortality. Coniferous forest plots exhibited a similar range from 5% to 95% mortality. Mortality 
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was not consistent for small, medium and large trees (stem DBH <10 cm, 10 to 20 cm, and >20 

cm, respectively). We encountered fewer small and medium dead conifer trees compared to the 

same size classes of deciduous trees (Figure 3.4). Large conifer trees exhibited similar mortality 

levels compared to large deciduous trees. Within each forest type, the group means of the small 

and medium classes were significantly different than the mean of the large trees. Small and 

medium coniferous trees had significantly lower mean mortality per plot than large trees (Figure 

3.4a). Conversely, small and medium deciduous trees had significantly higher mean mortality 

per plot than large trees (Figure 3.4b).       

3.4.3 Relationship between Field and Satellite Data 

Field variables with the highest correlation with 2014 vegetation indices were PAI and 

CGF. NDMI had the strongest correlations with field measures, and was therefore selected as the 

appropriate metric and thus only those results are reported here. A significant positive linear 

relationship (R2 = 0.64, p < 0.0001, n=43) was found between field measured PAI and NDMI 

(Figure 3.5a). A significant negative linear relationship (R2 = 0.65, p < 0.0001, n=43) was found 

between field measured CGF and NDMI (Figure 3.5b). This result was expected as dense, 

canopies have greater moisture content than sparse, open canopies or canopies with high levels 

of mortality. The residuals of the linear regression models were spatially independent (PAI 

model, Moran’s I = -0.0428, p = 0.7; CGF model, Moran’s I = -0.024, p = 0.9). The 2013 long-

term data (collected in 2013) did not exhibit as strong of a relationship with the satellite data. 

The highest correlation was live tree density with NDMI (R2 = 0.46, p < 0.0001, n=52). We also 

found a significant linear relationship between the short-term (2014) and long-term (2013) field 

data with the live tree density (strongest predictor) of  PAI (R2 = 0.56, p < 0.0001, n=43) and 

CGF (R2 = 0.54, p < 0.0001, n=43).  
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3.4.4 Trend Analysis 

The results highlight the area of significant positive and negative trend for each time 

period with at least ten observations. The first time period, T1998 (1985-1998) highlights 1705 ha 

(27% of the forested area) with positive, increasing trends, and only 1.6% of the forested area 

(98 ha) experiencing negative trends (Table 3.3). These trends began to change starting with 

T2000 (1985-2000) as the amount of forested area with a positive trend decreased and the area of 

forest exhibiting negative trends began to increase. From T2000 to T2012 (1985-2012) the amount 

of forest in a significant negative trend increased every period from 160 ha (T2000) to 1606 ha 

(T2012). The negative trend was significant in over 25% of the forested area by 2012 (Table 3.3). 

The decrease in the area under the positive trend was not cumulative as with the negative trend. 

The positive trend decreased from T1998 to a low of only 2.7% of the area in a significant positive 

trend during the drought year of 2002 (172 ha). The amount of forest in a positive trend slowly 

increased to a similar area at the start of the dry period (2000), with just under 10% by 2012.     

The trends were not consistent across forest functional types over the full time period 

T2012 (1985-2012). A higher percentage of coniferous forest experienced significant positive 

trends (11.9%) compared to deciduous forest (7.1%) (Table 3.4), and both groups had 

substantially more area in negative trends. Deciduous forest had over twice as much area (474 

ha) in a negative trend compared to positive, and coniferous forest had nearly three times as 

much area (1132 ha.).   The disparity between positive and negative trends for each group was 

not consistent as coniferous forest had a much greater percentage in negative trends (32.8%) 

compared to deciduous (16.5%). The trends over time were not consistent by forest functional 

type either, as coniferous forest experienced a greater percentage in significant positive and 

negative trends for every time period since 2000 (Figure 3.6).  
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3.4.5 Spatial Analysis of Trends 

Significant positive and negative trends were present across all of the forest ridges 

(Figure 3.7). At the landscape scale, significant trends appear somewhat clustered in large 

patches. Our analysis confirmed that negative trends were not randomly distributed across the 

landscape with respect to topography. Forested areas at higher elevations were positively 

correlated with the frequency of detecting negative trends (Table 3.5). Southern aspects (south, 

southeast and southwest) were least likely to exhibit a negative trend and north aspects were 

most prevalent. All aspects classes were significant, except for northeast aspects. We included 

forest type (deciduous or coniferous) in the GLM model, but it was not a significant explanatory 

variable and subsequently dropped. Positive trends with respect to topography were also 

analyzed, but very few variables were significant.     

3.4.6 Ground Based Evidence of Trends 

Field plots were identified a priori and therefore not evenly distributed with respect to 

trend significance or direction. A rigorous accuracy assessment or validation test could not be 

conducted; however, our data provides ground-based evidence that trends in NDMI reflect 

changing conditions in the forest. Nearly half of our field plots had a significant negative trend 

between 1985 and 2012. Of those plots, the magnitude of the slope provides a means to 

distinguish between mortality classes. An ANOVA with multi-comparison post-hoc Tukey’s 

HSD test revealed significant differences between group means of the low and high mortality 

classes and the moderate and high mortality classes (Figure 3.8a). Plots with a significant 

negative trend had a lower mean percentage of live trees compared to plots with no trend (p-

value significant at the 0.1 level) (Figure 3.8b). Plots with a negative trend had a significantly 

higher amount of standing dead trees compared to plots with no trend (p-value < 0.05) (Figure 
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3.8c). Finally, plots with a negative trend also had a significantly higher amount of total dead 

trees (standing dead trees + down trees) compared to plots with no trend (p-value < 0.05) (Figure 

3.8d). Figures 3.8c and 3.8d indicate that the long-term data is particularly useful to capture the 

legacy of a drought period in this system. 

The NDMI trajectories were extracted for each plot and analyzed to explore plot level 

trends over time. Figures 3.9 and 3.10 are examples of field plots that exhibited negative NDMI 

trends from 1985 to 2012. Figure 3.9 is a coniferous plot (dominated by Douglas-fir) with low 

plant area index (1.22), high canopy gap fraction (0.39), low live basal area (8.39 m2/ha) and 

high plot mortality (68%). Pitch tubes were evident on many of the dead trees and it was likely 

that Douglas-fir beetle was responsible for the mortality at the site as exhibited with a sharp 

decline in NDMI beginning in 2005 (Figure 3.9). Figure 3.10 is an aspen stand with low plant 

area index (0.43), a very open canopy (gap fraction = 0.64), low live basal area (12.8 m2/ha), and 

very high mortality (81.5%). The NDMI trend (Figure 3.10) provides a clear indication that the 

mortality was first instigated by drought in the early 2000s, and the stand never recovered. This 

is confirmed with the long-term field data as the plot had a much higher amount of total standing 

(live and dead) basal area (49.2 m2/ha). Both of these plots began to decline around 2005, after a 

five year dry period centered on the 2002 drought (Figure 3.3).  Figure 3.11 is an example of a 

plot that had a statistically significant positive trend over the study period. It was one of only two 

plots with a positive trend. The conifer dominated plot had relatively high plant area index 

(1.78), low canopy gap fraction (0.28), and high live basal area (34.2 m2/ha) (Figure 3.11). 

Figure 3.12 is an example of a plot that did not have a statistically significant trend during the 

period of study. The deciduous plot is characterized by high plant area index (2.02), a low 

canopy gap fraction (0.2), and a high amount of live basal area (37.3 m2/ha).  The NDMI values 
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are fairly high and stable throughout the period of study (Figure 3.12) and track precipitation 

during two extremely wet years (1995 and 1997) (Figure 3.3).   

3.5 DISCUSSION 

3.5.1 Causes of Decline and Mortality 

Physiological drivers of tree mortality are complex (McDowell et al., 2008) and are often 

coupled with multiple, interacting factors (Allen et al., 2010). McDowell et al. (2008) proposed a 

framework related to the intensity and duration of water stress that identified three mechanisms 

of drought-related mortality. Carbon starvation can occur when drought induces stomatal 

closure, in turn reducing photosynthesis and carbon uptake until the plant exhausts carbon 

reserves needed for maintenance of metabolism. Hydraulic failure occurs when the soil water 

supply is reduced, along with increased evaporative demand, leading to xylem cavitation and 

subsequent desiccation of plant tissues. Drought can influence the demographics of insects and 

pathogens which can amplify plant physiological stress and in-turn sustain greater populations of 

such biotic agents. Carbon starvation, hydraulic failure and biotic agents may operate either 

inclusively or exclusively (Allen et al., 2010; McDowell et al., 2008). Lag effects of drought are 

also known to operate in subalpine forests of the Rocky Mountains for as long as five to 10 years 

after the event (Bigler et al., 2007). 

Deciduous and coniferous forests are affected by different mechanisms of mortality. It is 

difficult to assign absolute causes of mortality without in-depth analysis (Vogelmann et al., 

2009), however, we found evidence of causal agents on several field visits. Visible 

documentation of pine beetle (Dendroctonus spp.) activity was documented on dead trees in 

conifer stands in the form of pitch tubes (resin). Beetle caused mortality in lodgepole pine trees 

was likely caused by mountain pine beetle (Dendroctonus ponderosae), whereas Douglas-fir 
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mortality was likely caused by the Douglas-fir beetle (Dendroctonus pseudotsugae). The 

Douglas-fir tussock moth (Orgyia pseudotsugata) and western spruce budworm (Choristoneura 

occidentalis) are defoliator species and may have also contributed to mortality in small Douglas-

fir stands. However, we suspect the dominant cause of Douglas-fir mortality was a result of 

beetle activity due to the sharp decline in NDMI, evident of rapid mortality (Figure 3.9), as 

opposed to more gradual spectral changes associated with defoliator species (Vogelmann et al., 

2009). Whereas fire, blowdown or defoliation events have been documented as initiating 

Douglas-fir beetle outbreaks (Negrón et al., 2014), this is the first time that a landscape-scale 

outbreak has been associated with extreme drought.  

Subalpine fir decline has been attributed to mortality in fir forests in Colorado (Ciesla, 

2010). Tree mortality is due to a combination of western balsam bark beetle (Dryocoetes 

confuses) (Meddens et al., 2012) and at least two species of fungi, Armillaria spp. and 

Heterobasidium annosum known to cause root decay (Bigler et al., 2007; Ciesla, 2010). 

However, subalpine fir decline does not occur in large distinct patches common with other 

agents of conifer mortality, but rather heightened levels of background mortality. This particular 

type of mortality is more challenging to detect because it is not as conspicuous to human 

observers or readily detected with short time periods of satellite data (< 5 years). Subalpine fir is 

the dominant conifer species on Little and Pine Mountains and significant negative trends were 

identified in these stands (Figure 3.7). Mortality in subalpine fir forests has not been studied as 

extensively as other coniferous species and is a future research need. Spruce beetle 

(Dendroctonus rufipennis) is an important disturbance agent in Spruce-Fir forests, however the 

primary host, Englemann Spruce (Picea englemanni), is not commonly found in the study area. 

Western spruce budworm is also known to cause damage and mortality to subalpine fir by 
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defoliation (Ciesla, 2010). We found a significantly higher percentage of mortality in large trees, 

which also suggests insect agents are a primary cause of mortality in the study area (Figure 3.4a).   

Worrall et al. (2013) provide a thorough review of causes of damage and mortality to 

aspen, the primary deciduous tree in the study area. In addition to drought, there are a number of 

factors that can amplify or prolong the impact of moisture stress and lead to reduction in growth, 

partial dieback and mortality. Factors include multi-year defoliation by tent caterpillars 

(Malacosoma spp.) and stem damage by fungi and insects which can kill the cambium and 

interrupt phloem, which leads to crown dieback (Worrall et al., 2013). We know of no 

documented defoliation events in our study area, but evidence of fungi (cankers) and insects 

(borers on standing dead and down trees) along with crown dieback were documented at over 

half of the sites in our study area. Furthermore, many trees had evidence of mechanical stem 

damage caused by elk. Late spring frost and freeze/thaw cycles during winter dormancy can also 

damage leaves and previous year’s growth (Worrall et al., 2013). We found a significantly higher 

percentage of mortality in small and medium aspen trees, compared to large trees (Figure 3.4b). 

A mechanistic study is needed to investigate why there has been an increase in mortality in small 

and medium sized aspen trees as related to drought.     

3.5.2 Interpretation of Spatial Trends 

We documented substantial levels of plot level mortality across forest type (Figure 3.4) 

and identified negative trends throughout the study area (Figure 3.7) using long-term satellite 

data. Although the physiology of drought-induced tree mortality is complex (McDowell et al., 

2008), an understanding of the spatial pattern of tree decline is an important consideration for 

managers. Mechanistic studies of drought impacts on tree physiology is an emerging research 



59 
 

trend and out of the scope of our study. However, our results serve as a coarse filter to highlight 

areas of mortality where mechanistic studies could be initiated (Huang and Anderegg, 2012). 

The aspect of a slope has direct influence on incident solar radiation and surface 

temperature (McCune and Keon, 2002) and indirectly influences evaporation and available soil 

moisture (Huang and Anderegg, 2012). Studies that evaluated acute drought-induced mortality in 

other Rocky mountain aspen forests found higher mortality rates on drier southern and western 

aspects (Huang and Anderegg, 2012; Worrall et al., 2008). However, our results contrast with 

these studies as we found higher than expected rates of deciduous and coniferous trees on north 

aspects (Table 3.5). This might indicate that our study area, located on the margins of the arid 

Wyoming Basin ecoregion, is very different than aspen forests in other parts of the intermountain 

west. Genetic research suggests that aspen clones exhibit wide-ranging phenotypic variation in 

physiology and growth traits under drought conditions (St. Clair et al., 2010). Localized 

mortality of aspen could be due to genotype (clonal) effects (Huang and Anderegg, 2012), and 

adaptation could also explain regional differences in spatial patterns of decline.    

We do not know when the aspen genets (clones) were established in our study area, but 

conditions were presumably wetter for some period conducive to establishment. Our study area 

has likely always been drier than other Rocky Mountain forests for some time and as a result, 

these genets might be more adapted to arid conditions. We found higher elevations and northern 

aspects most likely to exhibit significant negative trends. These areas are cooler and wetter than 

other aspects, and trees would be most vulnerable in these areas in years when winter 

precipitation is below average. The density of trees on northern slopes could have increased 

during the wet decade of the 1990s (Figure 3.3), setting up those same slopes for an increase in 

mortality when water was limited during drought years. Although we documented substantial 
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mortality and areas of negative trends, we did not observe large scale mortality documented by 

others (Huang and Anderegg, 2012; Worrall et al., 2008). This highlights the value of spatially 

explicit analysis and the importance of landscape position in arid landscapes.  

3.5.3 Management Implications 

Regional climate exerts top-down control on ecosystems (Stephenson, 1990) and is an 

important consideration for managers when considering the future outlook of an ecosystem or 

treatment options. The current climate profiles for many of the tree species analyzed in this study 

are predicted to no longer be present in the isolated forests of the study area as we approach the 

next century (Crookston et al., 2010; Rehfeldt et al., 2009). However, many global and regional 

climate models do not currently take terrain into account (Crookston et al., 2010). Our study 

provides spatially explicit evidence that bottom-up controls, including fine-scale topography, 

remain important in climatically driven drought (Prichard and Kennedy, 2014). Adaptive 

management can benefit from spatially explicit analysis and data because aspen forests do not 

function the same across locations (Rogers et al., 2014) or within the confines of coarse scale 

data used in climate models. The results of our analysis can frame hypotheses to be tested with 

regard to resistance, persistence and vulnerability of forests to drought. Resistance is the capacity 

of an ecosystem to remain largely unchanged, with regard to structure, processes and 

functioning, despite stresses and disturbance (Folke et al., 2004). We suggest areas with a 

significant positive trend are resistant to drought episodes of these magnitudes. These areas had a 

statistically significant increase in canopy moisture despite several recent extreme droughts (e.g. 

2002, 2012) and an extended dry period (e.g. 2000-2004). These forests likely increased in 

structural, functional, and physiological capacity during this time period which resulted in 

increased productivity. Forests that did not have a statistically significant trend in either direction 
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can be considered persistent during periods punctuated by drought. Finally, areas with a 

significant negative trend are vulnerable to drought as the structural, functional and physiological 

properties of these stands markedly declined after these events. We believe the results of our 

study can benefit managers in utilizing limited budgets to ensure the long-term persistence of 

aspen in this area.  

3.5.4 Ecological and Technical Considerations 

Several spatial and temporal characteristics of the forest-shrubland ecotone should be 

taken into consideration with our approach as quantifying tree canopy dynamics through remote 

sensing in these areas remains a challenge (Yang et al., 2012). Coniferous forests have a closed 

architecture which enables robust modeling using remotely sensed data (Assal et al.; in review). 

However, semi-arid aspen systems found at lower elevations in our study area present challenges 

to evaluate gradual dynamics over time. These systems tend to have low tree cover and density, a 

very open canopy and low values of plant area index. Furthermore, the combination of trees, 

shrubs and grasses may confound the spectral signal as pixel values are a mixture of ground 

elements (Lefsky and Cohen, 2003). Given the high heterogeneity between forest and non-forest 

present in our study area, mortality might be underestimated, particularly at the margins of forest 

patches. The time series would be more robust if we were able to obtain one image per year, but 

clouds, sensor issues, etc. limited availabld data. Numerious studies have utilized the rich 

temporal archive of MODIS data with daily to bi-weekly collections of imagery that can track 

both long term and interannual phenology differences. However, the fine-scale hetergeneity of 

the study area and our interest to extend the study prior to 2000 prevented the use of MODIS 

data.  
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There are no long-term plots in the study area so we have no information on mortality 

rates. However, the results of our study indicate forest change (Figure 3.6) is linked with long-

term trends in precipitation (Figure 3.3) and long-term analysis is required to understand the 

cumulative effects of drought years in this ecosystem. Given the suggested mechanisms of 

mortality (section 3.5.1), we suspect there has been a continuum of mortality triggered by severe 

drought and our long-term field data confirm this suspicion as some plots had trees at different 

stages of decomposition (e.g. standing dead trees with fine branches still present, down trees in 

early stages of decomposition, etc.). Stands with a high level of mortality over a short time 

period will have a relatively quick change in NDMI. These areas will likely have a heightened 

chance of detection due to rapid change in NDMI. However, areas that exhibit lower amounts of 

mortality over longer time periods will have a smaller change in NDMI over a longer time 

period. The advantage of the time series approach should capture both hypothetical examples 

that might be otherwise missed by just two or a small number of time periods.    

3.6 CONCLUSION 

Coniferious and decidous forests in the southern portion of the Wyoming Basin ecoregion 

have experienced high levels of direct and indirect drought related mortaltiy over the last decade. 

This mortality has an effect on size-class distributions and thus implications for the future of 

these forests. In this work we identified an appropriate vegetation index (NDMI) that best 

represented short-term forest conditions of the study area. Through trend analysis, we identified 

the location, direction and magnitude of forest change by forest cover type. Our collection of 

long-term field data allowed us to relate plot-level changes to long term spectral trends. The 

results enabled us to quantify the amount of change and further assess the influence of landscape 

position on those trends. Our analysis provides managers with a long-term perspective of the 
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forest dynamics of this ecosystem with respect to variability in precipitation. Our field data 

provides evidence and demonstrates application of assessing long-term trends with Landsat 

imagery at fine spatial scales in a forest-shrubland matrix.  

Previous trend analysis studies have used a variety of lines of evidence to support 

direction of change. Vogelmann et al. (2009) related areas of significant change to annual health 

aerial detection survey (ASD) polygons and qualitative field sampling. Only a small portion of 

our study area was surveyed by aerial detection, and only during one year. Czerwinksi et al. 

(2014) sampled a number of areas in the field with significant trends and qualitatively 

categorized each plot.  McManus et al. (2012) correlated significant positive trends in NDVI to 

an increase in LAI based on a relationship with MODIS data across a regional scale. Our 

research establishes an empirical link between spatial differences in spectral reflectance and 

short-term field measured vegetation parameters such as plant area index and canopy gap 

fraction. The statistically significant (95% confidence level) spectral trajectories (Czerwinski et 

al., 2014; McManus et al., 2012) provide a distinct level of certainty over the duration of the 

study period. Furthermore, our long-term field data provides a line of ground based evidence to 

interpret the spectral changes over time. The framework we presented is suitable to 

retrospecitively characterize the effects of drought in forest ecosystems over the last 30 years. 

The use of Landsat data is beneficial as the time series can be extended in the future with the 

recently launched Landsat 8 satellite (OLI sensor).  

We believe the methodology and results of this assessment provide a valuable perspective 

to resource managers and highlights potential opportunities to work across jurisdictional lines. 

This work highlights areas of forest that are resistant, persistent or vulnerable to severe drought. 



64 
 

The framework relies heavily on open access satellite data and could be applied to long-term 

monitoring of similar ecosystems.     

 

Any use of trade, firm, or product names is for descriptive purposes only and does not imply 

endorsement by the U.S. Government.  
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3.8 TABLES 

Table 3.1. Acquisition dates of Landsat scenes used in the analysis (path 36, row 32).Note, the 
OLI image was used to establish the relationship between field measured data and vegetation 
indices and was not used in the trend analysis. TM = Thematic Mapper, ETM+ = Enhanced 
Thematic Mapper Plus, and OLI = Operational Land Imager.   

Acquisition Date 
(year-month-day) Sensor 

19850811 TM 
19880724 TM 
19910903 TM 
19920828 TM 
19930823 TM 
19940709 TM 
19950728 TM 
19960831 TM 
19970701 TM 
19980805 TM 
20000725 TM 
20010829 TM 
20020731 TM 
20030819 TM 
20040906 TM 
20050905 TM 
20070830 TM 
20080731 TM 
20090819 TM 
20100705 TM 
20110809 TM 
20120803 ETM+ 
20120819 ETM+ 
20140902 OLI 
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Table 3.2. Spectral indices calculated from the Landsat OLI reflectance data; NDVI (Normalized 
Difference Vegetation Index), NDMI (Normalized Difference Moisture Index; also known as 
Normalized Difference Water Index), EVI (Enhanced Vegetation Index), and SAVI (Soil 
Adjusted Vegetation Index). EVI constants: G (gain factor) = 2.5, L (canopy background 
adjustment factor) = 1, C1 (atmospheric constant) = 6, C2 (atmospheric constant) = 7.5.  SAVI 
constants: L (soil adjustment factor) = 0.5 (intermediate vegetation density).   

Spectral 
Index Equation Source 

NDVI NDVI = (B5 – B4)/(B5 + B4) 
(Rousse et al., 

1974) 
NDMI NDMI = (B5 – B6)/(B5 + B6) (Gao, 1996) 
EVI EVI = G * (B5 – B4)/(B5 + C1 * B4 – C2 * B2 + L) (Huete et al., 2002) 

SAVI SAVI = (B5 – B4)/(B5 + B4) * (1 + L) (Huete, 1988) 
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Table 3.3. Area of significant positive and negative trends for time series with greater than 10 
observations. Trends reported have p-values that are significant at 0.05 or lower.  

Time period 
Observations 

(n) 

Significant 
positive change 

Significant 
negative change 

Area 
(ha) 

% of 
forest 
cover 

Area 
(ha) 

% of 
forest 
cover 

1985 to 1998 10 1705 27 98 1.6 
1985 to 2000 11 660 10.4 160 2.5 
1985 to 2001 12 338 5.3 255 4.0 
1985 to 2002 13 172 2.7 445 7.0 
1985 to 2003 14 226 3.6 565 8.9 
1985 to 2004 15 345 5.5 588 9.3 
1985 to 2005 16 545 8.6 577 9.1 
1985 to 2007 17 486 7.7 946 15.0 
1985 to 2008 18 491 7.8 1127 17.8 
1985 to 2009 19 567 9.0 1233 19.5 
1985 to 2010 20 598 9.5 1291 20.4 
1985 to 2011 21 720 11.4 1347 21.3 
1985 to 2012 22 615 9.7 1606 25.4 
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Table 3.4. Summary of trends between 1985 and 2012. The area and proportion of change for 
each group is compared to the total amount of that forest group.      

 Direction of 
Change 

Total Change Area 
(ha) 

Functional Group 
Deciduous Coniferous 

Area 
(ha) 

% of 
class 

Area 
(ha) 

% of 
class 

Increase 615 205 7.1 410 11.9 
Decrease 1606 474 16.5 1132 32.8 
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Table 3.5. Topographic coefficients from the generalized linear model (GLM) fit of significant 
negative trends between 1985 and 2012. The variable Aspect is an indicator variable (N is the 
reference class). *P-value is significant at 0.05 or lower.      

Predictor Vari able Coefficient 
(Intercept) -8.22381* 
Elevation 0.00286* 
Slope 0.00234 
Aspect  
N NA 
NE -0.04581 
E -0.20159* 
SE -0.96975* 
S -1.27459* 
SW -0.91533* 
W -0.51793* 
NW -0.25089* 
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3.9 FIGURES 

 

 

 

 

 

Figure 3.1. Location and extent of the forest in the study area.  

 

 

 



71 
 

 

Figure 3.2. Plot based sampling design for derivation of vegetation structure traits. Each 
hemispheric photo location is spaced approximately 10 m from the nearest photo point. The field 
of view of each hemispheric photo is shown (red circle) with an approximate radius of 3.5 m.  
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Figure 3.3. Standardized precipitation index (SPI) for the study area between 1980 and 2014.  
The index was calculated over a 12-month period, equivalent to the water year (October of 
previous year through September of current year). The SPI is classified according to Agnew 
(2000); values between moderate drought and moderately wet indicate the range of normal 
conditions. 
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Figure 3.4. Relative mortality by tree size class in coniferous (n=877) (left – Fig 3.4a) and 
deciduous (n=1162) (right – Fig 3.4b) trees. Relative mortality was estimated as the percent of 
dead and down trees by class per plot.  Different letters in each figure denote significant 
differences at the 95% confidence level using a Tukey HSD test.    
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Figure 3.5. Relationships between field measured characteristics and NDMI.  
(Left – Fig 3.5a) The relationship between field measured LAI/PAI and NDMI (n=43). (Right – 
Fig 3.5b)  The relationship between field measured Canopy Gap Fraction and NDMI (n=43). 
Note that the y-axis is a log scale. 
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Figure 3.6. The results of the forest change analysis for trends with 10 or more observations. 
Compare with Table 3. There was no imagery available for 1999 and 2006.   
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Figure 3.7. Locations of forest with positive, negative and no NDMI trend over the full time 
period of study (1985-2012).  Positive and negative trends are significant that the 95% 
confidence level.  
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Figure 3.8. Results of boxplot analysis across trend class. Boxplots of the variation in magnitude 
of slope for significant negative trends categorized by relative mortality of field plots (p-value < 
0.05) (top left). Boxplots of the variation of percent live trees between negative and no trend 
plots (p-value < 0.1) (top right). Boxplot of the variation in basal area of standing dead trees for 
plots with negative and no trend (p-value < 0.05) (bottom left). Boxplot of the variation in basal 
area of total dead trees (standing dead + down trees) for plots with negative and no trend (p-
value < 0.05) (bottom right).    
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Figure 3.9. Negative trend of a high mortality coniferous forest plot. Negative NDMI trend (p-
value < 0.05) (top) of a field plot located in coniferous forest with high levels of mortality 
(bottom).  
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Figure 3.10. Negative trend of a high mortality deciduous forest plot. Negative NDMI trend (p-
value < 0.05) (top) of a field plot located in an isolated aspen stand with high levels of mortality 
(bottom). 
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Figure 3.11. Positive trend of a low mortality coniferous forest plot. Positive NDMI trend (p-
value < 0.05) (top) of a field plot located in a coniferous forest with low levels of mortality 
(bottom). 
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Figure 3.12. Stable trend of a low mortality deciduous forest plot. Stable NDMI trend (p-value 
not significant) (top) of a field plot located in aspen forest with low levels of mortality (bottom 
right). A digital hemispheric photo from the site indicates high plant area index and low canopy 
gap fractions (bottom left).   
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CHAPTER 4: Modeling a Historical Mountain Pine Beetle Outbreak Using Landsat MSS 
and Multiple Lines of Evidence3 

 
 

4.1 SUMMARY  

Mountain pine beetles are significant forest disturbance agents, capable of inducing widespread 

mortality in coniferous forests in western North America. Various remote sensing approaches 

have assessed the impacts of beetle outbreaks over the last two decades. However, few studies 

have addressed the impacts of historical mountain pine beetle outbreaks, including the 1970s 

event that impacted Glacier National Park. The lack of spatially explicit data on this disturbance 

represents both a major data gap and a critical research challenge in that wildfire has removed 

some of the evidence from the landscape. We utilized multiple lines of evidence to model forest 

canopy mortality as a proxy for outbreak severity. We incorporate historical aerial and landscape 

photos, aerial detection survey data, a nine-year collection of satellite imagery and abiotic data. 

This study presents a remote sensing based framework to (1) relate measurements of canopy 

mortality from fine-scale aerial photography to coarse-scale multispectral imagery and (2) 

classify the severity of mountain pine beetle affected areas using a temporal sequence of Landsat 

data and other landscape variables. We sampled canopy mortality in 261 plots from aerial photos 

and found that insect effects on mortality were evident in changes to the Normalized Difference 

Vegetation Index (NDVI) over time. We tested multiple spectral indices and found that a 

combination of NDVI and the green band resulted in the strongest model. We report a two-step 
                                                 

3 A version of this chapter was published in Remote Sensing of Environment on 23 Sept. 2014, 
available online: http://www.sciencedirect.com/science/article/pii/S0034425714003435. 
Assal, T.J., Sibold, J., Reich, R., 2014. Modeling a Historical Mountain Pine Beetle 
Outbreak Using Landsat MSS and Multiple Lines of Evidence. Remote Sens. Environ. 155, 
275–288. doi:10.1016/j.rse.2014.09.002 
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process where we utilize a generalized least squares model to account for the large-scale 

variability in the data and a binary regression tree to describe the small-scale variability. The 

final model had a root mean square error estimate of 9.8% canopy mortality, a mean absolute 

error of 7.6% and an R2 of 0.82. The results demonstrate that a model of percent canopy 

mortality as a continuous variable can be developed to identify a gradient of mountain pine 

beetle severity on the landscape.  

4.2 INTRODUCTION  

Temperate forest ecosystems are subject to various ecological disturbances that can have 

profound effects on the structure of the ecosystem for many years after the event (Turner and 

Dale, 1998) and influence the likelihood, severity and spread of subsequent disturbances (Veblen 

et al., 1994). In western North America, native bark beetles are a major disturbance agent 

capable of regional-scale forest mortality (Raffa et al., 2008). Remotely sensed imagery has been 

used to characterize such widespread disturbance events over the last two decades (Wulder et al., 

2006a). However, very little research has employed these techniques to study insect disturbance 

prior to the recent period of extended outbreak (~pre late 1990s). The northern Rocky Mountains 

experienced a widespread mountain pine beetle outbreak in the late 1970s to early 1980s (Logan 

and Powell, 2001). However, the lack of spatially explicit data on the extent and severity of this 

outbreak limits our understanding of the influence that this disturbance had on the landscape. To 

overcome this challenge, we utilized multiple lines of evidence to retrospectively characterize 

forest canopy mortality from the outbreak by comparing temporal changes in archived satellite 

imagery.  
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4.2.1 Mountain Pine Beetle Overview  

The mountain pine beetle (Dendroctonus ponderosae) is a native species found in the 

western United States and Canada that attacks and reproduces in live trees (Bentz et al., 2010). 

The mechanisms with which populations switch to epidemic levels are complex (Bentz et al., 

2010; Raffa et al., 2008), but include suitable host availability (amount, vigor, age and density) 

and condition (Fettig et al., 2007), along with beetle population survival and growth given 

thermal conditions (Powell and Logan, 2005). Epidemic populations are capable of landscape-

scale forest mortality leading to cascading effects on forest structure, species composition and 

function (Raffa et al., 2008). Major host species include lodgepole pine (Pinus contorta), 

ponderosa pine (P. ponderosa), and whitebark pine  (P. albicaulis) (Bentz et al., 2010). Impacted 

forests exhibit unique and visible characteristics at each stage of a mountain pine beetle attack 

(Wulder et al., 2006a). Killed trees begin to show visible changes as the foliage changes from 

green to yellow to red over the first year after the attack. The gray attack stage typically 

commences three years after the attack, as most trees will have lost all needles at that time 

(Wulder et al., 2006a).  

4.2.2 Remote Sensing and Disturbance  

Historical aerial photography is a valuable research tool providing detailed records of 

forest landscapes over the last half century or more. Although limited in spatial extent, these 

records provide a fine-scale snapshot of landscapes at one or multiple points in time. Previous 

studies have successfully used aerial photos collected during two or more time periods to 

measure changes in tree cover (Brown et al., 2006; Di Orio et al., 2005; Kadmon and Harari-

Kremer, 1999; Kennedy and Spies, 2004; Manier et al., 2005; Platt and Schoennagel, 2009; 

Strand et al., 2006). The use of satellite multispectral imagery to map and monitor forest 
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condition over larger regions is also well documented (Cohen et al., 2001; Maselli, 2004; 

Nemani et al., 2009; Schroeder et al., 2006; Townshend et al., 2012; Volcani et al., 2005) dating 

back to the early 1970s with the initiation of the Landsat program (NASA, 2013). Several studies 

have used aerial photos as a surrogate for field data collection and then used that information to 

scale up to satellite imagery. This technique has been accomplished to map various attributes 

including land cover type (Parmenter et al., 2003), tree cover (Carreiras et al., 2006; Cohen et al., 

2001; Homer et al., 2007), and surface imperviousness (Homer et al., 2007). Photos can be used 

to sample post-disturbance forest patterns, such as canopy mortality. The aerial photo reference 

data can be used to bridge the gap in scale between localized tree mortality measures and the 

more coarse scale of satellite imagery (Meddens et al., 2013). This hybrid approach allows for 

detection of fine-scale disturbance patterns captured in the aerial photos, while taking advantage 

of the multispectral and multitemporal components of Landsat imagery at the landscape scale. 

Furthermore, it provides a pathway to conduct a retrospective analysis.        

Ecological disturbance alters ecosystem structure by both abrupt, conspicuous change 

and by gradual, slow change over some period of time. Such impacts allow remote sensing to 

capture the pre- and post-landscape, and in some cases, the duration of the event. Aerial photos 

have been utilized to investigate the impacts of fire (Bebi et al., 2003; Johnson and Fryer, 1987), 

insect damage (Bebi et al., 2003; White et al., 2005), extreme drought (Allen and Breshears, 

1998), and blowdown (Baker et al., 2002) on forest and woodland ecosystems. At regional 

scales, multispectral satellite imagery has been employed to study diverse types of forest 

disturbance including fragmentation (Fuller, 2001), fire (Turner et al., 1994), drought (Huang et 

al., 2010) and insect induced mortality (DeRose et al., 2011; Vogelmann et al., 2009). Numerous 

studies have utilized multispectral imagery to document the extent and severity of the recent 
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mountain pine beetle outbreak over the last decade. Efforts range from fine-scale satellite and 

aerial multispectral imagery acquired from one time period (Coops et al., 2006; Dennison et al., 

2010; Hicke and Logan, 2009; Meddens et al., 2011), to moderate resolution sensors 

incorporating multiple time periods (Goodwin et al., 2008; Meddens et al., 2013; Meigs et al., 

2011; Wulder et al., 2006b).    

We found few studies in the literature that used the first generation of Landsat data to 

detect mountain pine beetle outbreaks or other insect-driven forest disturbance. The Landsat 

Multispectral Scanner System (MSS) sensor was carried onboard the first five Landsat satellites 

and provided imagery from 1972 until 1995 (NASA, 2013). Researchers in British Columbia 

(Harris et al., 1978) used single date MSS imagery to detect damage caused by the Douglas-fir 

tussock moth and western spruce budworm with little success. Weber et al. (1975) employed 

single date MSS imagery to map mountain pine beetle damage in Ponderosa pine. Rencz and 

Nemeth (1985) tested both a single date approach and a change detection approach over a six-

year period to map mountain pine beetle damage in British Columbia. Both mountain pine beetle 

studies concluded that MSS imagery does not have the capability to detect beetle damage given 

the spatial resolution of the imagery. However, the British Columbia study (Rencz and Nemeth, 

1985) noted greater detection accuracy at sites with heavy, continuous damage, suggesting the 

spatial resolution is less limiting in areas with high-severity outbreaks.         

4.2.3. Outbreak Impacts to Forest Vegetation Spectral Properties  

Living vegetation absorbs blue and red light energy, while radiation in the green and 

near-infrared portion of the electromagnetic spectrum is reflected (Jones and Vaughan, 2010). 

Therefore, color-infrared photos can be used to distinguish between areas of live trees and dead 

trees. As the foliage of killed trees changes during the first year after the attack, the spectral 
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response also begins to change (Rencz and Nemeth, 1985). At the cellular level, mortality 

contributes to a reduction in foliar moisture and chlorophyll, as other pigments and cellular 

structure begin to break down (Mauseth, 1988). As a result, the spectral reflectance in the red 

wavelength (630-690 nm) increases, whereas the reflectance in the green wavelength (520-600 

nm) decreases (Ahern, 1988).  

Disturbances where large portions of forest vegetation are removed from the landscape, 

such as fire and clear cutting, create a drastic change in spectral reflectance. Conversely, subtle 

changes in foliage color over time may prove more difficult to detect. Nevertheless, the 

phenology associated with mortality caused by an outbreak will lead to a change in satellite-

detected reflectance of the forest canopy. An analysis of multiple years of moderate spatial 

resolution imagery has the potential to capture reflectance patterns before, during and after 

landscape-scale disturbance events (Goodwin et al., 2008; Wulder et al., 2006a). 

Multiple types of spectral indices have been employed to detect the impacts of mountain 

pine beetle disturbance over the last decade. Examples of indices include the Normalized 

Difference Moisture Index (Goodwin et al., 2008, 2010; Meddens et al., 2013), the Tasseled Cap 

(Meddens et al., 2013), the Enhanced Wetness Disturbance Index (Skakun et al., 2003; Wulder et 

al., 2006b), the Normalized Burn Ratio (Meigs et al., 2011), the Red-Green Index (RGI) (Coops 

et al., 2006; Hicke and Logan, 2009; Meddens et al., 2013), the Band 5/Band 4 Ratio (Meddens 

et al., 2013), and the Normalized Difference Vegetation Index (Meddens et al., 2013). Various 

levels of success were obtained with each index. Many of these indices are derived from Landsat 

TM or ETM+ imagery. However, Landsat TM imagery is not available prior to 1984 (for the 

study area) and Landsat ETM+ imagery is not available before 1999. Because the outbreak that 

is the focus of this study erupted in the mid-1970s, Landsat MSS imagery represents the only 
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available satellite imagery. Given the four multispectral bands of MSS (Table 4.1), we were only 

able to utilize a subset of these indices.  

4.2.4 Aerial Detection Survey Data  

The US Forest Service (USFS) has been conducting annual forest health aerial detection 

surveys (ADS) since the middle of the 20th century. In summary, human observers record the 

type and extent of abiotic and biotic disturbances and host species onto sketch maps (Meigs et 

al., 2011). The sketch maps are hard copy maps used by human observers in planes that are later 

converted to digital form. This data has successfully been integrated into remote sensing 

detection studies of insect disturbance (Meddens et al., 2012; Meigs et al., 2011). The Forest 

Health Protection Aviation Program in USFS Region 1 (including Glacier National Park (GNP)) 

maintains digital files of the ADS data since 2000. Staff at GNP digitized the ADS data from 

1962-1998. The data include information about insect species, host tree species, damage type, 

and forest type. However, very few polygons contained information on the number of trees killed 

per acre (severity), which is commonly included in contemporary ADS data and is critical to 

relating outbreaks to forest processes and change. Furthermore, the disturbance polygons 

identified in the ADS data were very large (e.g. > 70,000 ha). Although useful for broad-scale 

monitoring, we suspect the ADS data do not represent the heterogeneous impacts of the 

disturbance. Since we are interested in both the extent and severity of the disturbance, these 

missing details heavily influenced the direction of this study.  

4.2.5 Objectives   

The goal of the study was to test an approach combining multiple lines of evidence to 

reconstruct the extent and severity of a mountain pine beetle outbreak in a topographically 

complex landscape. Furthermore, subsequent disturbance (fire) has removed evidence from large 



96 
 

areas of the study area. To accomplish this, we used a combination of aerial detection survey 

data, historical aerial and landscape photos, National Park Service reports and a temporal 

sequence of satellite imagery. Each data source has limitations in the spatiotemporal record. 

However, by combining disparate sources of data across spatial and temporal scales, we aimed to 

reduce the uncertainty associated with reconstructing outbreak parameters. Employing multiple 

lines of evidence from independent data sources has the potential to extend the information 

associated with each piece of data and create a robust composite picture of the outbreak 

(Swetnam et al., 1999). Reference data was collected from aerial photos and scaled up to satellite 

imagery measurements over time. We hypothesized that the impacts of the disturbance to the 

forest canopy (i.e. mortality) would be captured in spatiotemporal changes in reflectance. Finally 

we sought to demonstrate a novel approach in the use of existing data to assess a historic 

disturbance. 

The objectives of this study are to: 

1. Relate measurements of canopy mortality from fine-scale aerial photography to coarse-

scale multispectral imagery; 

2. Classify the severity of mountain pine beetle affected areas using a temporal sequence 

of Landsat data and other landscape variables.     

4.3 METHODS 

4.3.1 Study Area  

The study was located in Glacier National Park in northwestern Montana, USA (Figure 

4.1) and chosen because of the extensive mountain pine beetle epidemic that occurred there in 

the 1970s (Hamel et al., 1977; McGregor et al., 1975). The park encompasses 4,080 km2 

(408,000 ha) of diverse terrain on either side of the Continental Divide. Mean average annual 
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precipitation is 73.1 cm, and average annual maximum and minimum temperatures are 11.9 ºC 

and -0.2 ºC, respectively (1971-2000) (Western Regional Climate Center, West Glacier station, 

elevation: 970 m, http://www.wrcc.dri.edu; accessed 17 December 2012).  The climate averages 

from this station are consistent with stations on the east side of the park. Elevation ranges from ~ 

950 m to 3184 m above sea level and major cover types include grasslands, conifer and 

deciduous forests, lakes, wide glacial valleys and steep alpine zones. Forests are dominated by 

lodgepole pine (Pinus contorta), western larch (Larix occidentalis), Engelmann spruce (Picea 

engelmannii) and Douglas-fir  (Pseudotsuga menziesii). 

Given the size and diverse landscape of the park, we limited the study area based on 

several assumptions. First, vegetation cover types not susceptible to mountain pine beetle attack 

were identified using ReGAP (Davidson et al., 2009) and omitted. Second, we calculated the 

cumulative extent of mountain pine beetle damage identified by the ADS data between 1971 and 

1987. The area not impacted by the mountain pine beetle outbreak during the buffered time 

period was omitted from further analysis. The area of interest was also confined by the extent of 

available satellite imagery used in the analysis. The confined area of interest is 1195 km2 

(119,552 ha) and ranges in elevation from ~ 950 m to 2960 m above sea level (Figure 4.1). 

4.3.2 Aerial and Landscape Photograph Processing  

Six color infrared aerial photographs were obtained in digital format from the US 

Geological Survey’s Earth Resources Observation and Science Center (Figure 4.1). Four of the 

photos were acquired in 1982 (west of the Continental Divide), two in 1984 (east of the divide). 

All photos have a scale of 1:58,000 and were scanned at a resolution of 1800 dots per inch. The 

photos were orthorectified to a 2009 NAIP photo (National Agriculture Imagery Program) using 

ground control points (GCPs) and a 30 m digital elevation model (DEM) (Leica Photogrammetry 

http://www.wrcc.dri.edu/


98 
 

Suite, Erdas, Inc., Norcross, GA, USA). The average root mean square error (RMSE) for each 

photo was less than two meters. We independently assessed the average displacement between 

each of the orthorectified images and the 2009 NAIP image at multiple locations within each 

image pair. The average displacement between both sets of images was less than two meters and 

deemed acceptable.  

We searched two landscape photographic archives (the US Geological Survey 

Photographic Library and Glacier National Park Research Library) to locate additional sources 

with evidence of the disturbance. We obtained several color photos taken in the late 1970s or 

1980 that contained evidence of the outbreak. In several cases the extent of the aerial color 

infrared photo and the color landscape photo were congruent. We were able to match the two 

photos and identify unique patterns and patches of mortality in each photo. Although this was a 

qualitative analysis, the additional information provided us with concrete evidence of the 

disturbance in the aerial photos (Figure 4.2).    

4.3.3 Aerial Detection Survey Data  

We obtained the digital version of the ADS data (1962-1998) from GNP and subset 

annual shapefiles to correspond with the start of the outbreak (1971) and the last year before 

extensive fires in the park (1987). We queried polygons associated with mountain pine beetle 

using the Damage Causal Agent attribute code and clipped the shapefile to the extent of the park 

for each year. Each annual shapefile was converted to an annual grid (30 m), snapped to the 

master Landsat image, and aggregated to form a cumulative mountain pine beetle extent and 

used to constrain the study area. We did examine the ADS data for other disturbance agents 

within the park to ensure there were no unaccounted disturbances. However, we found very few 

disturbance polygons, accounting for a very small area, within the analysis mask.     



99 
 

4.3.4 Satellite Data  

Terrain corrected Level 1T MSS imagery were obtained from the USGS EarthExplorer 

Archive (USGS, 2012) of the study area before, during and after the peak of the outbreak. The 

imagery had been resampled by the USGS to a spatial resolution of 60 m in four spectral bands 

(Table 4.1). We utilized nine scenes in the analysis (Table 4.2). Late summer data were used 

(late August-September) due to availability of cloud-free imagery and the presumed relative 

phenological stability of the forests during this time period (Vogelmann et al., 2009). Geometric 

correction, calibration, atmospheric correction and image normalization procedures were applied 

to the imagery and are fully described in Appendix B.  

Given the four multispectral bands of MSS, we were only able to utilize three spectral 

indices in the model evaluation process (Table 4.3). The GNDVI is sensitive to the presence of 

chlorophyll since the green spectral region is used instead of the red region (Carreiras et al., 

2006). We did not use Band 3 as a covariate as it is often highly correlated with band 4 of MSS 

data. A preliminary investigation identified that NDVI performed the best among spectral 

indices. In an effort to limit redundancy in the data, we transformed the NDVI time series using 

principal component analysis. The principal components were used as predictor variables in one 

of the five models tested.       

4.3.5 Sampling  

We estimated beetle induced forest mortality using data collected from the aerial photos 

and compared these measurements with changes in spectral values over time. We segregated the 

landscape into 12 facets based on slope and aspect. These two variables influence forest 

composition, tree vigor and subsequent susceptibility to mountain pine beetle (Raffa et al., 

2008). Furthermore, dividing the landscape into sub-regions of similar biophysical characteristics 
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can isolate spectral gradients (Homer et al., 2004). Both variables were derived from the 

elevation dataset. Aspect was classified into four categories (north, east, south or west) while 

slope was classified into three quantiles: low (<12%), moderate (12-29%) and high (>29%). 

Initially 350 random points were proportionally allocated in each landscape class, and square 

plots of 180 m x 180 m were delineated around the center of each point. The plot size was 

chosen considering the spatial resolution of the satellite imagery, i.e. 3 x 3 Landsat MSS pixels. 

A negative buffer was used to insure each plot was located completely within one landscape 

facet, and deleted (10%) if it fell within multiple facets. In addition, limitations due to 

topographic shadow or image blur from the orthorectification process warranted the omission of 

some plots (13%). As a result, each landscape facet did not contain the same number of sampling 

plots.   

An unsupervised classification in Erdas Imagine was conducted on each air photo 

resulting in 20 classes. We used an iterative approach to determine the number of unsupervised 

classes that maximized spectral separation without generating an unwieldy number of classes. 

For each plot, we manually interpreted the 20 classes and assigned each class to live forest, dead 

forest, or shadow (Figure 4.3). We then calculated the ratio of dead canopy cover to total canopy 

cover in each plot. We omitted shadow pixels as they represent unknown cover types.  

4.3.6 Statistical Analysis  

Regression analysis can be used to explain large-scale variability, while model residuals 

can be used to describe small-scale variability in the data (Cressie, 1993). We used a generalized 

linear model (GLM, Gaussian distribution, Identity link function) to identify a set of explanatory 

variables to estimate canopy cover change on the sample plots over time. Predictor variables 

included spectral indices derived from nine years of Landsat MSS data, topography (elevation, 
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slope, aspect and topographic position index), and variables derived from the ADS data (first 

year detected, last year detected and total number of years detected). Aspect and the variables 

derived from the aerial survey data were treated as indicator variables in the analysis. Aspect was 

binned into four classes: North (0-45º; 315-365º), East (45-135º), South (135-225º), and West 

(225-315º). Three categorical variables were derived from the aerial survey data: first year of 

attack (early, mid, or late in the outbreak), last year of attack (early, mid, or late in the outbreak) 

and total number of years recorded during the outbreak (low, moderate, or high).  

We tested five models in our analysis using different combinations of vegetation indices 

as the primary biotic variables. For each model, a stepwise selection by Akaike’s Information 

Criterion (AIC) was used to identify the best subset of independent variables to include in the 

regression models (R Development Core Team, 2013). The aspect variable was allowed to 

interact with the primary vegetation index in each model. We evaluated the models through 

consideration of AIC, the mean absolute error of prediction (MAE) and the root mean square 

error of prediction (RMSE). Furthermore, a ten-fold cross validation procedure (DAAG package 

in R) was employed to calculate the prediction error of each model.    

Residual error from the regression model can be utilized to describe the small-scale 

variability in the data (Manier et al., 2005; Reich et al., 2011). Model residuals may still contain 

useful information that can be utilized to gain precision in estimation (Pongpattananurak et al., 

2012). We modeled the residual error from the selected regression model using a binary 

regression tree. We tested the residuals of the selected GLM model and the regression tree model 

for spatial autocorrelation using the Moran’s I statistic (Legendre and Fortin, 1989). The sampled 

plots were clustered on the landscape into three distinct groups based on the availability of the 

aerial photos. We assumed points between each cluster were spatially independent and employed 
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a block diagonal spatial weights matrix (Upton and Fingleton, 1985) to account for the clustered 

nature of the plots. We used inverse distance to define the neighborhood structure of the three 

spatial weights matrices (one for each cluster).   

The residuals of the GLM-CART model exhibited spatial autocorrelation. We addressed 

the issue by running the regression analysis using a Generalized Least Squares (GLS) model. A 

variogram was fit using the residuals of the GLM model to describe the degree of spatial 

dependence in the residuals. A Gaussian variogram model was fit to the sample variogram using 

least squares to estimate the nugget, sill and range. The GLS regression was used to estimate the 

parameters of the trend surface model in the presence of spatial autocorrelation. We allowed plot 

location (east or west of the Continental Divide) to enter the model to test if the outbreak impacts 

were different on either side of the divide. We used the residuals of the GLS to model the small-

scale variation in the data using binary regression trees as described above.    

After parameterizing and validating the models, forest canopy change was projected to 

the landscape area of interest in three steps. First a trend surface was created from the parameters 

of the GLS model using the raster calculator in ArcGIS. Next, a surface of the residuals 

generated from the regression tree model was created using a series of conditional statements in 

the raster calculator. Finally, the trend and residual surfaces were added together to create a 

continuous surface of forest canopy change scaled between 0 and 1. Areas of cloud cover, cloud 

shadow and topographic shadows represent uncertainty and were omitted from the analysis. Only 

two years of data (1978 and 1983) contained sparse clouds, but topographic shadows were 

present in all years. We applied a NDVI threshold (< 0.2) to remove clouds and topographic 

shadows (Hicke and Logan, 2009) and cloud shadows were manually delineated and removed.  
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4.4 RESULTS 

4.4.1 Aerial Detection Survey Data 

Our analysis of the aerial survey data indicates the outbreak was first identified in 1971 in 

the north-west portion of the park in very small isolated patches. The outbreak continued to 

spread from these centers until the mid-1970s when it was reported widely across the western 

portion of the park (Figure 4.4). There was no data available for 1975, and the following year the 

area affected by beetles significantly expanded on the western side of the park. The aerial survey 

continued to report large areas impacted from 1977 through 1980. The outbreak was first 

identified east of the Continental Divide in the north central and north east portion of the park in 

1979.  In the early 1980s, the area affected by beetles quickly decreased (Figure 4.5).   

4.4.2 Determination of Tree Canopy Cover  

A total of 261 plots were used to estimate tree canopy mortality from the air photo 

analysis (Table 4.4). Initially, 282 plots were analyzed, but several were removed from the 

dataset because the photo plots fell within topographic shadows, cloud cover or cloud shadows in 

the satellite imagery. The study area is dominated by west facing slopes, followed by south, east 

and north. Each aspect class did not contain the same number of plots (see Section 4.3.5). 

However, the number of plots in each aspect class is an adequate reflection of the percentage of 

the study area in each aspect class. Plots ranged from very little mortality (4.4%) to nearly 

complete mortality (99.8%). West-facing plots had the highest mean mortality (68.3%), while 

plots in the east aspect class had the lowest mean mortality (49.4%) (Table 4.4). The majority of 

the data is concentrated in mortality classes ranging from 40-90% (Figure 4.6). Given the 

severity and extent of the outbreak, this is not an unexpected finding.      
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4.4.3 Model Adjustment and Validation 

The model that employed NDVI and the Green Band (NDVI+G) (Table 4.5) provided the 

best estimation of canopy change over time. This model had the lowest AIC (-237.55), MAE 

(10.8%), and RMSE (13.6%) values while accounting for the greatest amount of explained 

variability (65.4%) (Table 4.5). Furthermore this model had the lowest prediction error (15.4%) 

of any model from the cross validation procedure. The incorporation of a green band resulted in 

a stronger model than using NDVI alone (Table 4.5). The NDVI and PCA models had identical 

coefficients of determination, and similar MAE and RMSE. However, the PCA model had 

substantially higher prediction error. The GNDVI model did not perform as well as the three 

NDVI based models and the red-green index proved to be a poor indicator of mortality.  

The NDVI+G model was selected to describe the large-scale variability of canopy change 

over time. However, the residuals of the GLM model exhibited spatial autocorrelation (Moran’s I 

test; p < 0.0001) indicating that the null hypothesis of spatial independence in the residuals be 

rejected. The variables included in the NDVI+G model were then analyzed using a GLS model 

that explained 62% of the variability with higher MAE (18%) and RMSE (21.1%) than the GLM 

model (Table 4.6, Figure 4.7). However, the residuals of the GLS model did not exhibit spatial 

autocorrelation (Moran’s I test; p =0.64). The green band from 1978 was the most important 

predictor west of the Continental Divide, with a relative contribution to the model of 10.7%. The 

green band from 1987 was the most important predictor east of the divide, with a relative 

contribution to the model of 11.8%.  Decreased values of green band reflectance indicated a 

substantial increase in canopy mortality. NDVI from 1977 and 1981 were highly significant in 

the model on the west side of the park (p<0.001) and also exhibited a negative relationship with 

canopy mortality. NDVI from 1977 was also significant on the east side of the park. 
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The residuals were used to model the small-scale variation in the data using binary 

regression trees. The initial regression tree identified 27 nodes and location (east or west of 

divide) did not enter the analysis, so one tree was used to fit both sides of the Continental Divide. 

Given that regression trees are prone to overfitting, we conducted a 10-fold cross validation on 

the data and subsequently pruned the tree to 22 nodes. This simplified the model while still 

accounting for spatial autocorrelation. The combined model (GLS + CART), which captures 

both the large- and small-scale variability, had a lower rate of MAE (7.6%) and RMSE (9.8%) 

than the GLS model. The combined model increased the amount of explained variability in the 

data by nearly 20% (R2 = 0.819) (Figure 4.8). The residuals of the combined model are spatially 

independent (Lagrange multiplier test; p=0.27) and the standardized mean square error (SMSE) 

of the combined model is 0.996. An SMSE value of one indicates consistency between the 

estimation error variance and the observed error variance in the model (Hevesi et al., 1992).   

The combined model was then applied spatially to the study area as a continuous surface 

with modeled canopy cover change scaled between 0 and 1. We binned the modeled data into 

three categories based on natural breaks in the data (Figure 4.9). This classification resulted in 

20% of the project area in the low category (< 0.37 canopy change), 46% in the moderate and 

34% in the severe category (>0.62 canopy change). Pockets of high severity are found 

throughout the park across the elevation gradient present. The three classes are generally 

represented across the study area. However, it should be noted that pockets of low and severe 

impacts are clustered, with the moderate severity often forming a transition between the classes.  

To provide perspective on the classification, a color-infrared photo and corresponding 

classification map is shown in Figure 4.10. Based on these visual comparisons, our model 

appears to capture high levels of mortality associated with beetle attack areas as well as areas not 



106 
 

as heavily impacted. Furthermore, the gradient of impact on the landscape appears to be well 

represented in the model. Example spectral trajectories of the three classes show clear 

delineation during extent of the outbreak (Figure 4.11).  

4.5 DISCUSSION  

A primary objective of our analysis was to develop a methodology to reconstruct the 

extent and severity of the outbreak. We were able to identify a gradient of mortality on the 

landscape using changes in NDVI and the green band reflectance over time. Our findings 

confirm the outbreak was not homogenous across the landscape (Figure 4.9). The reported error 

metrics are reasonable given limitations in the data and comparable to related studies of insect 

impacts on the forest canopy (Townsend et al., 2012). Error associated with the ADS data was 

not quantified. Furthermore, this information was collected by observers presumably working 

under difficult conditions. Therefore we suggest our model represents an unbiased view of the 

disturbance. In addition, the modeling framework we applied in this study should be transferable 

to other areas with similar forest disturbance characteristics.  

This study builds on the ideology of many of the aforementioned studies which used 

remotely sensed data to document various stages of the late 1990s-mid 2000s mountain pine 

beetle outbreak. The common theme is the development of a time series imagery stack to assess 

spectral changes over time (Goodwin et al., 2008; Meddens et al., 2013; Meigs et al., 2011). Our 

normalization process gave us high confidence in the time series stack, given the consistent 

reflectance values of the pseudo-invariant features over time (Figure 4.11). However, we were 

unable to utilize many of the vegetation indices (e.g. Normalized Difference Moisture Index) 

used in these studies. Given that our study objectives hinged around a historic disturbance that 

occurred in the mid-1970s and early 1980s, we were unable to use imagery with the spectral 
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resolution needed for many of those indices. The major difference in our study and those 

described in section 4.2.3, is that the disturbance we are interested in occurred in the 1970s and 

early 1980s. This predates the advent of Landsat TM/ETM+ imagery and other finer scale 

imagery employed in those studies. 

There were two main differences between our study and those that used MSS data (Harris 

et al., 1978; Rencz and Nemeth, 1985; Weber et al., 1975). First, we attempted to capture the 

gradient of the disturbance on a continuous scale between 0 and 1. Second, we employed 

multiple time periods of imagery to assess spectral changes at sites over time. Although Rencz 

and Nemeth (1985) used a change detection procedure, there was a gap of six years between 

images. The use of just two images was likely insufficient to capture the full range of phenology 

associated with the disturbance from pre-attack through the green, red and gray stages, followed 

by the likely expansion of understory growth following canopy mortality. Conducting a 

retrospective analysis afforded us several advantages over the prior MSS studies. The Landsat 

archive is now readily available at no cost, removing the financial burden that inhibited prior 

investigators from developing a time series imagery stack (Woodcock et al., 2008). Furthermore, 

advances in radiometric calibration provide a basis for standardized comparison between images 

acquired on different dates and by different sensors (Chander et al., 2009).  

There are several strengths associated with our study that allowed us to overcome 

numerous limitations. Overall, we provide an objective framework that can be applied to other 

areas, at other time periods, involving other types of forest disturbance. The major limitation of 

quantifying a disturbance over a large, topographically complex landscape where subsequent fire 

has erased some of the evidence was overcome using existing data. The remote sensing archive 

allowed us to extract information about the condition of the forest canopy across spatiotemporal 
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scales. By employing multiple lines of evidence, each independent data source contributed to a 

composite picture of the disturbance (Swetnam et al., 1999). Several key factors led to a 

successful analysis. The first was employing a mask to restrict the area of analysis (Garrity et al., 

2013) to forest types where mountain pine beetle had the potential to impact. The second critical 

element was the development of a normalized time series of reflectance (Townsend et al., 2012; 

Vogelmann et al., 2012) to characterize changes over time. We obtained many more images (24) 

than we ultimately used (9), but this was necessary to conduct an exhaustive evaluation of 

available imagery. The consistent level of pre-processing performed on the imagery by the 

USGS and our procedure to convert data to at-surface reflectance aided in the success. 

Furthermore, the image acquisition dates were within a six-week window, which limited intra-

year differences. The final critical element was the development of a novel approach to measure 

mortality in available aerial photos and scale up to multiple years of satellite imagery. This 

procedure was crucial given the absence of field data. 

The absence of validation data in this study precluded the use of the holdout method 

where the data is separated into a training set and test set. We evaluated the suite of GLM models 

using several common measures, including a ten-fold cross validation procedure. Cross 

validation divides the data into k subsets of approximately equal size and the holdout method is 

repeated k times (Salzberg, 1997). There are strengths and weaknesses to this method that is 

commonly used in ecological studies. Cross validation is advantageous because it is less critical 

how the data are divided, every point is used in the test set once, and each point is used in the 

training set k-1 times. Disadvantages of the method include computation time and trade-offs 

between variance and bias, dependent on the number of iterations (Kohavi, 1995). Furthermore, 
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there is only one dataset involved in the cross validation, regardless of the number of subsets 

created (Esbensen and Geladi, 2010).  

4.5.1 Ecological Considerations 

In areas where mountain pine beetle disturbance induces high mortality in the forest 

canopy over a short time period, there will be a relatively quick change in NDVI. Therefore these 

areas will have a heightened chance of detection by remote sensing methods. In addition, the 

release of light, nutrients and moisture will occur at one time period. Therefore the flush of 

understory growth will likely occur over a relatively short time period. This increases the 

likelihood of obtaining a tight sequence of images to detect these rapid changes. Given the high 

severity of the impact, the model identified large negative relative contributions of the green 

band in the 1970s on the west side of the divide, indicative of an increase in canopy mortality. 

However, the 1987 green band was significant, with a large positive relative contribution to the 

model. This can be interpreted ecologically in that there was a sharp increase in canopy mortality 

during the late 1970s, but understory growth was prevalent in these high severity areas by the 

late 1980s. The outbreak moved from the west to east over the divide. The 1987 green band had 

a large negative contribution to the east side model, suggesting recent canopy mortality 

dominated the spectral signature, while understory regrowth was likely not widespread.         

However, the impacts of mountain pine beetle disturbance on the forest canopy do not 

always exhibit characteristics that are easily identified by remote sensing methods. Areas that 

have lower amounts of mortality will be composed of a mix of live and dead trees resulting in a 

gradient of mortality over the duration of the disturbance. As trees die over this time period, they 

will likely be interspersed with live trees. Given that the spectral response of a pixel is an 

amalgamation of all elements present (Lefsky and Cohen, 2003), there will be a smaller change 
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in reflectance. Additionally, as individual trees die, the release of resources will impact a smaller 

area of understory regrowth. The localized understory regrowth could offset or suppress the 

change in reflectance associated with canopy mortality. This problem is manifested on the 

landscape as the cycle of canopy mortality, resource release, and understory flush could be 

occurring simultaneously in localized areas. 

Several ecological phenomena could pose challenges to this methodology, particularly if 

the recent disturbance history of the study area is unknown. Other disturbances could be 

identified by this method, without being attributed to mountain pine beetle. We were able to 

incorporate ancillary data about the mountain pine beetle outbreak such as ADS data, park 

reports and knowledge from park staff to supplement the primary imagery method. Harvest 

events typically have sharp geometric boundaries (Goodwin et al., 2008) that often persist in 

reflectance patterns for quite some time after the event. Unknown fires that are low severity or 

small in area could be difficult to segregate from insect disturbance mortality, particularly if the 

event corresponds with a gap in satellite imagery. Other insect disturbances such as mortality or 

defoliation events in the study area could be detected as well (Meigs et al., 2011; Townsend et 

al., 2012). We analyzed the Damage Causal Agent attribute code of the aerial survey data and 

found nearly no other disturbance types recorded within the study area during the time periods 

1971-87. Given that our objective was to detect landscape-scale mortality associated with a 

widespread, high-severity disturbance, we were not concerned with these small disturbances. 

Periods of drought and fluctuations in hydrologic year (Oct.-Sept.) precipitation could 

impact inter-annual indices of vegetation reflectance in areas of low mortality. However, our 

normalization procedure should account for some of these differences between imagery years. 

The establishment of appropriate reference conditions of an area remains a challenge in 
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ecological studies (Millar et al., 2007). Finally, all of the aforementioned challenges are made 

more complex when attempting to conduct a retrospective analysis of historical forest 

disturbance.    

4.5.2 Technical Considerations 

The technological challenges associated with this study are centered on the spatial, 

temporal and spectral resolution of the aerial photographs and satellite imagery. Although we 

were constrained to the use of best available data for the time period, consideration of some of 

the shortcomings is necessary. We used aerial photographs collected in 1982 (four) and 1984 

(two). The scale of each photograph (1:58,000) is relatively coarse and does not allow for the 

identification of an individual tree crown. However, we believe the size of the photo plots (180 

m x 180 m) was adequate to characterize the level of mortality within a stand. Given that our 

objective was to measure canopy mortality, we were confined to using color-infrared 

photographs. We would have considered natural color photographs if they had been available in 

the archive. There were additional photographs available in the archive that were not selected 

due to a combination of acquisition date, coarse resolution and gray scale film. Although 

nominal, there are acquisition costs associated with historic aerial photos, and the 

orthorecticfication process can be time consuming. 

Additional landscape photographs would have been extremely helpful. However, we 

were limited by those that were taken by park staff at the end of the outbreak and housed in the 

National Park Service archive. Although they were not used in a quantitative analysis, they 

provided valuable evidence of the impact of disturbance.   

The Landsat MSS imagery employed in this study is also subject to spatial, temporal and 

spectral constraints. Although we resampled the MSS imagery to 30 m to aid in the 
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georectification process, the native resolution is significantly lower. Pixel values are a mixture of 

ground elements (Lefsky and Cohen, 2003), and given the coarse spatial resolution, MSS 

imagery is limiting to the amount of mortality that can be detected at one pixel between multiple 

time periods. Therefore, areas that experienced low mortality may have been underestimated by 

our model. The temporal limitations of the image archive are two-fold. The study may have 

benefited from a higher frequency of images collected every calendar year and additional image 

years to establish pre-outbreak conditions. However, it was not tenable to alleviate these 

constraints given the available imagery and the timing of the disturbance. The spectral resolution 

of MSS imagery is limited compared to TM/ETM+ imagery. Many of the indices that have been 

successfully applied to recent outbreaks are developed from a wider spectral range than that of 

MSS. All of these factors may limit the sensitivity of the study to detect different levels of 

mortality, especially low levels of mortality. However, given the scale and severity of the 

disturbance, coupled with the dense imagery stack that was assembled, we were still able to 

achieve acceptable results.  

The Tasseled Cap transformation for Landsat data has been used to distill information 

from Landsat imagery in forest disturbance mapping (Healey et al., 2005). However, we did not 

use the Tasseled Cap transformation in our analysis. Unlike Landsat TM and ETM+, Tasseled 

Cap coefficients have not been developed for MSS imagery that has been converted to 

reflectance data (Schowengerdt, 2007). Our normalization process depended on normalized 

reflectance values and not Digital Numbers. The established Tasseled Cap transformation can 

only be applied to Landsat MSS imagery in Digital Numbers. 

We chose to classify the continuous output into three categories based on natural breaks 

in the data. Although relative differences are taken into account, the threshold between each class 
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is somewhat subjective. Prior investigators have used lower thresholds (low <= 10%, moderate 

(11-29%), and severe > 30% of stands killed) (Aukema et al., 2006) or additional classes of 

mortality severity (e.g. trace, light, moderate, severe, and very severe) (Meddens et al., 2012). 

However, these two studies were considering ADS data which contained a measure of the 

number of trees or the percentage of stand killed. This type of classification scheme does not 

translate directly to our model. For example, if 15% of the trees were killed in a localized area, it 

could have a large impact on the reflectance of those pixels and overestimate the severity. This 

issue could be exacerbated by the coarse resolution of Landsat MSS pixels. Given that there is no 

precedent for this type of analysis we opted for a natural break classification scheme.   

Our modeling framework was exhaustive in using multiple lines of evidence that 

represented the best available data. Our model incorporated the full extent of available spectral 

reflectance in MSS imagery (green, red and near infrared bands). Only band 3 was discarded 

given that it was highly correlated with band 4. Furthermore, the spectral information used by the 

model can be readily interpreted. NDVI is a commonly used index to assess ecological change 

(Pettorelli et al., 2005) and its behavior can be reasonably predicted from plant physiology theory 

(Garrity et al., 2013). Plant material containing chlorophyll reflects in the green wavelength. The 

reflectance in the green band would be expected to decrease as the amount of chlorophyll in a 

pixel is reduced from plant mortality. Therefore, the inclusion of the green band provides a 

measure of the amount of chlorophyll present within a pixel over time.  

4.6 CONCLUSION 

We have presented a framework that incorporates multiple lines of evidence to 

retrospectively characterize a landscape scale mountain pine beetle disturbance. Furthermore, we 

have demonstrated that Landsat MSS data is a valuable tool to extend the moderate resolution 
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imagery record back to the early 1970s. We conclude that our approach is suitable to characterize 

the extent and severity of the event despite initial data limitations. Key considerations of the 

application of our model include the size and severity of the disturbance, as well as the timing 

(first date, last date, and duration) of the satellite imagery. Our approach captures the 

characteristics of a disturbance event that significantly impacts numerous ecological processes. 

Given the availability of these data sources, the characterization of recent events will afford 

investigators additional tools to study disturbance interactions and ecological legacies at the 

landscape scale. 

 

Any use of trade, firm, or product names is for descriptive purposes only and does not imply 

endorsement by the U.S. Government.  
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4.8 TABLES 

Table 4.1. Spectral characteristics of Landsat MSS imagery  (NASA, 2013). 

Band Wavelength Spectral Region 
1 500-600 nm Green 
2 600-700 nm Red 
3 700-800 nm Near-infrared 
4 800-1100 nm Near-infrared 
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Table 4.2. Satellite imagery scene information and acquisition date used in the analysis. 

Satellite Scene Path/Row Acquisition Date (year-month-day) 

Landsat 1 44/26 19730910 

Landsat 1 44/26 19740923 

Landsat 2 44/26 19760921 

Landsat 2 44/26 19770811 

Landsat 3 44/26 19780902 

Landsat 3 44/26 19790915 

Landsat 2 44/26 19810913 

Landsat 4 41/26 19830924 

Landsat 5 41/26 19870911 
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Table 4.3. Spectral indices calculated with the Landsat MSS reflectance data.  NDVI 
(Normalized Difference Vegetation Index), RGI (Red Green Index), and GNDVI (Green 
Normalized Difference Vegetation Index). 

Spectral 
Index 

Equation Source 

NDVI NDVI = MSSBand4 – MSSBand2/MSSBand4 + MSSBand2 Rousse et al., 1974 
RGI RGI = MSSBand2/MSSBand1 Coops et al., 2006 

GNDVI GNDVI = MSSBand4 – MSSBand1/MSSBand4 + MSSBand1 Gitelson et al., 1996 
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Table 4.4. Descriptive statistics of estimated tree canopy mortality from the aerial photo plots 
grouped by aspect class (n=261).    

Aspect Number of 
Plots 

Tree Canopy Mortality Statistics 
Mean Minimum  Maximum S.D. 

North 46 54.9 4.4 91.8 23.6 
East 47 49.4 12.8 93.9 24.0 

South 75 54.1 17.0 99.2 20.8 
West 93 68.3 12.7 99.8 21.3 
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Table 4.5. Comparison of model evaluation metrics.    

Model AIC  R2 MAE  RMSE 
10-fold Cross 

Validation Prediction 
Error  

NDVI + G -237.55 0.65 10.8% 13.6% 15.4% 

NDVI -204.44 0.60 11.6% 14.5% 16.8% 

PCA -193.43 0.60 11.9% 14.6% 20.4% 

GNDVI -183.13 0.55 12.4% 15.6% 17.3% 

RGI -87.32 0.34 15.3% 18.8% 20.7% 
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Table 4.6. Predictor variables used in the NDVI+G GLS model. Estimates of the model 
parameters are listed for the west and east sides accordingly. The variables Aspect and Total # of 
Years (low was the only category retained in the stepwise model) were treated as indicator 
variables in the analysis. *P-value is significant at 0.05 or lower. 

Variable West Coefficient East Coefficient 
(Intercept) 3.18413* 3.43654* 
Aspect    
     N 0.13478  -1.42706* 
     S -0.24309      - 

     W -0.58963* -0.17668* 
green.1973 -9.58080* - 
green.1974 -8.60109* - 
green.1977 -9.97942* - 
green.1978 -10.69192* -12.20042 
green.1979 -5.24848 - 

green.1983 6.49274 - 
green.1987 8.11468* -11.77014* 
Total # of Years - Low 0.15773* - 
ndvi.1973 - -0.37092 
ndvi.1974 -0.03773 - 
ndvi.1976 0.41517* - 

ndvi.1977 -1.08326* -1.74362* 
ndvi.1978 -0.36746 - 
ndvi.1979 0.40112 - 
ndvi.1981 -1.42992* - 
ndvi.1983 -0.40449* -0.50511 
ndvi.1973 x N  - 2.01483 

ndvi.1974 x N -1.24923* - 
ndvi.1978 x N 1.69811* - 
ndvi.1978 x W 1.10049* - 
ndvi.1979 x N -1.78641* - 
ndvi.1979 x S -1.18434* - 
ndvi.1979 x W -1.49155* - 

ndvi.1981 x S 1.52377* - 
ndvi.1981 x W 1.20919* - 
ndvi.1983 x N 0.9887* - 
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4.9 FIGURES 

 

 

 

Figure 4.1. Location of study area and extent of aerial photo coverage. Background image is 
Landsat Thematic Mapper (TM) Imagery (bands 3, 2, 1) acquired on August 25, 2010. Yellow 
polygons represent the location and extent of aerial photograph coverage; tan area represents the 
confined study area.  
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Figure 4.2. Linking landscape and aerial photos. (Left) Landscape photo taken in the Summer of 
1980 showing a mixture of live and dead trees in the red attack stage in Waterton Valley (source: 
Glacier National Park Research Library). (Right) A color-infrared aerial photo of the same area 
acquired in October 1980 (source: NASA/Glacier National Park). The mosaic of live and dead 
forest can be identified in both images. The letters correspond to the same area in each photo (A 
= stream confluence, B = small patch of live trees, surrounded by dead forest, C = linear ribbon 
of dead forest). 
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Figure 4.3. Example aerial photo sample plot.(A) Plot used to sample aerial photos. The 180 m x 
180 m plot size was chosen to include a 3 x 3 block of Landsat MSS pixels. (B) Sampling plot 
overlaid on color infrared photo at a low mortality site. (D) Sampling plot overlaid on color 
infrared photo at a high mortality site. (C) Output classification from sampling plot in panel B 
(live canopy cover = 83%). (E) Output classification from sampling plot in panel D (live canopy 
cover = 10%). 
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Figure 4.4. Mapped area impacted by mountain pine beetle according to the aerial detection 
survey data. Note: there was no data available for 1975. 
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Figure 4.5. Area impacted by mountain pine beetle annually based on aerial detection survey 
data. Note: there was no data available for 1975. 
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Figure 4.6. Histogram of canopy tree mortality (%) for all plots (n=261).  
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Figure 4.7. The output of the NDVI+G GLS model used to estimate canopy change over time 
due to mortality.  
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Figure 4.8. The output of the combined GLS-CART model used to estimate canopy change over 
time due to mortality.   
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Figure 4.9. The output of the spatial model classified into three severity levels.  
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Figure 4.10. Comparison between aerial photo and model output.(Left) Color-infrared photo 
(year acquired = 1982). (Right) Classified map result of the same area (focal window applied). 
Black polygons correspond to spectral trajectories in Figure 4.11 (A=Moderate, B=Severe, 
C=Low). Note: tick marks are spaced on a 2 km grid; black polygons are 0.2 km2 (20 hectares) in 
size. 
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Figure 4.11. Spectral trajectories of classified outbreak severity. The three trajectories 
correspond to the polygons identified in Figure 4.10. Note: rock features are included to 
demonstrate the success of the image normalization process and the stability of pseudo-invariant 
features over time. 
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CHAPTER 5: The Influence of an Historic Mountain Pine Beetle Outbreak on Burn 
Severity in Glacier National Park 

 
 

5.1 SUMMARY  

Native bark beetles are capable of causing widespread mortality during outbreak events in the 

forests of western North America. These disturbances can have vast effects on forest structure 

and there is concern that such changes could influence subsequent wildfire behavior and its 

impact on ecosystems. New research has looked at the recent mountain pine beetle outbreak 

(~1986-2006), but few studies have analyzed the ecological legacies of historic events. Northern 

Rocky Mountain forests were impacted by a widespread mountain pine beetle outbreak in the 

late 1970s through the early 1980s. In this study, we evaluated the effect of the historic mountain 

pine beetle outbreak and other biophysical variables on the burn severity of 11 different fires in 

Glacier National Park over an 18-year period. The extent and arrangement of these disturbances 

presented a unique opportunity to evaluate the influence of an earlier disturbance on ensuing 

wildfires. We used sequential autoregression to obtain accurate estimates of model parameters 

given the high level of spatial autocorrelation associated with wildfire. Models included 

additional explanatory variables known to influence burn severity such as topography and fuel 

moisture and variables were evaluated at increasing spatial scales. Historic mountain pine beetle 

severity was a significant predictor of burn severity in 10 of the 11 fires. The relationship 

between beetle severity and burn severity was positive across all models and we found no 

relationship between the effect size of beetle severity and time since the beetle outbreak. 

However, our results suggest the influence of the beetle outbreak on burn severity is scale-

dependent on the pattern of beetle intensity. Fires where beetle severity was the best predictor at 

broad scales tended to have a larger beetle effect size compared to fires where local beetle 
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severity was the best predictor. A number of factors are responsible for the burn severity 

associated with a given fire. However, our work shows that the effects of high severity mountain 

pine beetle outbreak can influence the burn severity of wildfire for many years after the initial 

disturbance event.     

5.2 INTRODUCTION  

In western North America, native bark beetles are a major disturbance agent capable of 

regional-scale forest mortality (Raffa et al., 2008) and fire as a disturbance agent is well 

documented (Agee, 1993; Turner and Dale, 1998). These disturbances can have profound effects 

on the structure of the ecosystem for many years after the event (Turner and Dale, 1998) and 

influence the likelihood, severity and spread of subsequent disturbances (Veblen et al., 1994). 

There is concern that the disturbance regime associated with each of these events is changing and 

fire-beetle linkages need more research (Lynch et al., 2007). Recent bark beetle outbreaks have 

become more frequent and widespread in the forests of western North American (Raffa et al., 

2008). The frequency of large fires in the western United States has increased due to warming 

temperatures, earlier snowmelt, and longer fire seasons (Littell et al., 2009; Westerling et al., 

2006). Future predictions indicate that fires may become more frequent and severe, leading to 

novel fire-climate-vegetation relationships (Lutz et al., 2009; Westerling et al., 2011). 

Projections indicate the climate will get warmer (IPCC Third Assessment Report, 2001) which 

could lead to an increase in forest disturbance in the near future given that both fire and bark 

beetles are vulnerable to climactic controls (Bentz et al., 2010; Logan et al., 2003; Westerling et 

al., 2006).  The response of bark beetles is not expected to be uniform among and within genera, 

but several widespread species are predicted to become more widespread as temperature warms 

(Bentz et al., 2010).  
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5.2.1 Compounded Disturbances   

The interaction of fire and insect agents is an area of active research due to the increased 

probability of compounded disturbances and the potential for unexpected ecological outcomes 

(Paine et al., 1998). Empirical studies on compounded disturbances have reported a range of 

results. In Colorado, Kulakowski and Veblen (2007) found that fire extent was independent of 

prefire disturbance history, however, fire severity was influenced by stands that were severely 

blown down five years earlier. Bebi et al. (2003) found that spruce-fir forests in Colorado 

impacted by spruce beetle (10-50 years earlier) were not more likely to burn compared to 

unaffected stands. Kulakowski and Jarvis (2011) found no detectable increase in occurrence of 

high-severity fires following mountain pine beetle outbreaks and concluded climate has been the 

primary driver of the fire regime in northwestern Colorado and southern Wyoming. Harvey et al. 

(2014) concluded recent beetle outbreak severity in the northern Rocky Mountains was largely 

unrelated to subsequent fire severity. Turner et al. (1999) found high severity bark beetle damage 

increased the likelihood of crown fire in the 1988 Yellowstone National Park fires, whereas 

intermediate beetle severity did not. Lynch et al. (2006) found severe fire was more likely to 

occur in lodgepole forest that experienced mountain pine beetle 15 years prior, but not in areas 

that were impacted by beetles seven years earlier. These studies highlight the importance of 

spatially explicit research as the effects of disturbance interactions vary across ecosystems, 

weather patterns, and time and severity associated with each disturbance.  

5.2.2 Impacts of Mountain Pine Beetle on Forest Structure    

The widespread mortality associated with mountain pine beetle (Dendroctonus 

ponderosae) outbreaks has cascading effects on numerous ecological processes, including forest 

composition (Veblen et al., 1991), the condition and arrangement of fuels (Hicke et al., 2012) 
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and wildfire characteristics (Schoennagel et al., 2012; Simard et al., 2011). As beetles induce 

stand level tree mortality, the foliage changes from green to red in the first few years after attack 

(Wulder et al., 2006). The gray stage begins once needles and some small branches fall to the 

ground (> 3 years), but larger dead fuels remain in the canopy (Schoennagel et al., 2012). Fine 

surface fuels increase in the gray phase as canopy bulk density decreases (Hicke et al., 2012). 

Approximately a decade later, the affected stands enter the Old-MPB phase (Schoennagel et al., 

2012) where coarse surface fuels increase significantly as large branches and snags fall (Hicke et 

al., 2012). During this phase, the release of resources allows shrubs and seedlings to establish 

alongside any surviving trees. The new growth results in an increase of ladder fuels (Hicke et al., 

2012) which has implications on crown fire potential due to lower canopy bases and increased 

canopy bulk density (Schoennagel et al., 2012; Simard et al., 2011). Fuel moisture is likely to 

decrease as the canopy opens and wind speed increases (Schoennagel et al., 2012).  Hicke et al. 

(2012) developed a conceptual framework of beetle induced changes to the probability of fire 

occurrence and burn severity based on a review of nearly 40 studies. They found an increase in 

crown fire probability during the red phase, but surface fire probability remained unchanged in 

this phase. Once a stand transitions into the gray phase, crown fire probability decreases, largely 

due to reduced canopy bulk density. However, the probability of surface fire increases with the 

redistribution of fuels from the canopy to the surface and an increase in ladder fuels. Likewise, 

the probability of burn severity reflects changing conditions of phases too. Foliar moisture is 

reduced during the red phase which could increase torching and active crown fire resulting in 

high mortality and subsequent burn severity in the canopy (Keeley, 2009). In the gray phase, the 

probability of burn severity is reduced in the canopy due to reduced canopy bulk density, but 

there is an increase in the probability of high burn severity along the forest floor due to higher 
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surface loads and greater reaction intensity.  However, their framework highlights substantial 

knowledge gaps and a lack of consensus in the literature dependent upon the research question 

addressed, time since the outbreak, weather conditions, and fire behavior (Hicke et al., 2012; 

Simard et al., 2011).  

5.2.3 Remote Sensing of Burn Severity     

There has been considerable confusion within the field on the usage of fire intensity, fire 

severity and burn severity, with terms occasionally being used synonymously (Keeley, 2009). 

The Monitoring Trends in Burn Severity (MTBS) program defines fire severity as the degree to 

which a site has been altered or disrupted by fire; loosely, a product of fire intensity and 

residence time (Eidenshink et al., 2007); whereas burn severity is defined broadly as the effect of 

fire on an ecosystem (Agee, 1993). We follow the lead of (Lee et al., 2009) and use the term 

burn severity as a metric of vegetation change derived from remotely sensed imagery data that 

has been made available for recent, large fire events through the MTBS program (Eidenshink et 

al., 2007). The Normalized Burn Ratio (Key and Benson, 2006) is calculated using the near and 

mid-infrared portions of the electromagnetic spectrum (bands 4 and 7 in Landsat TM). The near-

infrared band is sensitive to living vegetation whereas the mid-infrared band is sensitive to ash, 

char, and water content. Since both of these ecosystem properties are impacted by fire, the 

change in the Normalized Burn Ratio (dNBR) using pre and post fire imagery provides a robust 

measure of burn severity (Duffy et al., 2007). However, dNBR may overestimate burn severity in 

areas that have smaller amounts of photosynthetic active vegetation in the pre-fire image, 

therefore, a relative measure of dNBR (RdNBR) was developed to account for pre-fire 

conditions at each pixel (Miller and Thode, 2007). MTBS data (dNBR or RdNBR) has been used 

to test for spatial variation in wildfires in the western US (Parisien et al., 2012), examine the 
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relationship between snowpack and fire size in Yellowstone National Park (Lutz et al., 2009), 

understand patterns of burn severity by vegetation type and landscape complexity in Alaska 

(Duffy et al., 2007) and assess the influence of multiple factors such as topography (Holden et 

al., 2009), climate and weather (Dillon et al., 2011) on burn severity in the western US. Several 

studies have used dNBR or RdNBR to analyze the effects of a prior disturbance on burn severity. 

Finney et al. (2005) found that prescribed fire treatments reduced burn severity in two Arizona 

wildfires. Thompson et al. (2007) analyzed burn severity on a fire in southwest Oregon that 

burned 25 years prior and was partially salvage logged and replanted. Wimberly et al. (2009) and 

Prichard and Kennedy (2014) evaluated the effectiveness of fuel treatments in wildfires in 

California and Washington. However, to our knowledge, no study has analyzed the influence of 

beetle severity on burn severity of wildfire. 

5.2.4 Challenges Associated with Modeling Contagious Landscape Disturbances     

Analysis of forest disturbances, such as wildfire, present challenges to traditional 

statistical tests because wildfire is inherently spatially structured and subject to both endogenous 

and exogenous processes (Kissling and Carl, 2008). Spatial pattern is an artifact of the inherent 

property of fire (endogenous processes) in which areas in close proximity to active fire are more 

likely to burn (Lynch et al., 2007). Exogenous processes operate independent of wildfire, but 

influence fire patterns because landscapes are spatially structured via climate, geomorphology 

prevailing wind patterns, topography and vegetation characteristics (Kissling and Carl, 2008). 

Therefore, simple overlays of burn severity and an explanatory variable of interest can result in 

misleading conclusions (Wimberly et al., 2009). Classical statistical tests assume independently 

distributed errors which lead to problems with spatial autocorrelation because model coefficients 

could be biased, impacting hypothesis testing and model inference (Kissling and Carl, 2008). 
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Recent studies have addressed these issues using several different methods. Variograms can be 

used to determine the distance where observations are no longer spatially correlated. However, 

the variogram range associated with fire is often quite large, which greatly reduces the number of 

observations (Lee et al., 2009). Lynch et al. (2006) used Markov chain Monte Carlo technique to 

accurately capture the latent spatial autocorrelation and Thompson et al. (2007) used a spherical 

theoretical variogram model to describe correlation in the data and estimate parameters of a 

generalized least squares model. Wimberly et al. (2009) and Prichard and Kennedy (2014) used 

sequential autoregression (SAR) (Cressie, 1993) which incorporates a spatial term (i.e. spatial 

weights matrix) in a standard regression model, to account for spatial autocorrelation. The spatial 

weights matrix considers the neighborhood (user-defined distance) of each observation and 

weights each neighbor as a function of distance (Kissling and Carl, 2008) to model the spatial 

dependence using a variance-covariance matrix (Cressie, 1993). In this way, SAR models utilize 

inherent spatial autocorrelation in the data (e.g. values of neighboring locations) to provide a 

proxy for missing variables that are not accounted for by explanatory variables (e.g. local fire 

weather) (Kissling and Carl, 2008; Prichard and Kennedy, 2014; Wimberly et al., 2009). SARs 

are computationally intensive, but have become more widely used with advances in computing 

capacity and offer an additional advantage for contagious disturbances in that they account for 

the missing variables problem.   

Recognition of pattern and scale are paramount in ecology (Levin, 1992), yet many 

ecological studies analyze processes at a single scale. Observations from remotely sensed data 

default to the raw pixel size associated with the image used to collect the information (Wu et al., 

2014). Multi-scale analysis expands the frame of reference in a study (Falk et al., 2007) through 

consideration of topology (or the surrounding neighborhood) of an environmental variable 
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associated with an observation.  Fire is a complex disturbance which is influenced by the 

interaction of fuels, topography and climate, each of which may vary as a function of the spatial 

scale of study (Falk et al., 2007). Therefore multi-scale analysis of factors that contribute to fire 

behavior is an important consideration in evaluation of fire-environment relationships (Falk et 

al., 2007; Parks et al., 2011; Wu et al., 2014). Several studies have demonstrated that information 

contained in the surrounding neighborhood of an observation may be more relevant to controls 

on fire than observations made at the individual pixel scale. For example, a study in eastern 

Canada demonstrated that dominant aspect was related to fire frequency, but only at broad 

spatial scales (Cyr et al., 2007). Parks et al. (2011) showed that burn probability in the western 

US was most influenced by fuels and elevation at fine scales, but fuels and aspect at broad scales 

(Parks et al., 2011). Cross-scale research in the boreal forest of Northeastern China identified 

burn severity was mainly controlled by vegetation at local scales and topography at broad scales 

(Wu et al., 2014).      

5.2.5 Objectives       

In the late 1970s and early 1980s a high-severity mountain pine beetle outbreak occurred 

in the northern Rocky Mountains, which covered over 30% of Glacier National Park (GNP) 

(Assal et al., 2014). Then additional disturbance impacted the landscape as 17 fires burned 27% 

of the forest within the park between 1984 and 2006. The timing, arrangement, and data 

availability of these events presented a unique opportunity to study the effect of multiple 

disturbances. In this study, we use SAR modeling to evaluate the effect of an historic mountain 

pine beetle outbreak and other biophysical variables on the burn severity of 11 fires in GNP. The 

main objective of the study was to determine if the severity of the beetle outbreak in the 1970s 

and 80s had an effect on the burn severity of subsequent wildfires. Numerous other factors likely 
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influenced the extent and severity of the wildfires such as vegetation, landform, and regional 

weather (Prichard and Kennedy, 2014). Therefore, it was necessary to evaluate other factors that 

could contribute to patterns of burn severity. If mountain pine beetle severity had a measurable 

influence on burn severity, we hypothesize the following: 1) the influence of beetle severity on 

burn severity would decline with time since the beetle outbreak (time since beetle hypothesis), 2) 

the influence of beetle severity on burn severity would be negated under extreme fire weather 

(weather hypothesis), 3) the influence of beetle severity would be contingent on the pattern of 

beetle severity intensity (beetle pattern hypothesis). In this study, we utilize data on beetle 

severity and burn severity that exploits two large disturbance processes that played out over 

broad spatial and temporal scales. The focus of our work is to determine if there is any 

measureable ecological legacy from the mountain pine beetle disturbance on the landscape with 

regard to fire severity. Burn severity is influenced by numerous factors but retrospective analysis 

is a promising approach to evaluate the influence of beetle severity on burn severity and the 

results hold great interest for those charged with management of forests impacted by the recent 

beetle outbreak (~1996-2006) that occurred in the Rocky Mountains.   

5.3 METHODS  

5.3.1 Study Area   

The study is located in Glacier National Park in northwestern Montana (Figure 5.1), 

which encompasses over 400,000 ha of topographically diverse terrain, bisected by the 

Continental Divide. Mean average annual precipitation is 73.1 cm, and average annual maximum 

and minimum temperatures are 11.9 ºC and -0.2 ºC, respectively (1971-2000) (Western Regional 

Climate Center, West Glacier station, elevation: 970 m, http://www.wrcc.dri.edu; accessed 17 

December 2012). Elevation ranges from ~ 950 m to 3184 m above sea level and major cover 

http://www.wrcc.dri.edu/
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types include grasslands, conifer and deciduous forests, lakes, wide glacial valleys and steep 

alpine zones. Forests are dominated by lodgepole pine (Pinus contorta), western larch (Larix 

occidentalis), Engelmann spruce (Picea engelmannii) and Douglas-fir (Pseudotsuga menziesii). 

The area was chosen because of the extensive mountain pine beetle epidemic that took place in 

the late 1970s and the number of wildfires that occurred since that time. The analysis area was 

limited to burned area inside the park of selected fires (Table 5.1, Figure 5.2).  

5.3.2 Data  

5.3.2.1 Burn Severity Data 
We considered 17 wildfires that intersected GNP between 1984 and 2006 (Figure 5.1). 

We obtained fire progression information where available from GNP and retained 11 fires for the 

analysis (Table 5.1). We chose to use RdNBR in our multi-fire analysis because the relative 

index has been shown to provide a consistent definition of burn severity across time and space 

(Miller and Thode, 2007). We used the continuous RdNBR data as opposed to classified burn 

severity data because information is lost when using categorical data because burn severity 

occurs on a continuum (Miller and Thode, 2007).  

5.3.2.1 Explanatory Variables 
Fire behavior is contingent on topography, weather conditions, and the arrangement and 

amount of fuels. In our model, topography and other important abiotic landscape features for fire 

behavior are accounted for by elevation, heat load, and topographic position, all derived from a 

30 m digital elevation model. The heat load index (HLI) is a potential measure of direct incident 

radiation (McCune and Keon, 2002) (Equation 3), which varies with aspect and slope; whereas a 

topographic position index (TPI), a measure of slope position and landform type with respect to 

adjacent grid cells, identifies the portion of the landscape a cell occupies (e.g. valley bottom, mid 
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slope, ridgetop, etc.) (Table 5.2). We used a daily fuel moisture data set which represents the fuel 

moisture of large fuels (e.g. 100-hr and 1000-hr fuels). The data was developed by the US Forest 

Service Rocky Mountain Research Station and derived from a 4 km gridded dataset of surface 

meteorological variables (Abatzoglou, 2013). Each burned pixel was assigned the daily fuel 

moisture value for fuel size that corresponded to the daily fire progression interval at that pixel.  

Several studies have used recent aerial survey detection data to account for mountain pine 

beetle disturbance (Meddens et al., 2012; Meigs et al., 2011). However, a previous study 

concluded the historic aerial survey data in GNP to lack an adequate measure of severity and 

developed a model of mountain pine beetle severity using multiple lines of evidence (Assal et al., 

2014). The dataset identifies the amount of canopy change as a measure of beetle induced 

mortality over a 14-year period as the disturbance progressed. We used the continuous dataset of 

beetle severity from the late 1970s and early 1980s to account for the previous mountain pine 

beetle disturbance. This data set was developed from numerous vegetation indices over the 14-

year period and represents the best proxy for the amount of fuels on the landscape prior to fire 

activity (Table 5.2). 

 We evaluated the relationship of the explanatory variables (Table 5.2) on burn severity at 

seven spatial scales. We calculated the mean value within a circular moving window at radii of 

45, 90, 180, 360, 720, 990, and 1440 m, ranging from 0.64 ha to 650 ha in size. Scales were 

considered based on the spatial resolution of the data, the complex and variable terrain of the 

study area, and a range of values covered in other fire research (Parks et al., 2011; Wu et al., 

2014). We did not evaluate fuel moisture at multiple scales on account of the coarse resolution of 

the data (4 km). We opted to use a moving window analysis over other landscape metrics (e.g. 

patch size, mean shape index, etc.) to fully exploit the continuous nature of the data and avoid 
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arbitrary categories. Our intent was to evaluate the best set of predictor’s at the most appropriate 

scale for each fire. Since we analyzed 11 independent fire events, we did not enforce a static 

scale for each explanatory variable across all fires.   

5.3.3 Statistical Analysis   

Variogram models of each fire indicated spatial autocorrelation in the burn severity data 

between 1500 m to over 3000 m. Therefore we used SAR modeling (Prichard and Kennedy, 

2014), to predict continuous burn severity (RdNBR) using a suite of independent variables that 

characterize topography and previous mountain pine beetle severity (Table 5.2). The analyses 

were conducted using the extent of the data for each fire, with the sample of pixels distributed on 

a 60 x 60 m lattice (Wimberly et al., 2009). All statistical analyses were performed in the R 

statistical environment (R Development Core Team, 2013).  

We used the error version of SAR (Wimberly et al., 2009):   

Y = Xβ + λW(Y-Xβ) + ε 

Where 

Y dependent variable (e.g. fire severity) 

X matrix of independent variables 

β vector of parameter 

λ autoregressive coefficient 

W spatial weights matrix. Inverse distance was used to define the neighborhood structure of 

the 12 nearest neighbors (Wimberly et al., 2009) 
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ε uncorrelated error term 

The model can also be viewed as: 

Xβ  the spatial trend of fire severity predicted by the independent variables 

λW(Y-Xβ) the spatial signal, indicative of spatial autocorrelated deviations from the spatial  

  trend, modeled as an autoregressive function of deviations in neighboring sites 

ε the noise term which represents deviations from the trend that were not spatially 

autocorrelated 

We first evaluated the univariate relationship between each explanatory variable and burn 

severity to identify the scale of the explanatory variable which best describes burn severity. We 

selected the appropriate scale using Akaike’s Information Criterion (AIC) and used that scale of 

the variable in the full model. The full covariate model included variables to account for 

topography (elevation, slope, TPI, HLI), a proxy for weather (fuel moisture of 100 and 1000-

hour fuels) and previous vegetation disturbance (beetle severity). We retained the full covariate 

model for each fire to maintain a consistent covariance structure, with minimal AIC penalty 

given the large number of observations in each model. 

5.4 RESULTS  

5.4.1 SAR Models    

We produced a model of predicted burn severity for each of the 11 fires using the SAR 

modeling approach and variables known to influence fire severity (Table 5.2). Appendix C 

contains the final models used for each fire. Although the full covariate model was used in each 

fire, the scales of several explanatory variables differed between fire models (Table 5.3). Overall, 
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the models performed well and explained between 54% and 80% of the variability in the burn 

severity data for each fire (Table 5.3). The SAR models captured spatial patterns of high and low 

burn severity that are visibly similar to measured values (Figure 5.3). Furthermore, there was no 

spatial pattern in the error term of the SAR in each model, indicating spatial independence in the 

residuals. We standardized the regression coefficients (Bring, 1994) of each model in order 

compare the effect size of each variable within and across fires (Table 5.4).      

5.4.2 Topography   

Elevation was a significant predictor in most of models and typically had a large positive 

effect on burn severity (Table 5.4). The finest scale of elevation (e.g. one 30 m pixel) was 

consistently the strongest scale identified by the univariate analysis. The topographic position 

index (TPI) was a significant predictor of burn severity in nearly all of the fires (Table 5.4). 

Effects of TPI, a measure of landform with respect to adjacent grid cells, were small and nearly 

always positive. This indicates that locations found at mid-slope to the top of slope were more 

strongly correlated with higher levels of burn severity compared to valley bottoms. Scales of TPI 

that best fit models varied from single pixel up to 90 m neighborhoods. Heat load was a 

significant predictor in 10 of the 11 models and always had a positive association with burn 

severity. Slope was significant in the fewest fires; however, steeper slopes generally had a 

positive effect on burn severity.     

5.4.3 Fuel Moisture   

The fuel moisture of 100-hr fuels was a significant predictor of burn severity in half of 

the models. The results indicate that a decrease in the fuel moisture of 100-ha fuels is correlated 

with an increase in burn severity (Table 5.4). The moisture of 1000-hr fuels was a significant 
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predictor in the majority of the models, but the effect on burn severity was a mix of positive and 

negative influence on burn severity depending on the fire.  

5.4.4 Mountain Pine Beetle   

We found that historic mountain pine beetle severity had a significant effect on burn 

severity in 10 of the 11 fire models. Beetle severity was not significant in the Middle Fork 

Complex fire, where elevation and heat load had the largest effect size, suggesting burn severity 

was largely driven by topographic processes.  The effect of beetle severity varied by fire, but 

there was always a positive association between beetle and burn severity. Several different scales 

were identified as the most appropriate for beetle severity, ranging from neighborhoods of 10 

hectares (e.g. 180 m radius) or less.  

5.5 DISCUSSION 

Our study builds on the ideas of earlier work that assessed the effects of wildfire 

(Thompson et al., 2007), prescribed burning (Finney et al., 2005), and fuels reduction (Prichard 

and Kennedy, 2014; Wimberly et al., 2009) on burn severity. However, our study is different for 

several reasons. First, a continuous data set of beetle severity (Assal et al., 2014) allowed us to 

extend our analysis beyond outbreak presence or absence used in other studies (Lynch et al., 

2007). This enabled us to shift the focus from potential events (i.e. changes in probability of fire) 

to the consequences of actual events (i.e. ecological consequences of burn severity). Second, the 

arrangement of the area impacted by the beetle outbreak and subsequent wildfire presented a 

unique opportunity to consider numerous wildfires as opposed to a single fire event (Bebi et al., 

2003; Finney et al., 2005; Thompson et al., 2007). Observations drawn from multiple fires 

broaden the perspective of these compounded disturbances. Our findings support some of the 

prior research (Lynch et al., 2007), but are inconsistent with the conclusions of several other 



154 
 

recent studies. The long-term perspective of our study shows that ecological legacies of prior 

high-severity disturbance may continue to influence subsequent disturbance for many years after 

the initial event and can shed light on future disturbance interactions associated with the recent 

mountain pine beetle outbreak. Much of the landscape impacted by the recent outbreak is in the 

gray phase. Harvey et al. (2014) concluded that beetle severity from the contemporary outbreak 

had little effect on burn severity. However, their analysis was conducted on a post-outbreak 

landscape in the gray phase. As ladder fuels continue to build across post-outbreak forests as 

time since the outbreak increases, these areas could experience higher burn severity which has 

important implications for post-fire regeneration (Kulakowski and Veblen, 2007). 

5.5.1 Ecological Mechanisms 

There were common variables that influenced burn severity across the different models, 

including the primary variable in question, previous beetle disturbance. Numerous abiotic 

variables were relevant in the models, including elevation. Burn severity was generally found to 

be more severe at higher elevations and elevation had the strongest effect in the Moose, Wedge 

Canyon and Anaconda fires, which may be explained in part by the physiography of the study 

area (Figure 5.1). These fires ignited or first entered the study area on the west side of the park in 

the North Fork Flathead River valley. The fires spread east and upslope into drier forests at mid-

elevations before encountering alpine vegetation. Our results are consistent with other studies 

that noted a decrease in severity as fire moved higher into vegetation with lower fuel loads 

(Bigler et al., 2005; Lee et al., 2009). There was typically a small, positive relationship between 

TPI and burn severity (Table 5.4), which indicates locations found between mid-slope and the 

top of the slope were more strongly correlated with higher levels of burn severity compared to 

valley bottoms. This is consistent with other findings which found higher severity crown fires 
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less likely to occur in valley bottoms (Bradstock et al., 2010). TPI at scales of 45 and 90 m radii 

were often the best predictors of TPI, which suggests the TPI over a broad area is a more 

important predictor of burn severity than at the pixel level. HLI and slope were analyzed due to 

their influences on fuel type, configuration and moisture levels (Bradstock et al., 2010; Parks et 

al., 2011). The relationship between burn severity and HLI was positive, which indicates aspects 

that receive a higher amount of direct incident radiation experienced higher levels of burn 

severity. Our results are consistent with other studies that found an increase in wildfire 

occurrence (Rollins et al., 2002) or burn severity (Wimberly et al., 2009) in areas that have a 

higher HLI such as west and southwestern slopes. In the northern Rocky Mountains, spatially 

continuous biomass and fuel moisture conditions are most favorable to fire in areas that have a 

high HLI (Parks et al., 2011). The scale of HLI was not consistent across fires, and the largest 

effect of HLI were at scales of 45 and 90 m radii respectively (Tables 5.3 and 5.4), which 

suggests fuels were likely more continuous at broad scales. The inconsistency across scales may 

also suggest an interaction between aspect and prevailing weather conditions at the time of the 

fire. The mixed results with respect to slope are consistent with other studies that reported either 

a positive (Collins et al., 2007) or a negative correlation with burn severity (Lee et al., 2009; 

Prichard and Kennedy, 2014). 

We found burn severity to be higher in areas where the moisture of 100-hr fuels was 

lower when this variable was significant (Table 5.4). However, the effect of fuel moisture of 

1000-hr fuels on burn severity is inconsistent, with both positive and negative influences on burn 

severity. This may be explained in part by prevailing drought conditions at the time of each fire. 

The Palmer Drought Severity Index from the month of each fire and one month prior to each fire 

indicated mild to severe drought conditions during all fires (Western Regional Climate Center, 
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WestWide Drought Tracker, http://www.wrcc.dri.edu/wwdt/time/; accessed 20 July 2014). Fuel 

moisture was low during each fire year and differences in fuel moisture were likely minimal 

across each burned area (Turner et al., 1999). Furthermore, the inclusion of weather variables in 

burn severity modeling is problematic, largely due to the scale of input data (Wimberly et al., 

2009). Fire progression information is often recorded in broad polygons and weather data 

collected from nearby weather stations (or used to develop continuous surfaces (e.g. PRISM 

data)) might not accurately reflect the conditions at the fire front. Given the availability of data, 

we chose to incorporate fuel moisture as a proxy for recent weather conditions. However, the 

data set has coarse spatial resolution (4 km) which likely does not capture the variability in fuel 

moisture. Furthermore, the fire progression data sometimes included large time gaps between 

intervals which might not have adequately portrayed fire spread.  

To meet our primary objective, we found that beetle severity was a statistically 

significant predictor of burn severity in 10 of the 11 fires, even with a wide range of other 

variables included in the models. We found a positive correlation between these variables which 

indicates areas with higher beetle severity also experienced higher burn severity. Our results do 

not support the time since disturbance hypothesis as there is no clear trend in the size of the 

beetle effect over time (Figure 5.4). However, no distinct outbreak phase gradient was present in 

our analysis, as all of the fires burned during the Old-MPB phase (Schoennagel et al., 2012). 

Likewise the results do not support the weather hypothesis as beetle severity was significant 

across all fires except the Middle Fork complex fire. Although the Middle Fork complex fire 

burned during an extreme fire year (2003), there were four other fires analyzed during that same 

year (Table 5.1) and beetle severity was found to be significant in those fires (Table 5.4).  
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Our results indicate historic beetle severity has an influence on subsequent burn severity 

(Table 5.4). The time scale between the beetle outbreak and the occurrence of each fire is 

consistent with the time required for a significant release of understory vegetation (Lynch et al., 

2007), or new establishment (Sibold et al., 2007) resulting in an increase in ladder fuels (Hicke et 

al., 2012). Stands that were heavily impacted by beetles likely had surviving mature individuals 

(Sibold et al., 2007; Schoennagel et al., 2012) that along with ladder fuels, contributed to the 

vertical heterogeneity of these stands (Lynch et al., 2007). Several recent studies concluded the 

secondary effects of beetle activity (i.e. the change in stand structure and composition) have a 

larger effect on fire risk than the primary effect of tree mortality (Bigler et al., 2005; Lynch et al., 

2007). Although our study considered the effect of beetle severity on burn severity as opposed to 

fire risk, our results are consistent with the aforementioned studies in that long-term changes in 

stand structure associated with beetle outbreaks can have an effect on subsequent disturbance 

well into the future. Furthermore, our results lend support to those of Lynch et al. (2007), who 

found that areas in the Old-MPB phase influence the probability of burning, whereas stands in 

the more recent gray phase did not.  

 These results do lend support to the beetle pattern hypothesis that the influence of beetle 

severity is contingent on the pattern and level of beetle severity at different scales (Figure 5.5, 

Table 5.4). Our results show several different scales of beetle severity were found to be the best 

predictors of burn severity (Table 5.3). The effect size of beetle severity, where stand structure 

was influenced by severity of the beetle outbreak, was not consistent across all fires. In several 

fires, inclusion of the beetle severity variable at larger neighborhoods (e.g. 180 m radius, 10 

hectares) resulted in the best model fit. We interpret that this indicates consistent forest structure 

at that scale for some fires, but not others. Fires where beetle severity was the best predictor at 
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broad scales tended to have a larger effect size compared to fires where local beetle severity was 

the best predictor (Figure 5.5). We found an increasing gradient of effect size as the 

neighborhood size increased. The data suggests a positive relationship, although the sample size 

(n=10) precludes a test for statistical significance. This may be the result of consistent forest 

structure at broad scales resulting in spatially continuous biomass and fuel conditions compared 

to fires that burned in areas with high heterogeneity at local scales.  

5.5.2 Considerations for Future Research 

Research on interactions among disturbances has increased in recent years, yet remains a 

key challenge in ecology (Turner, 2010). Furthermore, there is a need for additional study on 

beetle-fire interactions given the mixed results on the limited research on this complex topic 

(Schoennagel et al., 2012; Simard et al., 2011). To move this line of research forward, Hicke et 

al. (2012) suggest studies improve the specificity and discussion of the question addressed, time 

since disturbance, fuels and fire characteristics associated with an analysis. Retrospective 

approaches, such as the current study, describe actual events, yet there are shortcomings with this 

type of analysis. Remotely sensed burn severity data do not delineate between active and passive 

crown fire, which has implications on fire behavior (Simard et al., 2011). Models of burn 

severity could benefit with the inclusion of additional weather variables in the analysis as data 

become more readily available at finer scales. Retrospective analyses are often unable to 

incorporate information on wind speed, which has implications on fire behavior and can vary 

across beetle outbreak phase (Schoennagel et al., 2012). Additional investigation is needed on 

the influence of beetle severity across multiple scales of analysis. Our analysis focused on a high 

severity insect disturbance in the Old-MPB phase at the time of each fire. The effect of the 

historic outbreak is contingent on the severity of the disturbance and the elapsed time before the 
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next disturbance. Finally, the influence of insect outbreaks on fire characteristics and subsequent 

burn severity will vary by feeding guild, including different species of bark beetle and defoliators 

(Lynch et al., 2007).          

5.6 CONCLUSIONS  

  A primary objective of our analysis was to determine if mountain pine beetle severity 

had a measureable influence on burn severity. A continuous data set of beetle severity allowed us 

to focus on the ecological consequences of fire as opposed to changes in the probability of fire.  

The arrangement and pattern of the area impacted by the beetle outbreak and subsequent wildfire 

presented a unique opportunity to consider numerous wildfires as opposed to a single fire event. 

Using remotely sensed burn severity data, topographic and fuel moisture data, coupled with SAR 

analysis, we were able to determine that beetle severity was a significant predictor of burn 

severity in 10 out of the 11 fires we analyzed. Furthermore, we were able to determine the 

relative contribution of each variable to burn severity of each fire and observations drawn from 

multiple fires broaden the perspective of these compounded disturbances. Given the availability 

of geospatial data, the framework we employed is transferable to other ecosystems where there is 

an opportunity for retrospective assessment of coupled disturbances. The long-term perspective 

of our study shows that ecological legacies of prior high severity disturbance may continue to 

influence subsequent disturbance for many years after the initial event and can shed light on 

future disturbance interactions associated with the recent mountain pine beetle outbreak. Much 

of the landscape impacted by the recent outbreak is in the gray phase. As we move into the 

future, these areas could experience higher burn severity which has important implications for 

the structure and composition of future forests. (Kulakowski and Veblen, 2007).  
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 5.8 TABLES 

Table 5.1. Wildfire activity in Glacier National Park during the period 1984 to 2006. 

Fire Name 

Start Date 
(year-month-

day) 

Area 
(Ha.) 

Area 
inside 
Park 

Used in Analysis (Rationale) 

Napi Peak 19840819 1,489 2% 
No (nearly all of fire was outside of 
park) 

Crystal 19840827         1,317  85% No (no pre-fire NBR data available) 
Red Bench 19880906       13,705  71% Yes 
Adair-
Howling 19940807*         4,182  100% Yes 

Starvation 19940814         3,640  51% 
No (no fire progression data 
available) 

Kootenai 19980830         3,255  100% No (only trace amounts of beetle 
activity in fire perimeter) 

Anaconda 19990806         4,637  100% Yes 
Parke Peak 20000722            805  100% Yes 
Moose 20010816       29,644  38% Yes 
Wolf Gun 20030716         5,636  100% Yes 

Trapper 20030718         7,298  100% 
No (no beetle activity in fire 
perimeter) 

Wedge 20030718       21,053  55% Yes 
Robert 20030723       22,065  75% Yes 
Middle Fork 20030817         4,984  100% Yes 
Rampage 20030819         9,584  100% Yes 

Poll Haven 20031019         1,819  1% 
No (nearly all of fire was outside of 
park) 

Red Eagle 20060728       13,178  58% Yes 

*The Howling fire started on 8/7/1994 and Adair fire started on 8/12/1994, but the fires are 
treated as one complex. 
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Table 5.2. Description of the explanatory variables considered in the analysis. The fuel moisture 
variables have a spatial resolution of 4 km, all other variables have a spatial resolution of 30 m. 

 Variable 

 

Description 

Elevation (Elev) Derived from National elevation data set 

Heat load index (HLI) 
Potential direct incident radiation (McCune and 
Keon, 2002; equation 3) 

Slope Derived from National elevation data set 

Topographic position index (TPI) 
A measure of slope position and landform type 
with respect to adjacent grid cells 

Fuel Moisture 100-hour fuels (FM100) 
Standard moisture content of 100-hr fuel 
expressed as a percentage of dry weight. 

Fuel Moisture 1000-hour fuels (FM1000) 
Standard moisture content of 100-hr fuel 
expressed as a percentage of dry weight. 

Historic Mountain Pine Beetle Severity 
(MPB) 

A measure of MPB severity (0-1) for each grid 
cell (Assal et al., 2014). 
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Table 5.3. Regression models of the Relative difference normalized burn ratio (RdNBR) for each 
fire.  

Fire Name Predictor Variables n R2 

Red Bench Elev, TPI90, Slope90, MPB90, HLI, FM100, FM1000    25,956  0.722 

Adair-
Howling Elev, TPI, Slope, MPB180, HLI90, FM100, FM1000    11,149  0.671 

Anaconda Elev, TPI45, Slope, MPB90, HLI45, FM100, FM1000    11,748  0.756 

Parke Peak Elev, TPI90, Slope, MPB180, HLI, FM100, FM1000      2,085  0.537 

Moose Elev, TPI90, Slope, MPB180, HLI, FM100, FM1000    24,146  0.802 

Wolf Gun Elev, TPI90, Slope, MPB180, HLI45, FM100, FM1000      7,869  0.583 

Wedge 
Canyon Elev, TPI90, Slope90, MPB90, HLI45, FM100, FM1000    30,897  0.74 

Robert Elev, TPI45, Slope45, MPB, HLI, FM100, FM1000    40,580  0.697 

Middle Fork 
Complex Elev, TPI90, Slope45, MPB90, HLI, FM100, FM1000    11,986  0.639 

Rampage Elev, TPI45, Slope90, MPB, HLI, FM100, FM1000    21,287  0.598 

Red Eagle Elev, TPI45, Slope90, MPB90, HLI, FM100, FM1000    16,668  0.586 

Note: the numbers after the variables TPI, Slope, MPB and HLI refer to the scale (moving 
window size) of the variable that resulted in the best model fit. 
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Table 5.4. The standardized the regression coefficients for each fire model based on predictor 
variables used in Table 5.3.*P-value is significant at 0.05 or lower. 

Fire Elevation TPI  HLI  Slope FM100 FM1000 MPB 

Red Bench 0.1457* 0.0451* 0.0854* 0.1535* 0.2493* 0.2165* 0.1761* 

Adair-
Howling 0.0599 -0.0217*  0.1674*  0.0533* 0.0287 -0.0832* 

 
0.1784* 

Anaconda 
 0.3718* 0.06*  0.1121* -0.0112 -0.0583* -0.0079 

 
0.1003* 

Parke Peak 
 0.2522* 0.0171 0.0535 -0.0387 -0.0637 0.0116 

 
0.2315* 

Moose 
 0.4994*  0.0458*  0.0607* -0.0109 -0.0206* -0.0493* 

 
0.2761* 

Wolf Gun 
0.006  0.0898*  0.1899*  0.0982* -0.1369*  0.1386* 

 
0.1656* 

Wedge 
Canyon  0.4025*  0.0321*  0.0934* 0.0245 0.0228  -0.055* 0.09* 

Robert 
-0.0639*   0.037*  0.1111*  0.1494* -0.0065 -0.0458* 

 
0.0285* 

Middle Fork 
Complex   0.246*   0.088*  0.1288*  0.1057* 0.0077 -0.0917* -0.0199 

Rampage 
0.0386  0.0314*  0.0414* -0.0796* -0.0005 -0.0434 

 
0.0231* 

Red Eagle 
 0.1841*  0.0699*  0.0659* -0.2143* -0.1391*  0.1054* 

 
0.1059* 
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Figure 5.1. Location and extent of fires in the study area. 

 

 

Figure 5.2. Location of project analysis area. The location and extent of the historic mountain 
pine beetle disturbance (Assal et al., 2014) classified into three severity levels for areas that later 
burned (orange color ramp) and did not burn (green color ramp) in subsequent wildfire. 

 

 

 



167 
 

 

 

 

  
 

Figure 5.3. Comparison between measured and predicted burn severity. Example of measured 
(left) and predicted (right) burn severity in the Wedge Canyon fire. Note: measured burn severity 
from RdNBR (30 m resolution); predicted burn severity from the SAR model (60 m resolution).  
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Figure 5.4. The relationship between the effect size of beetle severity and time since outbreak for 
each fire (n=10).  
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Figure 5.5. The relationship between the effect size of beetle severity and the scale of beetle 
severity used in each model (n=10).  
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CHAPTER 6: Synthesis 
 
 

The overall goal of this dissertation was to investigate the ecological legacies of 

disturbance in two different ecosystems. A secondary objective of my research, data 

development, was motivated by a lack of available data which precluded ecological investigation 

of each disturbance. The findings of this research contribute new and detailed information 

applicable to both ecological theory and land management. I studied the effects of drought on 

deciduous and coniferous forest along a forest-shrubland ecotone in the southern portion of the 

Wyoming Basin. This study was undertaken because little is known about the baseline condition 

of forest in the area and specifically how drought affects forest in this topographically complex 

ecosystem. The results show that forests in the region have experienced high levels of drought 

related mortality over the last decade. Negative spectral trends were not consistent across forest 

type or distributed randomly across the study area. These patterns of long-term trends highlight 

areas of forest that are resistant, persistent and vulnerable to severe drought. In the second thread 

of my dissertation, I assessed the influence of an historic mountain pine beetle outbreak on 

wildfire in Glacier National Park. I addressed the current debate in disturbance ecology regarding 

linkages between beetle outbreak and the effect on wildfire. Specifically, I determined if beetle 

severity had a measureable influence on burn severity in the ensuing decades after the outbreak. 

Although a number of factors contribute to burn severity, the results indicated that beetle severity 

was positively correlated to burn severity in the majority of the fires I analyzed.  

 In chapter two I found highly dissected forest cover in the Little Mountain Ecosystem was 

best predicted using a combination of fine-scale topographic and spectral variables. Independent 

predictive models of the two major forest functional types were highly accurate and showed little 

overlap between the cover derived from the two models. The models were integrated into a  
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synthesis map with an overall classification accuracy of 87%, that identified 61.7 km2 of forest 

(56% coniferous, 44% deciduous). The results suggest my method adequately captures the 

functional type, size, and distribution pattern of forest cover in this spatially heterogeneous 

landscape. Furthermore, I considered spatial autocorrelation in our framework, which is often 

overlooked in species distribution modeling. Consideration of plant physiology and species 

traits, such as phenology, illuminates the ecological context of biophysical variables that were 

captured with leaf-on and leaf-off SPOT imagery. The study addresses the important 

management need of accurate cover maps of deciduous and coniferous forest characteristic of 

this region. To explore the utility of my findings, I compared my results with basic metrics of 

forest cover derived from several regional land cover datasets (Appendix A) and found high 

levels of disagreement between all datasets. The total area of forest type was generally 

overestimated by regional products, and my results identify the largest number of patches of each 

forest cover type and the smallest mean patch size. This has large implications on basic 

management questions regarding the extent and juxtaposition of forest cover in the study area. 

Ecological studies requiring highly accurate forest cover and plant functional type should 

consider using multi-temporal SPOT imagery to derive regionally specific land cover maps. 

Furthermore, this framework offers a powerful alternative to traditional image classification and 

utilizes open access aerial photos and satellite data. In this way, it is transferable to highly 

heterogeneous ecosystems to develop critical baseline tree cover data that can be updated at 

regular intervals to monitor the effects of disturbance and long-term ecosystem dynamics. 

In my study of drought effects, I found coniferous and deciduous forests in the southern 

portion of the Wyoming Basin ecoregion have experienced high levels of drought related 

mortality over the last decade. I analyzed multiple satellite derived indices and found the 
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Normalized Difference Vegetation Index best reflected conditions on the ground, most notably 

plant area index and canopy gap fraction of a plot. I used these empirical relationships to 

measure trends over time in moisture content as a proxy for canopy cover. Dense canopies have 

greater moisture content than sparse, open canopies and the moisture content will reflect changes 

in forest canopy cover over time. During the study period, 25% of the forested area experienced 

a statistically significant negative trend in canopy moisture, compared to less than 10% in a 

positive trend. The cumulative negative trend began in 2000 and increased with cumulative 

drought years. I found negative trends were not consistent across forest functional type as a 

larger amount of coniferous forest was impacted by negative trends than deciduous forest. 

Negative trends were not randomly distributed across the landscape as southern aspects were 

least likely to exhibit a negative trend and north aspects most prevalent. Using field collected 

information I concluded plots with a negative trend had a lower live density, and higher amounts 

of standing dead and down trees compared to plots with no trend. My analysis identifies spatially 

explicit patterns of long-term trends anchored with ground based evidence to highlight areas of 

forest that are resistant, persistent or vulnerable to severe drought. The results provide a much 

needed long-term perspective to local managers and offers an avenue to assess fine-scale trends 

in the forest-shrubland matrix. These results can be used to test hypotheses with regard to 

resistance, persistence and vulnerability of forests to drought and give insight behind the 

mechanisms of mortality. Many global and regional climate models do not currently take terrain 

into account, and my results show that bottom-up topographic controls are important during 

climatically driven drought. I believe this research gives insight to local managers where broad 

climate models do not: a cost effective avenue to delineate local areas that could benefit from 

targeted management.  
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The analysis in chapter four sought to overcome a data limitation that precluded deeper 

investigation of disturbance linkages.  The lack of spatially explicit data on this disturbance was 

both a major data gap and a critical research challenge in that wildfire fire had removed some of 

the evidence from the landscape. Using multiple lines of evidence, I developed a model of forest 

canopy mortality as a proxy for beetle outbreak severity. I mapped tree mortality in aerial photos 

and scaled-up the information to a time series of satellite images in order to track the beetle-

induced changes over time. I found a generalized least squares (GLS) model that utilized a time 

series of the Normalized Difference Vegetation Index and Green band best described the large-

scale variability of canopy change associated with mortality from outbreak. The GLS model was 

used to address spatial autocorrelation in the generalized linear model. I used the residuals of the 

GLS model to account for the small-scale variation in the data using binary regression trees. The 

combined model explained over 80% of the variability in the data and was used to create a 

continuous surface of beetle severity. The model identifies a gradient of mortality on the 

landscape using topographic variables and changes in spectral reflectance over time that 

confirms the outbreak was not homogenous across the landscape. My approach is of interest to 

the spatial ecology community because it demonstrates the value of Landsat MSS data to extend 

the moderate resolution imagery record back to the early 1970s. Given the availability of these 

data sources, the characterization of recent events will afford investigators a platform for future 

research of historical forest disturbance that would be beneficial to the field of forest ecology.  

In the final analysis, I found that beetle severity was positively correlated to burn severity 

in 10 of the 11 fires I analyzed. I used sequential autoregression (SAR) to obtain accurate 

estimates of model parameters given the high level of spatial autocorrelation associated with 

wildfire. I produced a model of predicted burn severity for each of the 11 fires using the SAR 
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modeling approach and variables known to influence fire severity. The models captured spatial 

patterns of high and low burn severity that are visibly similar to measured values and explained 

between 54% and 80% of the variability in the burn severity data. I evaluated the relationship at 

multiple spatial scales and determined the influence of the surrounding neighborhood for a given 

variable was dependant on conditions associated with each fire, although broad trends emerged. 

Elevation at local scales was a significant predictor in most models and typically had a large 

positive effect on burn severity. Areas located between mid-slope and the top of slope were more 

strongly correlated with higher levels of burn severity compared to valley bottoms. Locations in 

the study area with a higher heat load experienced higher burn severity. Fuel moisture showed 

mixed effects which were likely due to dry conditions across the study area at the time of fire and 

the coarse resolution of the data. Our results suggest the change in stand structure and 

composition associated with beetle outbreak severity had an effect on burn severity. This was 

likely due to the accumulation of ladder fuels in areas with high amounts of beetle activity. I 

considered several additional hypotheses, and found the effect of beetle severity on burn severity 

might be contingent on the patterns of severity at different scales. Fires where beetle severity was 

best predicted at broad scales tended to have a larger effect size compared to fires where beetle 

severity was best predicted at local scales. This suggests spatially continuous biomass and fuel 

conditions compared across broad scales can contribute to higher burn severity compared to 

areas with high heterogeneity of fuels. This study is unique because I included a continuous data 

set of beetle severity (developed in chapter four) and focused on the consequences of actual, 

instead of potential events. These results can help managers prioritize monitoring or restoration 

efforts. The spatial arrangement of the beetle outbreak and subsequent wildfire presented a 

unique opportunity to consider numerous wildfires as opposed to a single fire event. These 
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findings are of interest to the broader science community because observations are drawn from 

multiple fires which broaden the perspective on these compounded disturbances. The long-term 

perspective of our study shows that ecological legacies of prior high severity disturbance may 

continue to influence subsequent disturbance for many years after the initial event. This can 

provide insight on future disturbance interactions associated with the recent mountain pine beetle 

outbreak as much of the landscape impacted by the recent outbreak will enter the old mountain 

pine beetle phase in coming decades.  

 Collectively, the findings of my dissertation contribute new insight into the influence of 

several major disturbance types. The research in the Little Mountain Ecosystem advances our 

ability to measure disparate forest cover across the shrubland ecotone that might be inaccurately 

described by regional data. Results of the trend research contribute to the growing body of 

literature which indicates climate not only impacts forest demographics through extreme events, 

but also by less conspicuous events that might have cumulative impacts over a decadal 

timeframe. I developed a new method for reconstructing historic bark beetle outbreaks using 

multiple lines of evidence to characterize the severity of a disturbance that we did not know 

much about. Finally, my research contributes to our understanding of linkages between beetle 

outbreak and the ecological consequences of subsequent fire. Although many factors must be 

considered, my results indicate that beetle outbreaks have ecological legacies on ensuing forest 

disturbance for some time after the initial outbreak.     
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APPENDIX A : Supplementary Material for Mapping Forest Functional Type in a Forest-
Shrubland Ecotone (Chapter 2) 

 
 

Chapter 2 was published by the journal Remote Sensing Letters. However, due to space 

limitations of the journal I had to omit one of the objectives of this study which was to compare 

the results of our modeling framework with regional land cover data sets. I believe this 

comparison adds value to our analysis and is informative to readers so I chose to include it here. 

A.1 METHODS  

In order to compare our map with regional data, we reclassified NLCD, LANDFIRE and 

ReGAP data into deciduous forest, coniferous forest and non-forest (Tables A1-A3). We 

identified contiguous patches of forest cover using the same procedure as above. We calculated 

basic landscape metrics (total cover area, mean patch size and number of patches) to provide a 

simple, quantitative assessment of how each product characterized the forest cover of the study 

area.  

A.2 RESULTS 

The landscape metrics calculated from the regional data sources revealed high levels of 

disagreement between land cover products. LANDFIRE and ReGAP reported the most total area 

of deciduous forest with 44.3 km2 and 41.7 km2 respectively (Table A4). However, the 

LANDFIRE map has over five times the number of patches as the ReGAP map, resulting in a 

much smaller mean patch size. NLCD has the smallest amount of deciduous forest and the 

fewest patches. Our synthesis map had the most deciduous patches and the smallest mean patch 

size, with a total area between the high and low range of regional map products. Conversely, 

NLCD identifies the most coniferous forest in the study area (Table A4) with a large average 

patch size (0.073 km2). ReGAP and our map report similar total area (38.8 km2 and 34.4 km2 
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respectively) of coniferous forest. However, our synthesis map has nearly five times the number 

of patches and therefore a much smaller mean patch size. LANDFIRE reports far less coniferous 

forest, yet a high number of patches. 

A.3 DISCUSSION 

Our results show that fine-scale mapping is necessary to capture the spatial heterogeneity 

of deciduous and coniferous woodlands characteristic of this ecoregion (Figure A1B). Figure A1 

depicts a representative area on Little Mountain which highlights the small size of isolated forest 

patches of the study area (Figure A1A). The LANDFIRE map overestimates deciduous forest 

cover and contains many single pixels, inflating the number of patches (Figure A1C). The NLCD 

map underestimates deciduous forest (Figure A1D), whereas the ReGAP map overestimates 

deciduous forest at the expense of non-forest (Figure A1E). Native LANDFIRE data classifies 

significant portions of coniferous forest as shrubland, resulting in lower total area (Table A4, 

Figure A1C). NLCD reports a large area of coniferous forest, in part because it is the only 

product that does not differentiate between montane conifer species and less dense conifer 

woodland at lower elevations (Table A4).     

The results of the land cover comparison highlight the differences in land cover data that 

are currently available at regional scales (Figure A1C-E, Table A4). We acknowledge our 

comparison is biased since our model utilized finer scale data. It is not our intent to criticize 

regional land cover data products, rather we identify the differences in localized areas that 

exhibit high levels of spatial heterogeneity. Regional land cover products were developed with 

more coarse data (e.g. 30 m Landsat) at much greater spatial extents than our modeling and 

mapping process. However, in our highly heterogeneous study area, there is little agreement 

between the land cover data. Our methodology is capable of detecting both total forest cover as 



183 
 

well as the landscape juxtaposition of forest patches that are representative of this area (Figure 

A1B). We conclude that ecological studies requiring highly accurate forest cover and plant 

functional type should consider using multi-temporal SPOT imagery to derive regionally specific 

land cover maps.   
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Table A1. LANDFIRE reclassification crosswalk table. Version LF_1.3.0 (2012) was used in the 
analysis. 

Map Class LANDFIRE Exist ing Vegetation Type Name (EVT Code) 
Deciduous 
Forest 

Rocky Mountain Aspen Forest and Woodland (2011) 
Rocky Mountain Gambel Oak-Mixed Montane Shrubland (2107) 

Coniferous 
Forest 

Northern Rocky Mountain Subalpine Woodland and Parkland (2046) 
Rocky Mountain Lodgepole Pine Forest (2050) 
Southern Rocky Mountain Dry-Mesic Montane Mixed Conifer Forest and 
Woodland (2051) 
Southern Rocky Mountain Ponderosa Pine Woodland (2054) 
Rocky Mountain Subalpine Dry-Mesic Spruce-Fir Forest and Woodland (2055) 
Middle Rocky Mountain Montane Douglas-fir Forest and Woodland (2166) 
Rocky Mountain Poor-Site Lodgepole Pine Forest (2167) 

 

Table A2. NLCD reclassification crosswalk table. Version NLCD 2011 was used in the analysis. 
Map Class NLCD Classification Description (Class Value) 
Deciduous 
Forest 

Deciduous Forest (41) 
Mixed Forest (43) 

Coniferous 
Forest 

Evergreen Forest (42) 

 

Table A3. ReGAP reclassification crosswalk table. Version 2 ReGAP data (2011) was used in 
the analysis. 
Map Class ReGAP Ecological System Description (Level 3 Code) 
Deciduous 
Forest 

Rocky Mountain Aspen Forest and Woodland (4111) 

Coniferous 
Forest 

Inter-Mountain Basins Aspen-Mixed Conifer Forest and Woodland (4324) 
Northern Rocky Mountain Dry-Mesic Montane Mixed Conifer Forest (4524) 
Rocky Mountain Lodgepole Pine Forest (4527) 
Southern Rocky Mountain Dry-Mesic Montane Mixed Conifer Forest and 
Woodland (4528) 
Rocky Mountain Subalpine Dry-Mesic Spruce-Fir Forest and Woodland (4531) 
Middle Rocky Mountain Montane Douglas-fir Forest and Woodland (4543) 
Northern Rocky Mountain Mesic Montane Mixed Conifer Forest (4609) 
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Table A4.  Results of the land cover comparison between the synthesis map and regional data 
products.  

Product 

Deciduous Forest Coniferous Forest 

Total Area 
(km2) 

No. of 
Patches 

Mean Patch 
Size (km2) 

Total Area 
(km2) 

No. of 
Patches 

Mean Patch 
Size (km2) 

Synthesis 
Map 27.2 

7110 
0.004 

34.5 2362 0.015 

LANDFIRE  44.3 6518 0.007 13.7 2001 0.007 

NLCD 15.4 812 0.019 86.7 1192 0.073 

ReGAP 41.7 1223 0.034 38.8 496 0.078 
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Figure A1. Comparison of forest type maps derived from each data source of a representative 
area of the landscape on Little Mountain. Note: each map panel is displayed at the same scale; 
tick marks are spaced at 30 second intervals. (A) 2009 color-infrared aerial photo (National 
Agriculture Imagery Program). Dark red/black hues indicate coniferous forest; red hues indicate 
deciduous forest; grey/light red/blue hues represent non-forest, (B) USGS synthesis map, (C) 
LANDFIRE map, (D) NLCD map, and (E) ReGAP map. 

  



187 
 

APPENDIX B: Supplementary Material for Modeling a Historical Mountain Pine Beetle 
Outbreak Using Landsat MSS and Multiple Lines of Evidence (Chapter 4) 

 
 

This appendix contains information on the geometric correction, calibration, atmospheric 

correction and image normalization procedures applied to the Landsat MSS imagery used in the 

analysis in Chapter 4. 

B.1 GEOMETRIC CORRECTION  

Twenty GCPs were established to compare the spatial accuracy between the 2009 NAIP 

photo and a 2010 Landsat Thematic Mapper (TM) image of the study area. We used the 

AutoSync module in Erdas Imagine to georectify the image to the 2009 photo (RMSE < 0.5 

pixel). The process was repeated to georectify each of the nine Landsat MSS images to the 2010 

TM image. Each MSS image had an RMSE < 0.4 pixel and was resampled to 30 m during the 

georectification process using a nearest neighbor transformation to minimize geometric offsets in 

the image stack (Goodwin et al., 2008). However, the spatial resolution of the data is still 

considered 60 m.      

B.2 CALIBRATION  

Radiometric calibration of imagery is an important step for creating a consistent, high-

quality temporal image series. We converted the four bands of each image from Digital Numbers 

to absolute units of at-sensor spectral radiance using the formula (Chander et al., 2009): 

Lλ = (LMAX λ – LMIN λ / Qcalmax – Qcalmin) * (Qcal – Qcalmin) + LMINλ           (1)  

where 

Lλ = Spectral radiance at the sensor’s aperture [W/(m2 sr µm)]   

Qcal = Quantized calibrated pixel value [DN] 

Qcalmin = Minimum quantized calibrated pixel value corresponding to LMINλ [DN]  
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Qcalmax = Maximum quantized calibrated pixel value corresponding to LMAXλ [DN]  

LMIN λ = Spectral at-sensor radiance that is scaled to Qcalmin [W/(m2 sr µm)]   

LMAX λ = Spectral at-sensor radiance that is scaled to Qcalmax [W/(m2 sr µm)]   

 

The spectral radiance values were converted to Top-Of-Atmosphere (TOA) reflectance  

to account for differences in sensor and viewing angle using the formula (Chander et al., 2009):  

ρλ = π * Lλ * d
2 / ESUNλ * cosθs                   (2)  

where 

ρλ = Planetary TOA reflectance [unitless] 

π = Mathematical constant equal to ~3.14159 [unitless]  

Lλ = Spectral radiance at the sensor’s aperture [W/(m2 sr µm)]   

d = Earth-Sun distance [astronomical units] 

ESUNλ = Mean exoatmospheric solar irradiance [W/(m2 µm)]   

θs = Solar zenith angle [degrees] 

 

Inputs used in the formulas above were supplied by the header file (.MTL) for each scene 

and Chander et al. (2009). 

B.3 ATMOSPHERIC CORRECTION  

Each image was snapped to the reference image (1979 image) in ArcGIS to ensure each 

30 m pixel for every year was exactly congruent with the master image. An absolute 

normalization was applied to the 1979 master image using a dark object subtraction technique 

(Chavez 1988). The minimum pixel value of each band (recorded in at least 1000 pixels), 

representing deep glacial lakes and shadows, was identified (Chavez, 1996). The theoretical 



189 
 

radiance of a dark object is assumed to have 1% reflectance (Chavez, 1996; Moran et al., 1992) 

so the minimum identified pixel value was multiplied by 0.99 to generate the presumed dark 

object of each image band. 

B.4 RELATIVE NORMALIZATION  

The remaining images were normalized to the master image using a relative 

normalization technique. This procedure removes non-surface noise and improves the temporal 

homogeneity between images so that spectral change associated with surface phenomena can be 

detected (Yuan and Elvidge, 1996). Psuedo-Invariant Features (PIFs) are targets in each image 

that are not expected to change between image dates (Schott et al., 1988). Relative normalization 

is based on the assumption that a linear relationship exists between the reference image and the 

image to be normalized (Schott et al., 1988; Yuan and Elvidge, 1996). This technique has been 

applied in many studies to analyze vegetation change (Bradley and Fleishman, 2008; Schroeder 

et al., 2006; Vicente-Serrano et al., 2008). We identified 60 PIFs that encompassed a range of 

pseudo-invariant reflectance values in each band. Each PIF was 32,400 m2 in size; equivalent to 

a 3x3 block of 60 m Landsat MSS pixels. The mean of the reflectance values at these sites were 

used to fit an ordinary least squares regression model between the image to be normalized for 

each year and the reference image for each of the four bands. We tested the residuals for spatial 

autocorrelation using the Moran’s I statistic and the Likelihood Ratio Test (Legendre and Fortin, 

1989). Inverse distance was used to define the neighborhood structure of the spatial weights 

matrix. If spatial autocorrelation was detected, a spatially autoregressive model was used to fit 

the data (Cressie, 1993). In all cases, the fit of lines used to spectrally align the images had R2 

values > 0.92. Statistical analysis was conducted using the r package (R Development Core 

Team, 2013) and the linear regression was applied to each image in Erdas Imagine.   
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APPENDIX C : Supplementary Material for Investigation of Mountain Pine Beetle 
Outbreak and Burn Severity (Chapter 5) 

 
 

This appendix contains tables of coefficients, standard errors and P values for the 

sequential autoregression (SAR) models for each fire analyzed in Chapter 5. The coefficients 

presented in this appendix are the unstandardized regression coefficients associated with the 

model for each fire. The regression coefficients presented in Table 5.4 have been standardized. 

C.1 RESULTS 

Table C1. Sequential autoregression models of burn severity (RdNBR) for the Red Bench fire.  

Variable β SE P value 

Intercept -1173.70 219.82 < 0.001 

elev 0.35 0.10 < 0.001 

tpi90 46.22 6.25 < 0.001 

slope90 9.58 1.06 < 0.001 

mpb90 318.13 19.87 < 0.001 

hload 441.78 39.92 < 0.001 

FM100 -53.20 8.99 < 0.001 

FM1000 107.48 20.45 < 0.001 

Table C2. Sequential autoregression models of burn severity (RdNBR) for the Adair-Howling 
fire. 

Variable β SE P value 

Intercept -537.31 163.81 0.001 

elev 0.13 0.10 0.197 

tpi -6.20 1.54 < 0.001 

slope 2.46 0.57 < 0.001 

mpb180 488.02 75.76 < 0.001 

hload90 678.75 82.74 < 0.001 

FM100 2.90 3.05 0.342 

FM1000 -8.20 3.84 0.033 
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Table C3. Sequential autoregression models of burn severity (RdNBR) for the Anaconda fire. 

Variable β SE P value 

Intercept -1722.74 278.46 < 0.001 

elev 1.25 0.16 < 0.001 

tpi45 33.26 3.03 < 0.001 

slope -0.69 0.62 0.261 

mpb90 202.52 28.43 < 0.001 

hload45 802.65 73.38 < 0.001 

FM100 -18.13 5.88 0.002 

FM1000 -4.54 18.55 0.807 

Table C4. Sequential autoregression models of burn severity (RdNBR) for the Parke Peak fire. 

Variable β SE P value 

Intercept -54.08 346.31 0.876 

elev 0.43 0.19 0.022 

tpi90 7.23 11.74 0.538 

slope -1.05 1.32 0.426 

mpb180 385.02 122.49 0.002 

hload 81.27 87.08 0.351 

FM100 -27.61 44.35 0.534 

FM1000 2.38 20.84 0.909 

Table C5. Sequential autoregression models of burn severity (RdNBR) for the Moose fire. 

Variable β SE P value 

Intercept -794.08 151.38 < 0.001 

elev 1.04 0.09 < 0.001 

tpi90 34.13 3.96 < 0.001 

slope -0.44 0.38 0.248 

mpb180 560.23 45.28 < 0.001 

hload 219.69 24.99 < 0.001 

FM100 -8.38 3.84 0.029 

FM1000 -27.36 7.45 < 0.001 
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Table C6. Sequential autoregression models of burn severity (RdNBR) for the Wolf Gun fire. 

Variable β SE P value 

Intercept -259.250 152.940 0.090 

elev 0.008 0.076 0.917 

tpi90 32.291 5.112 < 0.001 

slope 2.796 0.500 < 0.001 

mpb180 214.110 65.417 0.001 

hload45 404.700 43.684 < 0.001 

FM100 -14.264 5.892 0.015 

FM1000 30.377 11.842 0.010 

Table C7. Sequential autoregression models of burn severity (RdNBR) for the Wedge Canyon 
fire. 

Variable β SE P value 

Intercept -326.19 121.42 0.007 

elev 0.57 0.05 < 0.001 

tpi90 20.03 3.53 < 0.001 

slope90 0.93 0.71 0.192 

mpb90 144.80 17.37 < 0.001 

hload45 309.71 30.32 < 0.001 

FM100 5.53 4.32 0.200 

FM1000 -31.15 12.57 0.013 

Table C8. Sequential autoregression models of burn severity (RdNBR) for the Robert fire. 

Variable β SE P value 

Intercept 583.27 142.50 < 0.001 

elev -0.10 0.05 0.026 

tpi45 10.58 0.92 < 0.001 

slope45 4.82 0.32 < 0.001 

mpb 32.45 5.33 < 0.001 

hload 280.21 18.64 < 0.001 

FM100 -1.32 4.53 0.771 

FM1000 -31.53 15.40 0.041 
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Table C9. Sequential autoregression models of burn severity (RdNBR) for the Middle Fork 
Complex fire. 

Variable β SE P value 

Intercept 233.53 171.35 0.173 

elev 0.26 0.06 < 0.001 

tpi90 27.17 3.08 < 0.001 

slope45 2.52 0.43 < 0.001 

mpb90 -18.82 25.91 0.467 

hload 189.88 18.72 < 0.001 

FM100 1.18 5.58 0.832 

FM1000 -44.34 19.38 0.022 

Table C10. Sequential autoregression models of burn severity (RdNBR) for the Rampage fire. 

Variable β SE P value 

Intercept 920.32 233.82 < 0.001 

elev 0.05 0.05 0.289 

tpi45 7.74 1.23 < 0.001 

slope90 -2.85 0.81 < 0.001 

mpb 43.69 15.51 0.005 

hload 80.59 26.15 0.002 

FM100 -0.27 9.98 0.978 

FM1000 -42.38 27.72 0.126 

Table C11. Sequential autoregression models of burn severity (RdNBR) for the Red Eagle fire. 

Variable β SE P value 

Intercept 114.36 226.28 0.613 

elev 0.28 0.06 < 0.001 

tpi45 18.73 1.56 < 0.001 

slope90 -6.81 0.81 < 0.001 

mpb90 172.60 34.45 < 0.001 

hload 150.45 28.75 < 0.001 

FM100 -70.73 17.31 < 0.001 

FM1000 58.14 21.51 0.007 
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