
THESIS

STUDENT RESPONSE TO TEACHING OF MEMORY CUES AND RESUMPTION

STRATEGIES IN COMPUTER SCIENCE CLASSES

Submitted by

Noah John

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Spring 2015

Master’s Committee:

Advisor: Jaime Ruiz

Wim Böhm
Ed DeLosh

Copyright by Noah John 2015

All Rights Reserved

ABSTRACT

STUDENT RESPONSE TO TEACHING OF MEMORY CUES AND RESUMPTION

STRATEGIES IN COMPUTER SCIENCE CLASSES

Programming is a creative process that requires the ability to concentrate and juggle

multiple concepts simultaneously in one’s mind. Existing research shows there is a tangible

cost when a programmer is interrupted as the programmer must recover the context of his

work and refocus on the task at hand. However, computer science (CS) students are rarely

taught about interruptions and how to manage them. Instead, teaching tends to focus only

on technical concepts. In addition, there is little research on interruptions with respect to

CS students. Therefore, our research examines what happens when CS students are taught

about interruptions and how to cope with them.

The objective of this research is to determine if CS students are affected by interruptions,

what knowledge CS students possess regarding memory cues and resumption strategies, and

what their opinion is of this material. To answer these questions, we began by conducting a

pilot study with fifteen students that consisted of an initial questionnaire, a seminar on mem-

ory cues and resumption strategies, and a follow-up questionnaire. After positive findings,

we conducted a user study with approximately two-hundred undergraduate CS students.

Our user study was comprised of a modified initial questionnaire, an identical seminar on

memory cues and resumption strategies, and a modified follow-up questionnaire. Our re-

sults demonstrate that CS students are affected by interruptions, but 73% of students report

not knowing methods to mitigate them. After learning about memory cues and resumption

strategies, students report that the material is useful and that they want to study it. Their

most significant feedback is that they have a strong desire to include these techniques in CS

ii

curriculums, reporting a mean score of 7.78 out of 10, where 0 signifies strong disagreement

and 10 signifies strong agreement.

iii

ACKNOWLEDGEMENTS

I would like to thank the participants of the study for their time, the generous Colorado

State University faculty for opening the door to their classrooms, Dr. Jamie Ruiz for his

guidance, and my colleagues for providing thoughtful feedback. I want to thank Dr. Wim

Böhm and Dr. Ed DeLosh for taking the time and making the effort to be on my committee.

In addition, I want to thank my great friends David Pilo, Jacob Skubal, and Rusty Dyer for

making me laugh and keeping my ego in check. Finally, I must thank my parents – you guys

are the best.

This thesis is typset in LATEX using a document class designed by Leif Anderson.

iv

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS. iv

LIST OF TABLES . vii

LIST OF FIGURES. viii

Chapter 1. Introduction . 1

Chapter 2. Background . 4

2.1. Interuption cost and effects . 4

2.2. Reasons for interruptions. 5

2.3. Interruption recovery. 6

2.4. Coordinating interruptions . 7

2.5. Specialized interruption research . 8

Chapter 3. Pilot Study . 9

3.1. The initial questionnaire . 9

3.2. The seminar on memory cues and resumption strategies . 10

3.3. The follow-up questionnaire . 15

3.4. Results . 16

3.5. Discussion . 24

Chapter 4. User Study . 27

4.1. The initial questionnaire . 28

4.2. The seminar on memory cues and resumption strategies . 29

4.3. The follow-up questionnaire . 29

v

4.4. Results . 29

4.5. Discussion . 35

Chapter 5. Limitations . 38

Chapter 6. Future work . 39

Chapter 7. Conclusion . 40

Bibliography . 42

vi

LIST OF TABLES

3.1 Pilot study: Summary of answers to part one of the initial questionnaire. 16

3.2 Pilot study: Summary of answers to part one of the follow up questionnaire. 22

3.3 Pilot study: Summary of answers to part two of the follow up questionnaire. 22

4.1 User study: Top contributors to productive/unproductive work for CS students. . . 30

4.2 User study: Summary of answers to part one of the follow-up questionnaire. 32

4.3 User study: Summary of answers to part two of the follow-up questionnaire.. 33

4.4 User study: Results of Analysis of Variance tests on the quantitative self-reported

responses from the follow-up questionnaire. 35

vii

LIST OF FIGURES

3.1 Example of continuous rating scale question from follow-up questionnaire. 16

4.1 User study: Student responses to the question “Do you do anything prior to

stepping away from an assignment that helps you refocus when you return?” 31

4.2 User study: Blox plot of follow-up answers . 32

viii

CHAPTER 1

Introduction

Computer science (CS) students are taught a myriad of topics over the course of their

education. In an undergraduate curriculum, it is common to see classes on programming

languages, programming paradigms, data structures, algorithms analysis, and operating sys-

tems. As a student, it is important to learn the fundamental concepts taught in these classes

to become a knowledgeable software engineer. Furthermore, a large portion of the work

CS students do is programming-related. Whether the language is Java, C++, Scheme, or

assembly, programming represents a majority of a CS student’s homework and often times

is the primary benchmark for a student’s performance. And while the technical details

and concepts, such as object hierarchy or C++ pointer syntax, are conveyed to students in

class, significantly less is conveyed about the art of programming. At its core, programming

requires strong logical reasoning, the knack for solving problems, and smart design skills.

However, it is also a creative process that requires the ability to concentrate and juggle mul-

tiple concepts simultaneously. Additionally, there is a tangible cost when a programmer is

interrupted as the programmer must recover the context of his work and refocus on the task

at hand. On average, industry software engineers need fifteen minutes to recover from an

interruption and return to a focused and productive state [1]. While there has been extensive

research on the topic of interruptions, their effects, and methods for minimizing their impact

[2], very little has reached CS curriculums.

In contrast, consider an English curriculum. One of its goals is to produce proficient

and eloquent writers capable of composing various types of prose. Writing is recognized as

a creative process that requires concentration and the managing of multiple ideas at the

1

same time. English students, along with a majority of the general public, are familiar with

the term “writer’s block”, which refers to a condition when an author is unable to produce

new material. Furthermore, writing teachers dedicate some of their time to discussing this

barrier and how to overcome it. Informal discussion of techniques and experiences has been

deemed useful by the writing community and writer’s block is one of the concepts covered

in an English curriculum. While writer’s block is not analogous to a programmer being

interrupted and then having to resume a task, there are parallels. In both cases, the person

is unproductive for a period of time and must find a way to overcome this state. Additionally,

as a writer must remember his train of thought, a programmer must recover his context and

his intended next step. We discuss these topics with English students. But how would CS

students react if they were taught about interruptions and how to cope with them?

The objective of this thesis is to determine if CS students are affected by interruptions,

what knowledge students possess regarding memory cues and resumption strategies, and

what their opinion is of learning this material. We began by conducting a pilot study of 15

undergraduate students. First, we surveyed their programming habits, their work, and their

previous knowledge on memory cues and resumption strategies. Next, we gave a seminar

on interruptions, memory cues, and resumption strategies to these same students. Finally,

after their subsequent programming assignment, we conducted a follow-up survey to gather

their opinions on the seminar and examine if it had any perceived effect on their work.

Encouraged by a positive self-reported effect of the seminar in the pilot study, we conducted

a more formal user study with approximately two-hundred undergraduate CS students of

varying ages, class standing, and programming experience over the course of half a semester.

The user study results demonstrate that CS students are affected by interruptions and

that they report the same resumption lag as industry engineers. We also see that 73% of

2

students report not knowing about memory cues and resumption strategies. Finally, we find

that students believe the material is useful and have a strong desire to learn these techniques.

3

CHAPTER 2

Background

There has been extensive research examining the effects of interruptions on productiv-

ity. A critical and foundational paper was published by McFarlane and Latorella [3] which

thoroughly reviewed existing literature to argue its fundamental place in HCI research and

how vitally important it is to understand interruptions and their effects as technology con-

tinues to evolve. They began by analyzing three application domains to show the necessity

for considering interruptions in informed design decisions. They continued by summarizing

their respective research that formalized and categorized interruptions with respect to tasks

and summarizing their respective research into managing interruptions. They ultimately

concluded with a discussion of existing strategies for mitigating the cost of interruptions and

proposed that UI design was the most promising strategy, hence the importance of interrup-

tion research in HCI. Generally, research falls into four areas: interruption cost and effects,

reasons for interruptions, interruption recovery, and coordinating interruptions. These four

areas are summarized below.

2.1. Interuption cost and effects

One area of research has centered on the cost and effects of interrupting a person per-

forming a task. Adamczyk and Bailey [4] conducted a user study to determine which are

the least costly moments to interrupt someone’s task. They found the best moments to

interrupt a person were when the person was switching between well-understood and defined

tasks. Hodgetts and Jones [5] [6] studied the effect of interruptions during different points

in a problem-solving process. Their results showed that brief interruptions still disrupted

workers and longer interruptions produced a stronger negative effect on workers. In addition,

4

they found the period between being alerted to an interruption and reacting to an interrup-

tion was critical to workers as it could be used to encode cues that aid task resumption later.

They then leveraged these findings to inform the design of an attention manager system [4].

Robertson et al. [7] studied the effects of immediate-style interruptions and negotiated-style

interruptions on users debugging spreadsheet errors. Immediate-style interruptions are in-

terruptions that require user action. Conversely, negotiated-style interruptions were defined

in McFarlanes classification of interruptions [8] as interruptions that inform the user of a

pending message but do not force them to acknowledge it immediately. Comparing the two

styles, Robertson et al. found that negotiated-style were more effective.

Iqbal and Bailey [9] identified concepts from cognitive psychology that could be used

to estimate the Cost of Interruption (COI) and Salvucci et al. [10] proposed a theoretical

framework for defining the states of a multitasking continuum which included the states

of interruption and resumption. Marulanda-Carter and Jackson [11] studied e-mail usage

in a large international car rental company, measuring how e-mail interruptions affected

productivity and the prevalence of e-mail addiction. They found between 12-15% of workers

were e-mail addicts and that e-mail interruptions caused tasks in their study to require a

third more time to complete.

2.2. Reasons for interruptions

Some researchers have studied the reason for interruptions by observing the behaviors

of people in an office and noting interruptions and their motivations. Czerwinski et al.

[12] conducted a diary study of eleven experienced office software users and found that

“returned-to” tasks were most difficult to switch to, required the most time to complete, and

experienced the most interruptions (due to the task length). Szstek and Markopoulos [1]

5

observed the behaviors of people in an office and noted interruptions and their motivations.

The study focused on face-to-face communication and highlighted factors such as urgency,

employee hierarchy, and perceived availability.

Harr and Kaptelinin [13] thoroughly summarized existing research of interruptions and

underlined the lack of attention paid to the social component of interruptions and the various

dynamics that are in play. The paper identified four variables that affected the likelihood

of an interruption occurring and proposed four related “ripple effects” that add additional

cost to an individual interruption. In follow-up work, Harr and Kaptelinin [14] verified the

effect of social context in a person’s decision to interrupt someone else.

Jett and George [15] defined four types of interruption: intrusion, break, distraction, and

discrepancy and detailed the positive and negative consequences for the interrupted person.

Jin and Dabbish [16] defined a typology for self-interruptions. They ultimately identified

seven types of self-interruption: adjustment, break, inquiry, recollection, routine, trigger,

and wait. For each type, they observed their effects and duration.

2.3. Interruption recovery

Another area of research has been how one recovers from an interruption. Altmann and

Trafton [17] studied the recovery process of users that were interrupted during the course of

playing a computer strategy game and Jackson et al. [18] looked at the recovery time for

e-mail interruptions of users of Microsoft Outlook in a software company.

There have been GUI prototypes that attempted to intelligently alert and interrupt the

user (where the software itself has to interrupt the user) while assisting the user in quickly

resuming his previous task after dealing with the interruption [19] and a prototype program

that helps users organize related items on the Windows taskbar [12].

6

Parnin and DeLine [20] conducted a survey of software engineers to compile a list of

cues that programmers use to resume a task that had been interrupted and then tested the

usefulness of three memory cues: note-taking, a content timeline, and a degree-of-interest

(DOI) treeview. Results showed programmers favored the content timeline overall, but found

the DOI treeview useful for source code tasks. In follow-up research, Parnin and Rugaber

[21] looked at the techniques and strategies programmers use to resume an interrupted task.

They found only 10% of programmers resumed coding in less than and minute and the

remaining 90% typically needed 5-45 minutes to resume. Resuming involved performing

non-coding activities to help regain task context before coding again.

2.4. Coordinating interruptions

The notion of coordinating interruptions is rooted to research done by Latorella [22] and

McFarlane [2] where “coordinating interruption” was defined as the method one takes in

interrupting someone’s task. McFarlane [2] empirically evaluated four methods (immediate,

negotiated, mediated, and scheduled) for coordinating interruptions and its results suggested

that a method’s effectiveness depended on the nature of the task being interrupted. He then

built on this paper to evaluate four UI design solutions for coordinating interruptions [8].

Gievska et al. [23] looked at computer-mediated coordination and conducted an experi-

ment that compared the performance of users that were interrupted randomly to that of users

that were interrupted strategically using an interruption mediator. This paper established

that workers were less distracted, were less annoyed, and found their work more manageable

with mediated interruptions. Also, Kern et al. [24] had their study participants rank the

personal and social disturbance level of various interruptions in differing environments. He

then experimented with sensors to evaluate a person’s personal and social interruptability

7

and achieved a 98.1% recognition score for social interruptability. Palanque et al. [25] ana-

lyzed interruptions using model-based analytical techniques that could be used in designing

interruption-tolerant systems. To demonstrate, the authors used a case study to compare

two interaction techniques, Speak and Drop and Drag and Drop, and found the latter was

more resistant to interruptions.

2.5. Specialized interruption research

In parallel to the topics already mentioned, in should be noted that a significant portion

of research into interruptions focuses on two disciplines: software engineering [26] [20] [21]

[7] [27] and e-mail usage [18] [11].

We were unable to find research that investigated the resumption lag of CS students or

the effect of teaching them about interruptions. This formed the basis of our motivation to

pursue this study.

8

CHAPTER 3

Pilot Study

Our pilot study had three components: an initial survey, a seminar on memory cues

and resumption strategies, and a follow-up survey. The study involved 15 undergraduate

computer science students (12 male, 3 female) attending Colorado State University (CSU).

All students were enrolled in the course, CS253: Problem Solving with C++, which is the

final course of the five-course programming sequence that all students begin with in the

computer science curriculum in the CSU CS department. In addition to teaching students

C++, the course serves to complete the process of training a professional programmer, which

is the objective of the five-course programming sequence. Students in the class were given

the opportunity to volunteer in the study and take a seminar, but they were not told what

the seminar’s topic was, only that it was related to computer science. Those that elected to

participate were not compensated.

3.1. The initial questionnaire

The first questionnaire was given at the beginning of the seminar and consisted of 13

questions. Students completed the survey in 5 to 10 minutes.

The first four questions focused on productive and unproductive sittings during a pro-

gramming assignment. A ‘sitting’ was defined as the period of time a student works on an

assignment at one time without taking breaks (i.e. a student ‘sits down’ to do work, and

‘gets up’ to take a break). Students were asked about sitting length and what caused a

sitting to be productive or unproductive.

The next three questions dealt with the concept of being ‘in the zone’, which is an

informal description for being in a highly focused and productive state. Students were asked

9

how long it took them to get in the zone when starting and resuming an assignment and

how long they could typically stay in this state.

Questions 8, 9, and 10 asked students about their programming habits and focused on

what they did to concentrate while programming. They were asked how they went about

beginning and resuming a programming assignment and if they did anything to maintain

focus while programming.

Finally, as a nod to the pending seminar, students were asked specifically whether they

did anything prior to stepping away from programming that helped them refocus faster when

they resumed working and if they had heard or read about memory cues and resumption

strategies.

Once the questionnaires were competed, the seminar started.

3.2. The seminar on memory cues and resumption strategies

Each participant attended one seminar. In order to accommodate the fifteen participants’

schedules, there were five seminars held by the same instructor. There were one to four

participants in each seminar. The format was informal, students were encouraged to interrupt

with questions, and a white board was heavily used by the instructor. All seminars covered

the same material, and lasted 30 to 40 minutes depending on the number of student questions.

3.2.1. Effect of Interruptions. The seminar began with the instructor asking stu-

dents about their knowledge of memory cues and resumption strategies, which was immedi-

ately followed by the instructor introducing the fact that there had been extensive research

into the effect of interruptions and their cost to programmers. The major fact highlighted

was that research had shown, on average, a programmer requires 15 minutes to refocus after

being interrupted.

10

3.2.2. Memory Cues and Resumption Strategies. The instructor continued by

describing various types of interruptions: in-person questions, phone calls, text messages,

emails, social media alerts, and self-imposed breaks (like going to the bathroom or getting

food). Then, he introduced the fact that, in addition to the research on the effect of in-

terruptions, there had also been research that had asked programmers how they minimize

the effect of interruptions. Students were told that memory cues and resumptions strategies

were ways programmers refocus faster. While they were shown to be helpful, there was no

one technique that was better than another. Choosing a useful technique depended on the

programmer’s personal preferences. Hence, according to the instructor, the goal of seminar

was to share some of those techniques with students.

3.2.3. Brain Dump. Before going into specific memory cues and resumption strategies,

the instructor first discussed the high-level idea behind them, which he called a ‘brain dump’.

“At its core,” he said,“the idea is to dump the contents of your brain before you stop

working in such a way that you can easily digest it and reload it into your brain when you

resume. This is analogous with what an operating system does when it switches processes;

it saves off (or dumps) the values of all the memory registers of the current process so its

state is saved for when it runs again. While this example is very mechanical, conceptually

it parallels this notion of a brain dump.”

3.2.4. Resist Coordinating Interruptions Immediately. The instructor also stressed

that, whenever possible, students should resist the temptation to address an interruption im-

mediately and take a short period of time (even a few seconds would suffice) to do something

that could help them refocus faster when they resumed. As an example, he mentioned that

when asked a question while working, students could reply “give me a few moments” and

11

use the time to mark their work and progress, as this could be helpful to them, yet also

acceptable in the social context.

3.2.5. Note Taking. The first technique presented was note taking. “Notes can assume

different forms,” the instructor said. “They can be a list on a piece of paper or a collection

of diagrams. It completely depends on the preference and style of the programmer.”

He continued with a personal example, “When I worked in industry, I had a whiteboard

at my desk. I would maintain an ordered list of tasks and reminders to help keep my focus.

I would go so far as to give commands to my ‘future-self’. For example, I would write

something like ‘after lunch, look at the file player.cpp and add speed logic on line 198 in the

function MovePlayer()’. Many times, when following one of my directions, I would start by

wondering why I wrote what I did, only to realize and remember thirty seconds later.”

3.2.6. Code Commenting. The next technique covered was commenting code. While

at first glance this seemed identical to note taking, the instructor pointed out that code

commenting is sometimes preferred by programmers because it gives them the ability to

annotate within the context of the code itself. They can insert TODOs without having to

describe where in code to work. They can use pseudo-code to quickly outline an algorithm

while it is fresh in their mind. They can scaffold entire blocks of code before actually

implementing them, and use the scaffold to direct their work. The instructor also mentioned

that commenting code has the advantage of being something quick and dirty for marking

progress, but can be less effective if the memory cues need to cover multiple source files

and/or if the editor has to be closed. A programmer might not remember what he or she

commented before leaving, and hence not benefit from the comments when resuming.

12

3.2.7. Window Arrangement. Continuing that thread, the next technique was spa-

tial window arrangement. The technique involved positioning all relevant windows (code

editors, compiler output, internet reference material, etc.) in a way that highlighted the

task at hand and the current state of the programmer’s work. The instructor commented

that this was a risky strategy because it assumed the computer’s state would not change and

because there were many ways the position of the windows could be disrupted without the

programmer’s control or knowledge. However, depending on the format of the information in

each window and the ability of the programmer to associate position with the information’s

priority, it could serve as a good visual memory cue for remembering the previous work state.

3.2.8. Roadblock Cues. Roadblock cues were the next technique introduced in the

seminar. This term was used by Parnin [21], and usually refers to when a programmer

intentionally inserts a compile error into his code before turning his attention away from his

work. Then, upon returning to work, the programmer compiles out of habit to help regain

his context. In addition to presenting students this example, the instructor also pointed

out how this technique does not rely on the programmer’s workspace to be static during

a break. The goal of mentioning this detail was to impart the differences among various

memory cues and resumption strategies so students could better evaluate which ones could

suit their programming style.

3.2.9. Selective Suspension. The final technique focused on selecting a good moment

to stop working. Borrowing from a technique Ernest Hemingway employed as a writer [28],

students were told that some find it advantageous to avoid stopping at the end of something

(e.g. in the case of writers, after completing a chapter) and instead of stopping in the middle

of something. Meaning, if a student finished a task, it followed that he should begin the next

13

task before ultimately stepping away. The logic behind this technique is that it is easier for a

person in the middle of a task to remember what he was doing and harder for a person that

has finished a task to remember what he did and determine what the next step should be. To

relate to programming work, the instructor likened a chapter in a book to an encapsulated

chunk of code in a program.

3.2.10. Student Questions. Given the informal nature of the seminar, students asked

questions and other related topics were covered. One topic that was discussed in all the

seminars was using white noise to help maintain focus while programming. Another topic

that came up was the use of rituals to help prime the brain. By establishing a habit when

performing a task, one could associate this ritual with a given task and thus facilitate a

certain mindset by performing the ritual. The instructor did not affirm or deny the validity

of the related topics that arose during discussions in the seminar.

3.2.11. Concept Maps. To conclude the seminar, the instructor introduced partici-

pants to concept maps and their relation to the brain. To start, he wrote the course name

‘CS253’ on a whiteboard and asked students to give him concepts that they thought of when

thinking of their CS253 course. After a few answers, the whiteboard contained the following

nodes: ‘CS253’, ‘C++’, ‘classes’, ‘objects’, ‘pointers’, and ‘const’.

The instructor continued with the example, “So the idea is that we can draw lines between

related concepts. For example, when I think of pointers, I also think of objects because

pointers can point to objects. Hence, I draw a line between the two. Also, I know we can

have const pointers so I’ll draw a line between those two as well. As you can imagine, concept

maps can grow large quickly and have many connections. However, what this suggests is

14

that people learn, at least in part, by associating new concepts with concepts that have

already been learned.”

The instructor then wrote ‘Java’ on the whiteboard, “In reality, when you started learning

C++, you already had learned a lot of similar concepts already when you studied the Java

programming language. You didn’t have to build this from scratch.”

3.2.12. Final Words. Finally, the instructor summarized what they had covered and

mentioned that the core idea was that by knowing how the brain works, one can leverage that

knowledge to help oneself when performing cognitive tasks, namely refocusing and concen-

trating. Before leaving, students were told that they would receive a follow-up questionnaire

after they had completed their next programming assignment.

3.3. The follow-up questionnaire

The second survey was given a little over a week after the seminar and after students

had completed a programming assignment. The survey consisted of two parts. Part one was

comprised of six statements and six continuous rating scale questions, each having ‘strongly

disagree’ on the left and ‘strongly agree’ to the right. Participants were asked to mark a

vertical line through the horizontal line scale to indicate their opinion for each of the six

statements. We codified their answers by measurement, which gave us real numbers on the

continuous interval [0, 10]. Figure 3.1 shows one of the questions. The statements centered

on the seminar’s effect on students. More details can be found in the subsequent Results

section. The second part of the questionnaire had six questions. The first four asked for

details about the effect of the seminar. The fifth question asked students if they wanted to

see a summary of the study’s results. The last question was a spot for participants to leave

additional comments.

15

Figure 3.1. Example of continuous rating scale question from follow-up questionnaire.

3.4. Results

This section discusses the results of the two questionnaires, identifies themes among

students, and analyzes the seminar’s effect on students.

3.4.1. Initial Questionnaire. The questionnaire had two parts. The first part asked

students about the time cost in various scenarios, while the second part delved into habits

and behavior. Below, in Table 3.1, is a summary of the results to the first part.

Table 3.1. Pilot study: Summary of answers to part one of the initial questionnaire.

Question Mean SD

Number of sittings needed finish a programming
assignment

4.07 2.31

Length of a productive sitting 2.98hrs 1.18hrs
Length of an unproductive sitting 1.09hrs 1.23hrs
Time needed to get in the zone when starting a
programming assignment

25.9min 20min

Time needed to get in the zone when resuming a
programming assignment

12.3min 8.89min

Time to stay in the zone 2.87hrs 1.30hrs

Note that responses to the second (productive sitting) and last (staying in the zone)

questions are consistent, which we felt supported the internal validity of the survey. Based

on the results of the second part of the questionnaire, we were able to identify themes

amongst the study’s participants.

16

3.4.1.1. Little prior knowledge of memory cues and resumption strategies. Eleven of the

fifteen participants had not heard or read about memory cues or resumption strategies.

Three students had heard of these terms, but only in passing. As one of them wrote,

P5: “[I’ve heard or read about] some, but never looked too deep or used any.”

The remaining student had read about memory cues via study habit articles and man-

agement classes. He provided an example of something he had learned,

P10: “Having a ’work’ or ’coding’ playlist gets your mind into the field of that playlists

[sic] type.”

3.4.1.2. Intuitive use of memory cues and resumption strategies. Even though a majority

of students had not heard of memory cues or resumption strategies, all but three of them

described using these techniques when they were planning to stop coding. When asked if

they did anything prior to stepping away from an assignment that helped them refocus faster

when they returned to work, the most common response (11 out of 15) was that they left

comments for themselves. The content of the comments varied depended on the programmer,

but all of them were clearly used to help regain context more quickly.

P15: “Generally commentation [sic]. Just reminders or concerns, or specific tests to

keep in mind.”

P14: “[I] make comments in my code explaining where I am and what I’m doing.”

P7: “I usually put comments in the code to either note where I stopped and what

problems might be unresolved.”

P10: “I place thought process comments and say what I want to be done.”

17

These answers are consistent with what Parnin [21] found were the suspension strategies

of programmers in his evaluation of memory cues. Using comments to help regain context

is a common technique employed by programmers.

Additionally, three students remarked that they tried to take their breaks after finishing

a task.

P1: “[...][I] generally only try to quit when a method is done.”

P5: “If I’m in the middle of something, I leave detailed notes, TODOs, etc. Otherwise,

I try to only stop after completing some chunk to be used later.”

This is an interesting response because it conflicts with one of the suspension strategies

(the Hemingway example) discussed in the seminar. Note this questionnaire occurred at the

start of seminar, so students had not been presented any techniques yet.

3.4.1.3. Maintaining focus. Thirteen of the fifteen participants stated that they did some-

thing to help maintain focus while working on a programming assignment. The most common

answer (8 of 15) was that they listened to music to help block out distractions. Four students

cited food and beverage as an aid to maintaining focus. Four other students mentioned they

used breaks from programming to maintain focus. While some used breaks to relax the

mind, breaks did not have to be passive.

P9: “[I take] short breaks to clear my head or think about the problem without making

hasty changes.”

P12: “[I] pace, think aloud, write things down on paper.”

3.4.1.4. Factors contributing to productive/unproductive work. The two most mentioned

factors that affected productivity were distractions (6 of 15) and understanding (6 of 15).

Distractions were primarily related to environment, with noise, other people, non-work tech-

nology, and mindset being the main causes for distractions.

18

P1: “productive - being at home with little distraction [...] unproductive - being in the

lab when friends are there [...]”

P6: “Internet/email/phone causes unproductive [sic].”

P8: “[Productivity depends on] how distracted I get (i.e. going on Reddit [a social

news and entertainment website]).”

P5: “Either a lack of focus/distractions, or an unclear plan tends to ruin things.”

We were encouraged by the comments on distractions because in many of the examples

cited, the distraction was synonymous with a type of interruption and the seminar would

directly deal with this topic. This provides some evidence that computer science students

are affected by interruptions while doing their assignments. While to some this might sound

trivially obvious, we felt it was important to have some supporting feedback from students.

As mentioned in the last quote, understanding the assignment and having a plan also con-

tributed to the productivity of the participants. Other factors mentioned were fatigue (2 of

15) and buggy code (2 of 15).

3.4.1.5. How students start. Students were asked what they did at the beginning of a

programming assignment. Just over half of the participants (8 of 15) said that they used

pencil and paper to start working. They outlined ideas or constructed a plan in writing to

help formulate a solution to their problem.

P1: “[I] plan out what the program does, work out any tricky methods on paper, [and]

outline the program.”

P3: “[I] map out the assignment flow on paper.”

P8: “[I] make bulletin points on paper of what I’m trying to achieve.”

P13: “[I] read through specs and diagram out a plan - sometimes there’s psuedocode

[sic] involved.”

19

P14: “[I] first write out all the key points from the assignment. Then [I] do a detailed

plan of what I need to code.”

Another method cited (5 of 15) was forming a mental plan. Two of the five people that

cited making a mental plan also cited using written planning.

P4: “Before I start, I dissect it [the assignment] into pieces and think about how to

solve each part. Once I’ve thought about possible solutions, I think about possible

problems.”

P6: “[I] break the requirements into a mental hierarchy.”

The students developing a mental plan were following an identical process to the students

that choose to use paper and pencil. They were outlining ideas and constructing a plan. The

main difference was their choice to not write anything down. The other two actions students

mentioned that they did at the beginning of an assignment were reviewing the assignment’s

specifications (5 of 15) and doing research (2 of 15).

3.4.1.6. How students resume. We asked students about starting and resuming an as-

signment to see if there was any difference between the two actions. We found students

gave different answers in each case. When resuming a programming assignment, the most

frequent answers were that the students reviewed code (7 of 15) or they reviewed notes (6

of 15) to help recover context. Four students cited both techniques in their answers.

P5: “[I] review previously written code, look at any notes, and attempt to pick up

where I left off.”

P8: “[I] look over my bulletin points, then read the last code I wrote.”

P13: “[I] read through code I had written in the previous session to get back to what

was going on beforehand.”

20

The content of this feedback and its frequency is similar with the resumption strategy

Parnin [20] labeled ‘Return to last method modified, and navigate to related code to jog

your memory’, which developers mentioned 58% of time is his study.

Some students (4 of 15) said that they needed to figure out where to go and what to do

next. This is explicit feedback that highlights the problem that memory cues and resumption

strategies attempt to solve. While this feedback is not mutually exclusive from the above

feedback, because the act of resuming requires regaining context, it is noteworthy for being

explicit.

P10: “[I] recap the last session’s thought process and try to understand where to go.”

Lastly, a couple students (2 of 15) stated they reviewed the assignment’s requirements

and/or instructions to help regain context.

3.4.2. Follow up Questionnaire. The six continuous rating scale questions and their

answers are summarized in Table 3.2. Again, 0 implied ‘strongly disagree’ and 10 implied

‘strongly agree’.

We found that students agreed with all statements. More strongly, three of the statements

had mean scores above 8. Part two’s questions focused on the seminar’s effect and answers

are summarized in Table 3.3.

When answering ’yes’, participants were asked to elaborate and provide an example. For

the first question, here is a sample of what the students said:

P15: “Yes, it [the seminar] changed the way I prepare to finish; I left more comments,

concerns, and on purpose errors. It gave me a faster way of fixing the issues though.”

P4: “It makes me think about how to walk away from code in the best way.”

21

Table 3.2. Pilot study: Summary of answers to part one of the follow up questionnaire.

Statement Mean SD

I found the information in the memory cues semi-
nar to be useful.

7.66 1.07

I found the information in the memory cues sem-
inar to be useful during my last programming as-
signment.

6.83 1.68

I found the information in the memory cues semi-
nar to be useful for something other than my last
programming assignment.

6.64 1.99

I will consider using memory cues and resumption
strategies when I program.

8.57 0.84

I think memory cues and resumption strategies
should be presented to CS students at some point
of their curriculum.

8.33 1.43

I am interested in learning more about memory
cues, resumption strategies, or similar topics.

8.19 1.34

Table 3.3. Pilot study: Summary of answers to part two of the follow up questionnaire.

Question Yes No

Did the seminar change the way you think about
programming?

73% 27%

Did you find anything useful about the seminar? 100% 0%
Did you find anything not useful about the semi-
nar?

0% 100%

Did you do anything differently during the last
programming assignment?

80% 20%

P5: “I’ve been trying to force myself to leave off with notes, etc. to help start again

later.”

P7: “[...] it made me more aware of time needed to get refocused on the programming

project.”

P12: “It caused me to make a conscious choice to leave those queues [sic] for myself.”

P13: “It made me consider how much interruptions really affected my programming

flow.”

22

All students stated the seminar was useful and offered their comments on how it was

useful. Students mentioned that the seminar increased their awareness about the subject of

memory cues and resumption strategies.

P5: ‘It was good to finally formalize many of the concepts I had sort of halfway taught

myself before.”

P1: “Realizing things that I do that are already part of memory cues was helpful be-

cause it makes it easier to do them in the future.”

P3: “Just being aware of it [the seminar’s content] is huge.”

P12: “It made me more aware of memory cues that I could use.”

P13: “[It] made me consider more about remembering what’s going on when I’m pro-

gramming instead of just getting up and doing something else.”

Other comments touched on the seminar increasing the students’ efficiency.

P4: “I’ve gotten better at getting in the zone after a break.”

P6: “It helped me learn how to pick up programming after a break faster.”

P9: “‘It brought some techniques to my attention that were useful to me during my

subsequent assignments.”

P8: “[...][I tell] people to wait when they interrupt me.”

Conversely, there were no examples of students saying that the seminar was not useful.

When asked about how the seminar affected their approach to their last programming as-

signment, some of the comments (6 of 15) centered on more documentation and note taking.

P5: “I mainly took extra notes and focused on useful documentation.”

P13: “[I] documented my code and ideas a heckuva lot more!”

P2: “[I] left myself comments when I took breaks.”

23

P6: “I made mental notes before breaking.”

P14: “I commented a lot more and left myself notes from one session to another.”

Another group of respondents (3 of 15) cited thinking more about when to stop working.

P4: “I put an effort into leaving off at a point that is easy to come back to.”

P12: “I was more deliberate in leaving a place to restart quickly from.”

This suggested some students developed a new suspension strategy or altered an existing

one.

3.5. Discussion

Going into the pilot study, our participants had little or no knowledge about memory

cues and resumption strategies. Every student said the seminar contained useful informa-

tion, and four out of five students changed how they worked because of the information

they learned. Furthermore, students showed interest in learning more and thought memory

cues and resumption strategies should be taught in a computer science curriculum. Hav-

ing significant student interest in learning about this material is a compelling argument to

consider. This can be used to start conversations among computer science educators about

adding memory cues and resumption strategies to their classes. It also supports the idea

that programming is a process that has the characteristics of being interruptible and incur-

ring resumption lag. Recognizing these characteristics and knowing techniques to increase

productivity under these conditions is a valuable skill to programmers. Not only did our

participants affirm the usefulness of this information, they also applied it immediately in

their subsequent programming assignment.

Furthermore, the seminar’s information was even considered useful outside of the context

of their last assignment. In fact, the responses about the seminar’s usefulness inside (M:

24

6.83, SD: 1.68) and outside (M: 6.64, SD: 1.99) the context of their last assignment were

indistinguishable (p > 0.77). We believe the likely explanation for this result is that when

students refer to other work, they in part, are referring to other computer science classes that

require programming. Determining if the seminar was useful to students in non-programming

classes would be explored in the subsequent user study.

While many students already intuitively utilized memory cues to some degree, typically

in the form of code comments, the seminar reinforced those habits and encouraged students

to take more steps to help reduce their resumption lag. This point highlights the differ-

ence between implicit and explicit teaching. Without being taught, students had developed

resumption strategies over the course of their learning, however their comments describe a

noticeable difference after they had learned about the topic explicitly in the seminar. This

supports the idea that interruptions, memory cues, and resumption strategies are all topics

that can treated like writer’s block and be discussed in class by teachers to directly speak to

the problems students face during their creative process.

Respondents generally provided fair amounts of information on the questionnaires as

evidenced by their feedback. Also, they were consistent with their positions. For example,

in the initial survey, the average length of time of a productive sitting (M: 2.98, SD: 1.18)

and the time a student is able to stay in the zone (M: 2.87, SD: 1.30) were indistinguishable

(p > 0.81).

Also, as mentioned briefly in the findings section, some of our findings supported the

results of previous research. In particular, we found our students’ responses to the first

survey to regarding resumptions and suspensions paralleled work by Parnin [21]. Their

average resumption lag was 12.3 minutes, which is consistent with the fifteen minutes cited

25

by DeMarco [29] and Solingen [27]. These preliminary results suggested that a broader user

study would be a worthwhile endeavor and allow us to establish more confident results.

26

CHAPTER 4

User Study

The results of our pilot study motivated us to conduct a user study. In particular,

we wanted to see if our pilot study’s results would hold across a larger and more diverse

participant pool. It is possible that pilot study’s participants were not representative of the

actual student population. In addition, we wanted to lengthen the time between seminar and

follow-up surveys in order to lessen the likelihood the seminar’s material was fresh in students’

minds. Our research goal was to examine the effects on college students of presenting them

instruction on interruptions, memory cues, and resumption strategies. More specifically, our

objective was to support the following hypotheses:

H1: College students are affected by interruptions and have the same resumption lag

as industry software engineers.

H2: College students’ knowledge of memory cues and resumption strategies is limited.

H3: College students react favorably to being taught memory cues and resumption

strategies in CS courses and believe they should be included in a college curriculum.

H3a: The student’s age will affect the student’s response to being taught these

topics.

H3b: The student’s programming experience will affect the student’s response to

being taught these topics.

H3c: The student’s years in college will affect the student’s response to being

taught these topics.

H3d: The student’s previous knowledge of memory cues and resumption strate-

gies will affect the student’s response to being taught these topics.

27

H3e: College students will report that learning memory cues and resumption

strategies benefited them outside of CS courses.

To accomplish this, the study had three components: an initial survey, a seminar on

memory cues and resumption strategies, and a follow-up survey. The study involved 198

undergraduate CS students attending a public university. Their ages ranged from 18 to

39, their experience in programming ranged from a few months to ten years, and their

college experience ranged from one semester to eight years. They were not compensated for

participating.

The surveys and seminar were given to five different computer courses: one freshman-

level course, one sophomore-level course, one junior-level course, and two senior-level courses.

The first survey and seminar were given in the middle of the semester. The follow-up survey

was given at the end of the semester, roughly six weeks later.

4.1. The initial questionnaire

The first questionnaire was given in the middle of the semester and consisted of 18

questions, which was slightly longer than the initial questionnaire from the pilot study.

Students completed the survey in 5 to 10 minutes. The survey gathered various types

of data: background information on the student (3 questions), how their time was spent

completing an assignment (6 questions), how quickly they were able to focus (3 questions),

what their resumption habits were (3 questions), and if they had prior knowledge of memory

cues and resumption strategies (3 questions). Once the questionnaires were completed, the

seminar started.

28

4.2. The seminar on memory cues and resumption strategies

Seven seminars were held during seven different lecture periods in five different courses.

The content was identical to that of the pilot study and each seminar lasted the same amount

of time as before. The only difference was that seminar size ranged from about 15 to 100

students, depending on the lecture.

4.3. The follow-up questionnaire

The second survey was given six weeks after the seminar. The survey was a modified

version of the one given in the pilot study. As before, the survey consisted of two parts. Part

one was comprised of six continuous rating scale questions. The first three questions had

“highly not useful” on the left and “highly useful” on the right. The final three questions had

“strongly disagree” on the left and “strongly agree” to the right. The statements centered on

the seminar’s effect on students. More details can be found in the subsequent Results section.

The second part of the questionnaire asked for details about the effect of the seminar. It

also contained two questions which were identical to questions from the initial questionnaire

and asked students about their start and resumption lag times. Space was also provided to

allow participants to leave additional comments.

4.4. Results

The goal of this section is to support or reject the hypotheses defined in Section 4 by

presenting the results of the two questionnaires.

4.4.1. H1 - College students are affected by interruptions and have the

same resumption lag as industry software engineers. Students reported a mean

resumption lag of 15.12 minutes (SD: 12.72). This is consistent with the fifteen minutes cited

29

by industry software engineers in studies by DeMarco and Lister [29] and Solingen et al. [27].

Students were also asked what caused a session of work to be productive or unproductive.

Table 4.1 shows a coalesced summary of student responses.

Table 4.1. User study: Top contributors to productive/unproductive work
for CS students.

Student Response %

distractions 25%

understanding/clear requirements 24%

state of mind/mood 10%

focus 9%

time 6%

fatigue 5%

The two most mentioned factors that affected productivity were distractions (25%) and

understanding/clear requirements (24%). Distractions were primarily related to environ-

ment, which included noise, other people, and non-work technology. These factors were

described by students in their feedback.

P76: “Productive: no distraction from classmates/social media.”

P85: “[affected by] distractions/loud talking in the computer lab.”

P119: “If I don’t have interruptions, I will be productive.”

As before with the pilot study, we were encouraged by the comments on distractions

because in many of the examples cited, the distraction was synonymous with a type of

interruption and the seminar would directly deal with this topic. This provided evidence

that CS students are affected by interruptions while doing their assignments. Again, while

this was expected, we felt it was important to have supporting feedback from students.

4.4.2. H2 - College students’ knowledge of memory cues and resumption

strategies is limited. Nearly three-fourths (73%) of students reported not knowing mem-

ory cues or resumption strategies. Of the 27% that heard of these techniques, 42% said they

30

Figure 4.1. User study: Student responses to the question “Do you do any-
thing prior to stepping away from an assignment that helps you refocus when
you return?”

learned about them in a psychology class and 14% did not remember where they learned

about them. No student cited a CS class as a source for learning memory cues.

We also asked if they did anything prior to stepping away from an assignment that

helped them refocus more quickly when they returned to work, which could indicate if they

implicitly used memory cues and resumption strategies. Figure 4.1 shows a pie chart of all

answers. The most common response (48%) was “no”. The second most common response

(27%) was that they left comments for themselves.

4.4.3. H3 - College students react favorably to being taught memory cues

and resumption strategies in CS courses and believe they should be included

in a college curriculum. Part one of the follow-up questionnaire contained six contin-

uous rating scale questions. For the first three questions (FQ1-3), 0 implied “highly not

useful” and 10 implied “highly useful”, and for the last three (FQ4-6), 0 implied “strongly

31

disagree” and 10 implied “strongly agree”. Table 4.2 contains a summary of student answers

and Figure 4.2 displays a boxplot for their answers.

Table 4.2. User study: Summary of answers to part one of the follow-up questionnaire.

Statement Mean Median SD

I found the information in the memory cues seminar
to be... (FQ1)

6.24 6.50 2.04

For my programming assignments, I found the infor-
mation in the memory cues seminar to be... (FQ2)

6.27 6.5 2.24

For my non-CS assignments, I found the information
in the memory cues seminar to be... (FQ3)

4.86 5.00 2.28

I will consider using memory cues and resumption
strategies when I program. (FQ4)

7.41 7.75 2.02

I think memory cues and resumption strategies should
be presented to CS students at some point of their
curriculum. (FQ5)

7.78 8.00 1.93

I am interested in learning more about memory cues,
resumption strategies, or similar topics. (FQ6)

6.34 6.53 2.40

Figure 4.2. User study: Blox plot of follow-up answers

Students found the seminar useful (M: 6.24 SD: 2.04) and applicable to their programming

assignments (M: 6.27 SD: 2.24). Students elaborated on these positions with their comments:

P17: “I sometimes leave an assignment without finishing it, so it is helpful to create

ways to jumpstart the work when I return.”

32

P18: “[The techniques I learned] helped me reduce the time it took to get back into

working after a break or interruption.”

More strongly, students said they would consider using the techniques (M: 7.41, SD:

2.02) and were highly in favor of teaching memory cues (M: 7.78, SD: 1.93). As one student

articulated in his feedback:

P163: “Seriously, try to get this stuff embedded in the CS courses. It is very important

to be aware of this stuff.”

Also, they wanted to learn more about the subject (M: 6.34, SD: 2.40). For example,

one student wrote:

P176: “I’d like to know more about this topic; [I] wish it was covered in some CS

course.”

Part two of the follow-up questionnaire focused on the seminar’s effect and its answers

are summarized in Table 4.3.

Table 4.3. User study: Summary of answers to part two of the follow-up questionnaire.

Question Yes No

Did the seminar change the way you think about pro-
gramming?

57% 43%

Did you do anything differently during recent pro-
gramming assignments?

43% 57%

The 57% of students that cited a difference in thinking were asked to elaborate and

provide an example. Here is a sample of what the students said:

P126: “I always write a note to myself in my program now when I find a stopping

place. This helps me resume my original thought process and helps the way I think

about programming.”

P95: “[The seminar] made me aware of the pitfalls of memory and productivity.”

33

While 57% of students stated they did nothing differently in their recent assignments,

5% of students mentioned their assignments were too short and/or easy to warrant using the

cues and recognized their usefulness in the future with more complex assignments. As one

student reported:

P66: “It’s [the seminar’s topics] good stuff but I didn’t use it this semester because

the assignments weren’t that hard. I’m sure I will next semester.”

Exploring the sub-hypotheses (H3a-H3e), Welch Two Sample t-tests were conducted on

the six continuous rating scale questions (FQ1-FQ6) to determine if there was a difference

between students that reported prior knowledge of memory cues and resumption strategies

and students that did not report prior knowledge. Tests on FQ1 (p < 0.05), FQ2 (p < 0.01),

and FQ4 (p < 0.10) showed statistically significant differences, which provided some support

to H3d.

However, not all hypotheses were supported. Students did not report a noticeable benefit

to the seminar outside of CS courses (H3e) (M: 4.86, SD: 2.28). Analysis of variance was

conducted to examine the effect of age (H3a), years in college (H3c), and programming

experience (H3b) on FQ1-FQ6. The results are summarized in Table 4.4. Results showed no

significant difference among different values of the dependent variable. The only exception

was an effect of programming experience on FQ5 (p < 0.05). However, post-hoc analysis

with Tukey’s HSD correction showed no distinguishable differences among different values of

the dependent variable. Hence, our study did not demonstrate results that supported H3a,

H3b, H3c, or H3e.

34

Table 4.4. User study: Results of Analysis of Variance tests on the quanti-
tative self-reported responses from the follow-up questionnaire.

Question Group F -statistic p-value

FQ1
Age F (16, 135) = 0.71 p = 0.78

College Exp. F (6, 145) = 1.17 p = 0.33
Prog. Exp. F (5, 147) = 0.60 p = 0.67

FQ2
Age F (16, 135) = 1.22 p = 0.27

College Exp. F (6, 145) = 1.42 p = 0.21
Prog. Exp. F (5, 147) = 1.93 p = 0.11

FQ3
Age F (16, 135) = 0.91 p = 0.55

College Exp. F (6, 145) = 0.49 p = 0.82
Prog. Exp. F (5, 147) = 0.51 p = 0.73

FQ4
Age F (16, 135) = 0.75 p = 0.74

College Exp. F (6, 145) = 1.49 p = 0.19
Prog. Exp. F (5, 147) = 0.79 p = 0.54

FQ5
Age F (16, 135) = 1.51 p = 0.10

College Exp. F (6, 145) = 1.37 p = 0.23
Prog. Exp. F (5, 147) = 2.45 p = 0.05

FQ6
Age F (16, 135) = 1.13 p = 0.34

College Exp. F (6, 145) = 1.64 p = 0.14
Prog. Exp. F (5, 147) = 1.97 p = 0.10

4.5. Discussion

By showing that college students are affected by interruptions in similar ways to industry

software engineers (H1), we were able to extend findings of previous research [29][27] and

reproduce the result from our pilot study. Students’ average resumption lag was 15.12

minutes, which is consistent with the fifteen minutes industry software engineers reported.

In addition, we believe the feedback from the 198 students was meaningful and consis-

tent. Respondents generally provided fair amounts of information on the questionnaires as

evidenced by their feedback. Consistency was demonstrated by their answers. For example,

in the initial survey, we included two questions that were intended to ask the same thing and

only differ in wording. In one question, we asked what was the average length of time of a

productive sitting for the student. In the other, we asked how long the student was able to

35

“stay in the zone”. We performed a Welch Two Sample t-test on the results of the former

(M: 2.40, SD: 1.34) and the latter (M: 2.60, SD: 3.43) and found they were indistinguishable

(p > 0.50).

Students of all ages and experiences are of the strong opinion (M: 7.78, SD: 1.93) that this

material should be part of their undergraduate CS curriculum. Furthermore, 57% changed

the way they thought about programming as a result of the seminar and 43% did things

differently. Additionally, a few more mentioned they would have done something new if

their assignments were more challenging. These results tell us that college students react

favorably to being taught memory cues and resumption strategies in CS courses and believe

they should be included in a college curriculum (H3).

We expected the student’s age, years in college, and programming experience to affect the

student’s response to being taught memory cues and resumption strategies (H3a, H3b, H3c).

However, none of these factors affected students’ responses significantly. The significant

difference was between students with and without prior knowledge of memory cues and

resumption strategies (H3d), where the quarter of students with prior knowledge finding the

seminar less useful, yet they agreed that the material should be taught.

We also thought students would report a benefit to learning about memory cues and

resumption strategies that extended to non-CS courses (H3e), because our pilot study’s

participants reported a benefit. However, our results showed that students were neutral, at

best, to that statement.

While other disciplines, namely Psychology, touch on memory cues and resumption

strategies, CS teachers in universities cannot rely on students being exposed to these sub-

jects, as shown by the results to H2. Therefore, there is a clear knowledge gap that many

36

CS students have. And, according to their feedback (H3), they desire to fill this gap and

learn more.

We believe another takeaway is that while roughly half of students already intuitively

utilized memory cues to some degree, typically in the form of code comments, the seminar

reinforced those habits and encouraged students to take more steps to help reduce their

resumption lag. As one student wrote,

P181: “I’ve been doing something similar [to what was taught in the seminar], but

this made it more concrete. I’d like to learn more.”

Finally, we noted that the pilot study yielded higher self-reported feedback than the

user study. We believe this is because the pilot study’s participants actually came to us to

volunteer. Hence, we think this made them more likely to be interested students and more

apt to react favorably to the new material.

37

CHAPTER 5

Limitations

In this section, we remark on limitations and possible counterarguments to our work.

First, we have not established to what extent memory cues and resumption strategies should

be taught, only that students believed that they should be taught. Readers can use the

description of the seminar in the method section to see what material was covered, but

this is not intended to be a definitive guide of what CS teachers should adopt. Again,

our objective was to show that teaching students about interruptions, memory cues, and

resumption strategies is welcomed by students, not how it should be done in the classroom.

Secondly, our participants came from the same university. However, our institution is

similar to other public state universities. While we believe there was sufficient diversity

among our participants, one could conduct a second study across multiple education insti-

tutions.

Thirdly, students might have been biased to provide positive feedback because they

interpreted positive feedback as being helpful. This occurred to the authors at the outset

of the study, and clear verbal instructions were emphasized to the participants to be honest

and that there were no right answers. Additionally, the course instructors reiterated to their

classes that no favoritism or reward would be given to those who participated in the study.

38

CHAPTER 6

Future work

A natural progression of this research would be to establish what topics are the most

valuable to cover with respect to interruptions, memory cues, and resumption strategies.

While our seminar was well-received by students, we have no way of knowing if the seminar

could be improved and to what extent material should be covered. Hence, we envision a new

study to determine which topics are most valuable to share with students and would be a

logical next step in research.

We also believe there is a vast potential for research into “programming as a craft” that

could take existing knowledge and research of the creative process and cognitive psychology

and apply it to programming. We believe knowledge from these areas that is introduced into

CS can only enhance the field and improve the education of its students.

39

CHAPTER 7

Conclusion

Our environment is filled with distractions and glancing around us appears to suggest

the number of distractions will only grow. Mobile devices are currently becoming more and

more ubiquitous in our world and enjoy vibrating and ringing to attract our attention to

the latest email, news story, or social media message. Students are growing up in a world

where technology actively notifies them of updates at seemingly instantaneous rates. Those

that enter industry and work as software engineers will often be required to juggle their

programming workload with a plethora of team meetings, manager one-on-ones, and co-

worker questions. Giving students mechanisms to cope with these distractions was one of

the motivations for exploring the topic of educating students about interruptions and how

to mitigate their effect.

Therefore we examined if students were affected by interruptions, what knowledge stu-

dents possessed regarding memory cues and resumption strategies, and what their opinion

was of learning this material. We found that students were affected by interruptions and

cited a mean resumption lag of 15 minutes which extended findings from previous research

on professional software engineers. In addition, nearly three-fourths of students reported not

knowing about methods to mitigate the effects of interruptions. After learning about mem-

ory cues and resumption strategies, students reported that the material was useful and that

they wanted to learn about them. Their most significant feedback was that they had a strong

desire to include these techniques in CS curriculums. Furthermore, their feedback, including

their interest in learning more and their opinion that it is a worthwhile topic to be covered

in class, was independent of their age, college experience, and work experience. Based on

40

our findings, we hope this research will open the door to more studies of teaching students

about the creative process. Thus, much like English students, their knowledge would extend

beyond the technical details of their craft and therefore they would be equipped to deal with

the distractions our evolving environment throws at them on a daily basis.

41

BIBLIOGRAPHY

[1] A. M. Szóstek and P. Markopoulos, “Factors defining face-to-face interruptions in the

office environment,” in CHI ’06 Extended Abstracts on Human Factors in Computing

Systems, CHI EA ’06, (New York, NY, USA), pp. 1379–1384, ACM, 2006.

[2] D. McFarlane, “Coordinating the interruption of people in human-computer interac-

tion,” in Human-computer interaction, INTERACT (A. Sasse and C. Johnson, eds.),

vol. 99, p. 295, 1999.

[3] D. C. McFarlane and K. A. Latorella, “The scope and importance of human interruption

in human-computer interaction design,” Hum.-Comput. Interact., vol. 17, pp. 1–61, Mar.

2002.

[4] P. D. Adamczyk and B. P. Bailey, “If not now, when?: The effects of interruption at

different moments within task execution,” in Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, CHI ’04, (New York, NY, USA), pp. 271–278,

ACM, 2004.

[5] H. M. Hodgetts and D. M. Jones, “Reminders, alerts and pop-ups: The cost of computer-

initiated interruptions,” in Proceedings of the 12th International Conference on Human-

computer Interaction: Interaction Design and Usability, HCI’07, (Berlin, Heidelberg),

pp. 818–826, Springer-Verlag, 2007.

[6] H. M. Hodgetts and D. M. Jones, “Resuming an interrupted task: Activation and decay

in goal memory,” in Proceedings of the 28th Annual Conference of the Cognitive Science

Society (CogSci 2006), p. 2506, 2006.

[7] T. J. Robertson, S. Prabhakararao, M. Burnett, C. Cook, J. R. Ruthruff, L. Beckwith,

and A. Phalgune, “Impact of interruption style on end-user debugging,” in Proceedings

42

of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’04, (New

York, NY, USA), pp. 287–294, ACM, 2004.

[8] D. McFarlane, “Comparison of four primary methods for coordinating the interruption

of people in human-computer interaction,” Hum.-Comput. Interact., vol. 17, pp. 63–139,

Mar. 2002.

[9] S. T. Iqbal and B. P. Bailey, “Leveraging characteristics of task structure to predict the

cost of interruption,” in Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, CHI ’06, (New York, NY, USA), pp. 741–750, ACM, 2006.

[10] D. D. Salvucci, N. A. Taatgen, and J. P. Borst, “Toward a unified theory of the multi-

tasking continuum: From concurrent performance to task switching, interruption, and

resumption,” in Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, CHI ’09, (New York, NY, USA), pp. 1819–1828, ACM, 2009.

[11] L. Marulanda-Carter and T. W. Jackson, “Effects of e-mail addiction and interruptions

on employees,” Journal of Systems and Information Technology, vol. 14, no. 1, pp. 82–

94, 2012.

[12] M. Czerwinski, E. Horvitz, and S. Wilhite, “A diary study of task switching and inter-

ruptions,” in Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, CHI ’04, (New York, NY, USA), pp. 175–182, ACM, 2004.

[13] R. Harr and V. Kaptelinin, “Unpacking the social dimension of external interruptions,”

in Proceedings of the 2007 International ACM Conference on Supporting Group Work,

GROUP ’07, (New York, NY, USA), pp. 399–408, ACM, 2007.

43

[14] R. Harr and V. Kaptelinin, “Interrupting or not: Exploring the effect of social context on

interrupters’ decision making,” in Proceedings of the 7th Nordic Conference on Human-

Computer Interaction: Making Sense Through Design, NordiCHI ’12, (New York, NY,

USA), pp. 707–710, ACM, 2012.

[15] Q. R. Jett and J. M. George, “Work interrupted: A closer look at the role of interruptions

in organizational life,” Academy of Management Review, vol. 28, no. 3, pp. 494–507,

2003.

[16] J. Jin and L. A. Dabbish, “Self-interruption on the computer: A typology of discre-

tionary task interleaving,” in Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, CHI ’09, (New York, NY, USA), pp. 1799–1808, ACM, 2009.

[17] E. M. Altmann and J. G. Trafton, “Timecourse of recovery from task interruption: Data

and a model,” Psychonomic Bulletin & Review, vol. 14, no. 6, pp. 1079–1084, 2007.

[18] T. Jackson, R. Dawson, and D. Wilson, “Reducing the effect of email interruptions on

employees,” Int. J. Inf. Manag., vol. 23, pp. 55–65, Feb. 2003.

[19] J. L. Franke, J. J. Daniels, and D. C. McFarlane, “Recovering context after interrup-

tion,” in Proceedings 24th Annual Meeting of the Cognitive Science Society (CogSci

2002), pp. 310–315, 2002.

[20] C. Parnin and R. DeLine, “Evaluating cues for resuming interrupted programming

tasks,” in Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, CHI ’10, (New York, NY, USA), pp. 93–102, ACM, 2010.

[21] C. Parnin and S. Rugaber, “Resumption strategies for interrupted programming tasks,”

Software Quality Control, vol. 19, pp. 5–34, Mar. 2011.

[22] L. Kara A., “Effects of modality on interrupted flight deck performance: Implications

for data link,” tech. rep., 1998.

44

[23] S. Gievska, R. Lindeman, and J. Sibert, “Examining the qualitative gains of mediat-

ing human interruptions during hci,” in Proceedings 11th International Conference on

Human-Computer Interaction, Las Vegas, Nevada, 2005.

[24] N. Kern, S. Antifakos, B. Schiele, and A. Schwaninger, “A model for human interrupt-

ability: Experimental evaluation and automatic estimation from wearable sensors,” in

Proceedings of the Eighth International Symposium on Wearable Computers, ISWC ’04,

(Washington, DC, USA), pp. 158–165, IEEE Computer Society, 2004.

[25] P. Palanque, M. Winckler, J.-F. Ladry, M. H. ter Beek, G. Faconti, and M. Massink, “A

formal approach supporting the comparative predictive assessment of the interruption-

tolerance of interactive systems,” in Proceedings of the 1st ACM SIGCHI Symposium on

Engineering Interactive Computing Systems, EICS ’09, (New York, NY, USA), pp. 211–

220, ACM, 2009.

[26] J. Chong and R. Siino, “Interruptions on software teams: A comparison of paired and

solo programmers,” in Proceedings of the 2006 20th Anniversary Conference on Com-

puter Supported Cooperative Work, CSCW ’06, (New York, NY, USA), pp. 29–38, ACM,

2006.

[27] R. van Solingen, E. Berghout, and F. van Latum, “Interrupts: Just a minute never is,”

IEEE Softw., vol. 15, pp. 97–103, Sept. 1998.

[28] E. Hemingway, G. Seldes, T. Dreiser, L. Hughes, and A. D. Ficke, Monologue to the

maestro: A high seas letter. Esquire, 1935.

[29] T. DeMarco and T. Lister, “Peopleware: Productive projects and teams dorset house,”

New York, 1999.

45

